

2012-2016 APC Laboratory Technical Activities

T. Zerguerras on behalf of the Technical Departments

Technical Departments

- ☐ Organisation
- □ Equipment, facilities and platform
- □ Instrumentation Department (Techniques Expérimentales)
- □ Electronics and Microelectronics Department
- Mechanics Department
- □ IT Department
- **□** Quality Unit
- □ Analysis & Prospects

General organisation

Organisation: structure

- ✓ Matrix organisation structure: Project/Department (Assignment to a department, participation to projects)
- ✓ One specific skill (Mechanics, Electronics/µelectronics, Instrumentation, IT, QA/PA)
- ✓ Transverse activities of the Quality Unit
- ✓ Supervision : Head of department
- ✓ Project coordination: Project manager
- ✓ Indicator Boards for activities and assignments monitoring
- ✓ Project Monitoring Committee (Comité de Suivi de Projets CSP)

This organisation aims to create a bond of trust with funding and tutelage agencies

Organisation: Role of the technical director

Missions officially defined by a CNRS/IN2P3 model of letter of mission (ATRIUM -136477) since November 2016

@ APC:

- ✓ Member of the direction board
- ✓ Hierarchical: Supervision of the technical departments, management tasks (annual evaluation interviews and career files of Technical Dpts heads ...)
- ✓ Organizationnal: operation following laboratory matrix structure; needs of quality in project and organisation of CSP project reviews (support of the Quality Unit); survey of project management procedures and tools (ex: CNRS/IN2P3 NSIP database, APC Indicator Boards ...)
- ✓ Strategic: analyzis and survey of technical implications in projects (skills, workforce, infrastructures, consequences on other on-going projects) to give recommandations and alerts to the laboratory director (final decision maker); definition of the technical recruitment policy
- ✓ Main contact with the CNRS/IN2P3 technical director, participation to meetings and reviews organized by tutelage and funding agencies

Organisation: Technical staff evolution

On 31/12

Technical departments staff evolution

Technical departments staff - Gender

Technical departments staff - Skill level

Age distribution - 31/12/2016

Equipment and facilities

ISO8 Cleanroom (128m²):

- Integration room
- LISA room
- VIRGO room

Frequency comb generator (Laser emission in a spectral band from 1 to 2µm with a frequency

Millimetric Laboratory: 100mK dilution-free cryostat (Oxford Instrument)

(Cooling power: 160µW @100mK, No cryogenic fluid)

Millimetric Laboratory: **Vector network** analyzer (characterization of antenna and filters in the frequency range 70-220GHz)

Equipment and facilities

Low electromagnetic noise test room (37,5m²) including a Faraday cage for components tests from 0.1mHz to 10Hz

Mouting hall

Mechanics Workshop

Photodetection Laboratory

3D Printing Stratasys Fortus FDM250mc (ABS plastic)

Platform: FACe

Started in 2010, support of IPGP in the framework of the Paris-Diderot University Space Campus – Application to the CNRS/IN2P3 Platform Label

- Scientific Manager: Cécile Cavet (IT Department)
- Technical Manager: Michèle Detournay (IT Department)

Missions:

- ✓ Building and infrastructures management (electrical facilities, CDF, HVAC, maintenance, subcontracting management)
- ✓ Computing infrastructures management
- ✓ Services to projects (data bases, web applications, development platform, training and user support)

Equipment:

- ✓ Computing parallel cluster: 652 cores et 42Tb storage
- √ 80 virtual servers for astroparticle and space projects (storage: 180Tb)
- ✓ Concurrent Design Facility (CDF): design and operations (LISAPathfinder, LISA ...)

Projects: PLANCK, INTEGRAL, CODEEN (EUCLID) ...

Next:

- ☐ FACe relocation in 2018
- ☐ Contribution : LISA DPC, SVOM pipeline

Instrumentation Department: Organisation

Instrumentation Department: Skills

- ✓ Optics and interferometry
- ✓ System engineering
- ✓ AIT/AIV
- √ Vacuum and cryogeny
- ✓ Bolometer
- ✓ Photodetection and spectroscopy
- ✓ Simulations (Zemax, Fred, Matlab ...)
- ✓ Test benches design for detector characterization
- ✓ Data acquisition (ex: Labview)
- ✓ Data analysis (ex: Matlab)
- ✓ Spatial and QA background (environment qualifications ...)
- ✓ Cleanroom
- ✓ Project management

Instrumentation Department: AdvVIRGO and post-AdvVIRGO R&D

- ✓ Telescopes for Advanced Virgo (2011-2015):
 - Adapting beam size from a few mm (laser bench) to 5 cm in cavities (and vice-versa)
 - ✓ Workpackages:
 - Optical simulations and design
 - Validation tests in the APC cleanroom
 - Definition of alignment procedures
 - Installation of 5 telescopes on site.

GW detection in coincidence with LIGO (August 2017)

- ✓ Laguerre-Gauss modes
 - ✓ MAJOR EVENTS:
 - ✓ Production of higher-order LG modes: PRL 2010
 - ✓ Interferometry : first lock (2014)
 - √ Thermal compensation of aberrations: PRD 2015
- ✓ Prospects:
 - ✓ **Einstein Telescope:** Third generation GW detector (underground, cryogenic, ...): LG modes integration

PHYSICAL REVIEW D 90, 122011 (2014)

Fabry-Pérot-Michelson interferometer using higher-order Laguerre-Gauss modes

A. Gatto, M. Tacca, F. Kéfélian, C. Buy, and M. Barsuglia

Laboratoire AstroParticule et Cosmologie (APC), Université Paris Diderot, CNRS/IN2P3, CEA/Irfu,

Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75013 Paris, France

(Received 9 October 2014; published 31 December 2014)

Contribution: Mechanics Dpt

Instrumentation Department: LISAPathfinder

Successfully launched on 03/12/2015 (end: July 2017)

Validation of the technology for LISA: measurement of the distance between two free-falling test masses by laser heterodyne interferometry

Major contribution of the APC to data analysis and interpretation (μ-thrusters, deglitch...)

Interferometer noise performances one order of magnitude better than LPF requirements

LISA selected as ESA L3 mission (launch: 2034)

Instrumentation Department: LISA

AIT/AIV Phase 0 CNES and ESA

LISA On Table (LOT)

Hardware simulator of LISA to test in a representative acquisition chain:

- ✓ Noise reduction techniques
- ✓ Instruments (photometers, phasemeter)
- √ 1st TDI (tested)
- ✓ Preparation for vacuum operations (10-1mbar)
- ✓ Funding: R&T CNES

Straylight studies

Simulations to estimate the scattered light from LISA telescopes:

- ✓ Specifications on surface properties with micro-roughness models; cleanliness
- ✓ Polarization of scattered lights
- ✓ Funding: ESA ITT (collab: Thalès Alenia, APC, ARTEMIS, LMA)

Zemax

Instrumentation Department: KM3NeT

Project started @ APC in 2014

APC in charge of (CB+IU) project management

✓ Design, integration, characterization and qualification of a new generation Laser Beacon for time calibration

- ✓ Design, integration and deployment of a calibration unit for the KM3NeT ORCA detector
- ✓ Collaboration with the CPPM (Marseille, France) in charge of the instrumentation line
- ✓ Funding FEDER + CNRS/IN2P3: 400 k€ (CB + IU)
- ✓ Starting operation : mid-2019

Calibration test bench for DOM @ APC Memphyno tank

- Mechanics Dpt
- Electronics Dpt
- QA/PA

Instrumentation Department: TARANIS

CNES Microsatellite to study TLEs occuring during large storms

Design, production and validation of the XGRE sensor (3 x 4 DU: LaBr3, plastic scintillators, PMT).

Instrumentation AIT/AIV (EGSE and MGSE development, design and production of QM and FM, environment tests implementation).

- ✓ Production and validation of the XGRE QM sensors (vibration and thermal vacuum tests) completed (August 2015)
- ✓ Production and validation of the XGRE FM sensors
 - ✓ SM2 qualifications @ CNES (February 2016)
 - ✓ AIT FM sensors & vibration qualif. tests (March 2016)
 - √ Shock qualif. tests (April 2016)
 - ✓ Anomaly detected on LaBr3 (loss of performances)
 - -> Production process upgrade by St Gobain
 - -> June 2017: delivery of new LaBr3 (12 FM DUs + 4 QM DUs)
 - -> July 2018: delivery of FM DUs
 - -> End 2018-mid 2019: AIT on satellite and calibration

- Mechanics Dpt
- QA/PA
- Electronics Dpt
- NEXEYA (QA/PA and AIT/AIV)

Instrumentation Department: EUSO

Towards UHECR detection from space using UV light

- Major facts / key milestones achieved
 - ✓ 2012-2014: successful flight of the <u>EUSO-Balloon</u> mission (12 countries, funding CNES+ Collaboration = 1,7 M€)
 Project management + integration & calibration focal surf @ APC
 - → Congratulations from CNES for the scientific return + funding for a second flight
 - ✓ Test campaigns in collaboration with the Telescope Array collaboration (USA+Japan) and in Turlab (Torino)
 - → First UHECR detection using JEM-EUSO prototype
 - ✓ Funding from Europe (EuHIT), Campus Spatial (Paris Diderot) and CNES for second flight (Total for APC and LAL: 225 k€)
 - ✓ April 2017: EUSO-SPB (long duration balloon flight) by NASA : Design, integration and calibration of the detector @ APC
 - Upcoming milestones
 - ✓ Dec. 2018: launch of the mini-EUSO mission towards ISS

 Design, integration and calibration of PDM and HV system @ APC
 - ✓ April 2020 : Second SPB flight, POEMMA prototype, selected as NASA Probe studies program in 2017

- Mechanics Dpt
- Electronics Dpt
- QA/PA

Electronics and Microelectronics Department: Organisation

Electronics:

7 permanent 2 fixed term

Total:9

Fixed term/Total: 22%

Microelectronics (creation in 2016)

2 permanent 1 fixed term

IR with PhD: 2

Total: 3

Fixed term/Total: 33%

Electronics Dpt:

- 2 retirements in the next 5 years
- End of the 2 fixed-term hiring contracts (31/12/2017 and 04/09/2018)

Microelectronics Dpt:

- End of the fixed-term IE hiring contract in 2018
- Need of a 3rd permanent IR

Electronics and Microelectronics Department: Skills

- ✓ Analog/Digital electronics
- √ Cryogenic microelectronics
- ✓ ASICs definition, design, characterization and integration
- √ FPGA programming (ALTERA, XILINX ...)
- ✓ PCB design & integration (CADENCE)
- ✓ Timing and clock distribution systems (White Rabbit)
- ✓ Simulations: ASICs (VIRTUOSO), VHDL, PCB (ALLEGRO)
- ✓ Tests and characterization (ex: OMEGA ROC ASICs)
- ✓ Spatial and QA backgrounds (RadHard qualifications ...)
- ✓ Project management

Microelectronics Department: QUBIC

Focal plane:

- 4 wafers made of 256 TES @300mK each
- 128 SQUID @ 1K
 + 1 ASIC @ 40 K
 for 1/2 focal plane
- Readout: time multiplexing

SQMUX128 v2:

ASIC Cryo. AMS BiCMOS SiGe 0,35µm standard

Includes: LNA with multiplexed inputs (1:4)
Multiplexed current supply (1:32) for SQUIDs bias
Digital circuit for addressing and serial link

Summer 2015: Integration and validation of ¼ focal plane @ APC

15/06/2016: ASIC v2 delivered - Successfull test in the dilution-free cryostat

September 2016: Starting QUBIC demonstrator integration (2x 1/4 focal planes, 512 channels)

- Mechanics Dpt
- Instrumentation Dpt

Microelectronics Department: ATHENA

Warm Front-End Electronic (FEE) for the X-IFU instrument

- ✓ 96 LNA (100V/V, 1-6MHz, 1nV/√Hz) [
- ✓ SQUIDs biasing
- ✓ Bias regulation, HK, SQUID deflux
- ✓ Box for cryostat + EMI filters

Phase A:

2015-2019

- ASIC production
 - + RadHard qualif.
- EGSE test benches
- Mechanics integration

awaXe_v1:

ASIC AMS BiCMOS SiGe 0,35µm

Goals:

- ✓ Test and characterization of several architectures
- √ Validation of Rad Hard digital libraries
- √ awaXe_v1 delivered on 01/08/2016.
- ✓ Successful RadHard test campaign @ Cocase (high-intensity 60Co source) and latch-up tests @ Louvain-la-Neuve (heavy ions)
- ✓ ASIC v2 in preparation

Electronics Department: TiCkS board for CTA

TiCkS board (Time and Clock Stamping) based on the White Rabbit (WR) SPEC node:

- ✓ Providing ns-precision Time Stamps (TS) of input signals
- ✓ Transmission of these TSs to a central collection point for use in any CTA camera

Modification in the Spartan-6 FPGA:

- ✓ Addition of a 1ns precision TDC for the TSs (collab. CEA/IRFU)
- ✓ UDP stack:
 - send TSs on WR fiber (No loss up to 320kHz @ fixed frequency)
 - Receive config & slow control commands on the same fiber
 - Send PPS and event counter

✓ 2 versions:

- TiCkS –UCTS (FMC) soon available in the WR Open Hardware repository
- TiCkS-CTA (2xRJ45)

C. Champion et al., Proc. ICALEPCS2017, Barcelona, Spain October 8-13 2017 (accepted)

Next:

- ✓ TiCkS on NectarCAM test bench: end of 2017
- ✓ Network of 8 TiCkS: end Q1 2018

Contribution: QA/PA

Electronics Department: LISAPathfinder and LISA

LISAPathfinder:

LASER MODULATOR: beam splitter + 2 AOM + actuators Validation of test procedures with the manufacturer Monitoring during the mission

LISA R&T: Electronics development for the LISA On Table simulator

- ✓ Servo electronics for laser amplitude and optical paths stabilization
- ✓ Implementation and modification of a phasemeter developed at the AEI Hannover
 - building hardware for RF electronics and DDS kits
 - external clock synchro + jitter correction
 - Upgrade to 14 bits @200MHz sampling
- ✓ Low frequency noise measurements on RF components and voltage references

REFIMEVE: Ultra-low phase noise sinusoidal signals synthesizer synchronized on the REFIMEVE signals under development (Goals: LOT upgrade, LISA phasemeter characterization)

Electronics Department: Electronics readout for large PMTs assemblies

Card design, firmware and data acquisition

JUNO @ APC

Joint effort with CENBG and OMEGA – 1st version Mezzanine

- 128 channels
- 8x CATIROC ASICs
- Kindex 7 FPGA
- FMC connector

WA105 @ APC

Collaboration with IPNL, LAPP and OMEGA

- 16 channels
- 1x CATIROC ASICs
- 65 Msps ADC
- µTCA AMC
- FMC connector

Mechanics Department: Organisation

Mechanics Department: Skills

- ✓ Mechanical design in specific environment (space, undersea, vacuum, cryogeny, high-level cleanliness)
- ✓ CAD (CATIA)
- ✓ Finite-element analysis (transition from Samcef to ANSYS): isotrope materials, mechanics, thermal management
- ✓ Dimensionnal metrology (mechanics) + programmation
- ✓ Spatial and QA background (environment qualifications ...)
- ✓ Project management, call of tenders for public contracts
- ✓ Subcontracting monitoring
- ✓ Workshop: CNC machine 2,5 axes (drilling)/assembly, numerically controlled machining center.

Mechanics Department: Double Chooz

Far Detector: Design, production and installation (2011)

Near Detector: Design, production and installation (2012-2014)

- ✓ Shielding: 1m water (except steel on top)
- ✓ Stainless steel tank on steel supports (outer vessel)
- ✓ Support stiffness strenghtened to prevent any deflection > 1mm of the bottom (45 tons thrust load)
- ✓ Upper shielding (steel), platform and electronic hut

Mechanics Department: SVOM

French-Chinese Space Mission for detection of X and gamma bursts with a 4 keV threshold

<u>APC workpackage:</u> Design, production, test and validation of the coded mask for the ECLAIRs instrument:

✓ Pattern area 540x540mm², 40% transparency, self-supporting mask
Initial design: pre-tensed foil made of allied Tantalum 0.6mm thick (4000 random holes)

CNES review (B phase): September 2016

Currently: Phase C

Current design: new pattern with enlarged holes

→ sandwich Ti/Ta/Ti 33.6mm thick

- ✓ Production of SM for further vibration test: End 2017
- ✓ Structural Thermo Model delivery : May 2018
- ✓ FM Mask: 2019
- ✓ Launch : 2021

Mechanics Department: QUBIC

APC mechanics workpackages:

- ✓ Thermal & mech. design of focal plane towers
- √ Therm. & mech. design of the instrument architecture inside vessel
- ✓ Mech. design of the switches / R&D on horns manufacturing
- ✓ Integration process of instrument inside vessel and tests

Technical challenges

- ✓ Mass optimization
- √ Keeping optics alignment when instrument is cooled
- ✓ EMC optimization
- ✓ Many interfaces
- ✓ Integration

Milestones:

- ✓ Technical Demonstrator design finalized
- ✓ Production plan finalized
- ✓ Production: laboratories for small components (GEPI, LAL, APC), subcontracting for the biggest

1/4 Focal plane prototype

- Microelectronics
- Instrumentation

IT Department : Organisation

IT Department: Skills

- ✓ Network & System Administration : network, storage, Unix account, databases, identification system
- ✓ Support: material (hard & soft) and users
- ✓ APC Website management (Drupal)
- ✓ Infrastructures for calculation and projects: parallel calculation cluster (~ 800 CPU), APC cluster (~ 600 CPU), collaborative platforms, EGEE grid, cloud computing (OpenStack) and Big-Data (Hadoop cluster)
- ✓ **Control & command, real-time:** architecture of distributed applications, control and monitoring of mechanical components (motor, presence detector, lock ...), data acquisition (PXI and USB bus), multi-threading and multi-processing architecture
- ✓ **Data analysis:** data analysis chain development (ex: CMB cards), parallel and distributed programming in shared distributed memory
- ✓ **Simulations:** processes in astrophysics (plasma jets from black holes, accretion disk), HPC, instrumental data (ex: EUCLID telescope)

IT Department: CTA PHP

Generalities: a web interface to manage proposals for scientific observations

Preparation

Submission

Evaluation

Follow-up

Admin

Planning

2015- Mid-2016: demonstrator dev. phase

Mid-2016- Mid-2018: Implementation

Mid- 2018: operationnal demonstrator version for

the consortium

Mid-2020: First release to the observatory

Technical Team

- Developper engineer: TT. Nguyen, J J. Dauguet
- Project manager: M. Detournay

The Cherenkov Telescope Array (CTA)

The CTA project is an initiative to build the next generation ground-based very high energy gamma-ray instrument. It will serve as an open observatory to a wide astrophysics community and will provide a deep insight into the non-thermal high-energy universe

CTA VO Access

Cta-VO The work necessary to the provision of data via the Virtual Observatory (VO), a requirement for CTA, is coordinated by the LUTh/Observatoire de Paris. In this context, we developed a prototype that allows a user to access CTA data using VO tools, standards and protocols, and provides the ability to analyze the data online.

CTA Proposal Handling Platform

Cta-PH The work necessary to the management of the GO proposals, a requirement for CTA, is coordinated by the APC/CNRS-Universite Paris Diderot. We are developping a demonstrator to develop and test the main technical aspects of the Proposal Handling Platform.

IT Department: LSST

✓ JAVA development framework for the CCS camera: Monitoring and managing communications between subsystems (filters change, shutter, cooling, power supply management) and information flux between databases. Concept proposed by the APC laboratory and selected by the collaboration

- ✓ FCS subsystem (filter changer) Control/Command: 6 filters (motion control, exchange, positionning).
 Critical (1 filter = 700k€)
- Successfull reviews: Director NSF-DOE JSR (2016), RSP IN2P3 (2017), FCS MRR (2017)
- Scale 1 prototype under construction @ LPSC, CPPM and LPNHE

F. Virieux (PM), E. Marin-Matholaz

IT Department: DPC LISA

France in charge of the Data Processing Centre (DPC):

✓ CNES phase 0 : load peaks management

=> hybrid cluster (continuous load) / cloud (peak) system.

✓ R&T CNES/ATOS: Docker containerization of applications

Objective: provide hardware and software tools to the consortium to host and process LISA data analysis.

Context: APC + CNES leadership, relatively small data volume (1Tb/year) but some processing tasks are CPU demanding

- -> use distributed/on-demand CPU (~ 5000 cores/center, ~ 3 centers, including the main French center)
- -> develop luggable tools and services (virtualization, containers)

Ongoing activites: 1) APC provides the proto-DPC (continuous Integration) + (due to end 2017) proto-database expected for the next data challenge.

2) CNES, APC and the LISA consortium write the definition document and specify workpackages.

M. Le Jeune, C. Cavet, E. Marin-Matholaz, M. Batmanabane

IT Department: EUCLID

- Ground Segment : phase C2
 - CODEEN:
 - Continuous integration platform for software development
 - Administration and user support, migration on the OpenStack@CC-IN2P3 cloud in 2017

– EXT/SIM :

- Ground observatories data integration
- Development of simulator and data analysis pipeline (démarrage EXT-generic starts in 2017, EXT-LSST in 2018 if Euclid/LSST agreement)
- SDC France scientific coordination (CC-IN2P3) :
 - Interface between the IN2P3 et the EUCLID project
 - Production infrastructure sizing and ressources allocation

C. Cavet (PM), A. Boizard, J.M. Colley, M. Detournay, R. Fahed, M. Le Jeune, M. Souchal

IT Department: Data analysis & Computing

Map-making for CMB data analysis

How to keep refined data analysis when data volume is exploding?

Number of detectors:

Polarbear I: 1200 -> Polarbear II: 7500

-> SIMONS array (2018): 22000

Size = $n_t (10^9) \times n_pix (10^7)$

Unbiased mapmaking (iterative) to get full map recovery at optimized CPU cost

High Performance Computing

Studies of disk instabilities around black hole accretion disk

- Support : FACe (7 nodes bought by the HPC project team), CINES
- Scientific library compilation, optimization, installation
- Visualization for very big data : a new challenge

F. Dodu

Quality Unit: Organization

29/11/2017 HCERES 2017 37

Quality Unit:Skills

Quality Assurance Support:

- ✓ Setting up quality and management procedures to continuously improve scientist instruments produced by the laboratory
- ✓ Includes:
 - **✓** Documentation management
 - ✓ Non-conformities management
 - √ Traceability process implementation
 - ✓ Control of assembly operations

Electronics Product Assurance:

✓ Components qualification for commercial products or specific ASICs : Radhard qualification process, studies of reliability and ITAR process for space electronics components

Information and indicators management:

- **✓** Electronics documentation management
- ✓ Scientific bibliography
- ✓ Database studies and development for laboratory management

Quality Unit: Involvement in projects

TARANIS

Quality Project + Electronic Product Assurance (the whole project)
Quality AIT/AIV

CTA / NectarCam

Reliability analysis of the MUTIN circuit Board and clock distribution.

RAMS activities for NectarCam: (RAMS = Reliability Availability Maintenability Safety)

KM3NeT

Reliability analysis of DOM (Digital Optic Module) and other subsystems

EUCLID

NISP sensor RadHard test campaigns for EUCLID focal plan

SVOM

Quality Project Documentation

ATHENA

Quality Project + RADHARD Qualification

Quality Unit: Achievements

Indicators Database Human Resources:

✓ Information on Human Resources of the laboratory for tutelage agencies, scientific and evaluation committees

Project resources database:

- ✓ Overview on human resources assigned to each project for a better visibility
- ✓ Production of indicators (statistics, charts, graphics)

Documentation:

- ✓ Provision of documentation templates for projects
- ✓ Provision of an on-line documentation system (ATRIUM) for centralisation and storage
- ✓ Assistance to project reviews (CSP) organisation and reports management

2012-2016: 37 internal reviews

Analysis & Prospects: Technical FTE

On-ground and under-sea projects

Analysis and prospects: Projects roadmap

R&D Gammacube stopped in 2016

Analysis & Prospects: SWOT Analysis

Strengths	Weaknesses
 Specific skills: optics, photodetection, cryogenic µelectronic, space AIT/AIV (mechanics & instrumentation), QA/PA, virtualization and cloud Skills in space and balloons projects managemement Recognition as a key actor in space projects by the CNES National and international visibility 	 Imbalance between projects needs and available technical HR High turn-over Risk of losing strategic skills (fixed-term contract, mobility, retirement) Some permanent members of staff are the only ones with their skills (ex:optics, AIT/AIV, electronics PA, mechanics workshop technician) Strong commitment in projects limits involvement in generic R&D and general technologic surveys Logistics support reduced
Opportunities	Threats
 Space and funding agencies, tutelage organisations, national and international collaborations calls of tender Long-term projects: EUCLID, CTA, KM3NeT, LSST, QUBIC, LISA, ATHENA Multi-messenger astronomy rising 	 Financial cut from funding agencies and partners Time-consuming non-technical tasks increasing (ex: management, institutionnal consultancy, funding applications) Specific skills difficult to find on the labor market Unfavorable change in tutelage agencies hiring policy More and more restrictive administrative regulating (ex: Sauvadet, GBCP)

A view for the future ...

Technologies and skills:

- ASICs for CMB instruments
- Optics for on-ground and space GW detectors
- Mechanical design and calculations in various environments (space, cryogeny, vacuum ...)
- AIT/AIV (on-ground, balloon and space projects)
- Timing and clock distribution system (White Rabbit and beyond ...)
- Electronics readout for photodetection (partnership with the Omega Pole)
- QA/PA (in particular Electronics PA)
- Cloud and Big Data
- Collaborative platforms for space projects
- HPC and simulations (instruments, astrophysics ...)

Long-term challenging technical projects in the frame of the Multi-Messenger Astronomy:

- Cosmo: EUCLID, LSST, QUBIC (demonstrator, FI?), S4 (?), Litebird (?)
- AHE: ATHENA, CTA, EUSO (?), SVOM
- Neutrinos: KM3NeT, JUNO (?), WA105/DUNE (?)
- Gravitation: AdvVIRGO and +, LISA

Lead a continuous effort to reach a balance between the technical workforce and the scientific roadmap

Thank you for your attention!

29/11/2017 HCERES 2017 45