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General Relativity

GR is based on two important principles:
Mach’s principle
Equivalence principle
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General Relativity

GR is based on two important principles:
Mach’s principle The presence of matter curves the geometry of spacetime
Equivalence principle Locally a free-falling observer and an inertial
observer are indistinguishable

This means:
-Gravity is a local condition of spacetime
-Gravity sees all (including vacuum energy!)
-In Newtonnian gravity mI and mG happen to be the same, in GR it is a
founding principle
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GR is a unique theory

Theoretical consistency: In 4 dimensions, consider
L = L(M, g ,∇g ,∇∇g). Then Lovelock’s theorem in D = 4 states that
GR with cosmological constant is the unique metric theory emerging from,

S(4) =
∫
M

d4x
√
−g (4) [R − 2Λ]

giving,
Equations of motion of 2nd-order (Ostrogradski no-go theorem
1850!)
given by a symmetric two-tensor, Gµν + Λgµν
and admitting Bianchi identities.

Under these hypotheses GR is the unique massless-tensorial 4 dimensional
theory of gravity!
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Observational data

Experimental consistency:
-Excellent agreement with solar system tests and strong gravity tests on binary
pulsars
-Observational breakthrough GW170817: Non local, 40Mpc and strong gravity
test from binary neutron stars. cT = 1± 10−15

Time delay of light Planetary tajectories

Neutron star binary
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Q: What is the matter content of the Universe today?

Assuming homogeinity-isotropy and GR

Gµν = 8πGTµν
cosmological and astrophysical observations dictate the matter content of the

Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope to see
more at LHC. But even then...
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Q: What is the matter content of the Universe today?

Assuming homogeinity-isotropy and GR

Gµν = 8πGTµν
cosmological and astrophysical observations dictate the matter content of the

Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope to see
more at LHC. But even then...

If we assume only ordinary sources of matter (DM included) there is
disagreement between local, astrophysical and cosmological data.
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Universe is accelerating → Enter the cosmological constant

Simplest way out: Assume a tiny cosmological constant
ρΛ = Λobs

8πG = (10−3eV )4, ie modify Einstein’s equation by,

Gµν + Λobsgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

Typical mass scale for neutrinos...
Theoretically the cosmological constant should be huge.
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Cosmological constant problem, [S Weinberg Rev. Mod. Phys. 1989]

Cosmological constant behaves as vacuum energy which according to the
strong equivalence principle gravitates,

Vacuum energy fluctuations are at the UV cutoff of the QFT
Λvac/8πG ∼ m4

Pl ...

Vacuum potential energy from spontaneous symmetry breaking
ΛEW ∼ (200GeV )4

Bare gravitational cosmological constant Λbare

Λobs ∼ Λvac+ Λpot+Λbare

Enormous Fine-tuning inbetween theoretical and observational value

Why such a discrepancy between theory and observation? big CC
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Maybe Λobs is not a cosmological constant.

What if the need for exotic matter or cosmological constant is the sign for
novel gravitational physics at very low energy scales or large distances.

-Same situation at the advent of GR.
-A next order correction with one additional parameter was enough to save
Newton’s laws (at the experimental precision of the time..)
-Success of GR is not the advance of Mercury’s perihelion, modification of
gravity cannot only be "an explanation" of the cosmological constant.
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General issues to deal with

Since GR is unique we need to introduce new and genuine gravitational
degrees of freedom!
They generically must not lead to higher derivative equations of motion.
Additional degrees of freedom can lead to ghosts and vacuum is unstable
(Ostrogradski theorem 1850 [Woodard 2006]). Since [Gleyzes et al] we know that
higher derivative EOM do not always lead to ghosts. What is essential is
the number of propagating dof.
Matter does not directly couple to novel gravity degrees of freedom.
Matter sees only the metric and evolves in metric geodesics. As such EEP
is preserved and space-time can be put locally in an inertial frame.
Novel degrees of freedom need to be screened from local gravity
experiments. Need a well defined GR local limit (Chameleon [Khoury 2013],
Vainshtein [Babichev and Deffayet 2013]).
Exact solutions essential in modified gravity in order to understand strong
gravity regimes and novel characteristics. Need to deal with no hair
paradigm, absence of Birkhoff theorem etc.
A modified gravity theory should tell us something about the cosmological
constant problem and in particular how to screen an a priori enormous
cosmological constant. Self tuning and self acceleration.
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Self-Tuning idea

Expected value of the cosmological constant is enormous compared to the
observed value
Weinberg’s no go theorem states that we cannot have a Poincare invariant
vacuum with Λ 6= 0
Question: Can we break Poincare invariance for some additional field?
Keep gµν = ηµν locally but allow for φ 6= constant.
Can we have a portion of flat spacetime whatever the value of the cosmological
constant...
and without fine-tuning any of the parameters of the theory?
Toy model theory of self-adjusting scalar field.
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Possible modified gravity theories

Assume extra dimensions : Extension of GR to Lovelock theory with
modified yet second order field equations. Braneworlds DGP model RS
models, Kaluza-Klein compactfication, String theory and holography.
Graviton is not massless but massive! dRGT theory and bigravity theory.
4-dimensional modification of GR:

Scalar-tensor theories, f (R), Galileon/Hornedski theories → Beyond
Horndeski and DHOST theories.
Vector-tensor theories

Lorentz breaking theories: Horava gravity, Einstein Aether theories
Theories modifying geometry: inclusion of torsion, choice of geometric
connection

C. Charmousis Modified gravity theories and recent constraints



Gravity in higher dimensions

UV IRu

xµ

Inspired from string theory and holographic ideas
small compact extra dimensions, the Kaluza-Klein paradigm relates higher
dimensional metric theories to 4 dimensional modified gravity theories. Origin of
Horndeski theory
Braneworld idea and how a negative cosmological constant can accommodate
large extra dimensions (RS and DGP models). Cutting and pasting portions of
adS or flat spacetime using junction conditions.
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Braneworld

Central idea
Matter lives on a distributional brane
gravity lives in a higher dimensional space-time
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Braneworld

UV IRu

xµ

Interesting phenomenology
DGP and RS models

Introduction of self-acceleration idea [Deffayet]

Understanding of FRW braneworld cosmology [Binetruy et al.]

decoupling limit in DGP makes connection with Galileons in 4 dimensions [Lutty,

Porrati, Rattazzi]
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Braneworld

UV IRu

xµ

Self tuning

In RS : Fine tuning of the cosmological constant; Fine tuning relieved with the
presence of a scalar field in the bulk [Arkani-Hamed et al], [Kachru et al.]

Keeping IR ads gives localised 4 dim graviton
Keeping UV adS allows for self tuning
Putting all of it together allows self tuning braneworlds [CC, Kiritsis, Nitti]
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Scalar-tensor theories

are the simplest modification of gravity with one additional degree of
freedom
Admit a uniqueness theorem due to Horndeski 1973 and extended to
DHOST theories [Langlois et.al] [Crisostomi et.al.]

contain or are limits of other modified gravity theories.
(Can) have insightful screening mechanisms (Chameleon, Vainshtein)
Include terms that can screen classically a big cosmological constant or
give self accelerating solutions. Need a non trivial scalar field.
Have non trivial hairy black hole solutions even around non trivial self
accelerating vacua
Theories are strongly constrained from gravity waves.
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Galileons/Horndeski [Horndeski 1973]

What is the most general scalar-tensor theory
with second order field equations [Horndeski 1973]?

Horndeski has shown that the most general action with this property is

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

the Gi are free functions of φ and X ≡ − 1
2∇

µφ∇µφ and GiX ≡ ∂Gi/∂X .
In fact same action as covariant Galileons [Deffayet, Esposito-Farese, Vikman].
Galileons are scalars with Galilean symmetry for flat spacetime.
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Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
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Examples: G4 = 1 −→ R.
G4 = X −→ Gµν∇µφ∇νφ.
G3 = X −→ "DGP" term, (∇φ)2�φ
G5 = lnX −→ gives GB term, Ĝ = RµναβRµναβ − 4RµνRµν + R2

Action is unique modulo integration by parts.
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Galileons/Horndeski [Horndeski 1973]

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)
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Horndeski theory admits self accelerating vacua with a non trivial scalar field in
de Sitter spacetime. A subset of Horndeski theory self tunes the cosmological
constant.
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Going beyond Horndeski [Gleyzes et.al], [Zumalacarregui et.al],[Deffayet et.al], [Langlois et.al],
[Crisostomi et.al]

What is the most general scalar-tensor theory with three propagating degrees of
freedom?
It is beyond Horndeski but not quite DHOST yet...

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5) ,

where

L2 = G2(φ,X), L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]

+ F4(φ,X)εµνρσ εµ
′ν′ρ′σφµφµ′φνν′φρρ′ ,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

+ F5(φ,X)εµνρσεµ
′ν′ρ′σ′φµφµ′φνν′φρρ′φσσ′

where XG5,XF4 = 3F5
[
G4 − 2XG4,X − (X/2)G5,φ

]
. Beyond Horndeski acquires one

extra function. BH has similar SA and ST solutions.
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Conformal and disformal relations [Bellido, Zumalacarregui]

How are theories mapped under conformal and disformal transformations?

gµν −→ g̃µν = C(φ,X)gµν + D(φ,X)∇µφ∇νφ

Horndeski theory has G2,G3,G4,G5 free functions.
For C(φ) and D(φ) we remain within Horndeski.
However if we take a disformal D(X) we jump to
Beyond Horndeski (one more free function)
Take a conformal C(X) and jump to
DHOST Type I (one more free function) [Langlois, Noui], [Crisostomi, Koyama]

In other words DHOST type I are all related to some Horndeski theory. Remaining
DHOST theories are pathological [Langlois, Noui, Vernizzi]

Most general acceptable scalar tensor theories are related to Horndeski theory via a
disformal and conformal transformation.
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Compact objects in Horndeski and beyond Horndeski
theories

ST and SA solutions dictate time dependence for scalar for de Sitter or flat
spacetimes.
Scalar field is space and time dependent for static black holes...
Birfurcating no hair theorem
Example [Babichev, CC]:

S =
∫

d4x
√
−g
[
ζR − 2Λ− η (∂φ)2 + βGµν∂µφ∂νφ

]
,

Solution: f = h = 1− µ
r + η

3β r
2, φ = qt ± q

h
√
1− h with Λeff = −ζη/β.

Similar asymptotically flat solution : stealth Schwarzschild
The effective cosmological constant is not the vacuum cosmological constant. In
fact,
q2η = Λ− Λeff > 0
Hence for arbitrary Λ > Λeff fixes q, integration constant.
Λeff is a geometric acceleration screening the vacuum cosmological constant
Generalised for Horndeski and beyond Horndeski spacetimes [Babichev, G-E Farese]
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GW170817 constraints on scalar tensor theories [Creminelli, Vernizzi],
[Ezquiaga, Zumalacarregui]

The combined observation of a gravity wave signal from a binary neutron star
and its GRB counterpart constraints cT = 1 to a 10−15 accuracy.
For dark energy the scalar field (ST or SA) is non trivial at such distance scales
(40Mpc) and generically mixes with the tensor metric perturbations modifying
the light cone for gravity waves.
For Horndeski the surviving theory has free G2(φ,X),G3(φ,X), G4(φ) and
G5 = 0.
For beyond Horndeski we have G5 = 0,F5 = 0, 2G4,X − XF4 = 0 and theory,

LcT =1 = G2(φ,X) + G3(φ,X)�φ+ B4(φ,X) (4)R

−
4
X
B4,X (φ,X)(φµφνφµν�φ− φµφµνφλφλν) ,

For DHOST we just make a conformal transformation of the above,
G2(φ,X)G3(φ,X),B4(φ,X),C(φ,X)
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Galileons/Horndeski [Horndeski 1973]

What is the most general scalar-tensor theory
with second order field equations [Horndeski 1973]?

Horndeski has shown that the most general action with this property is

SH =
∫

d4x
√
−g (L2 + L3 + L4 + L5)

L2 = G2(φ,X),
L3 = G3(φ,X)�φ,

L4 = G4(φ,X)R + G4X
[

(�φ)2 − (∇µ∇νφ)2
]
,

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X
6
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3
]

Examples: G4 = 1 −→ R.
G4 = X −→ Gµν∇µφ∇νφ.
G3 = X −→ "DGP" term, (∇φ)2�φ
G5 = lnX −→ gives GB term, Ĝ = RµναβRµναβ − 4RµνRµν + R2
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Physical and disformed frames

Most general scalar tensor theory with cT = 1 minimally coupled to matter
parametrized by G2,G3,B4,C

LcT =1 = G2 + G3�φ+ B4C (4)R −
4B4,XC

X
φµφνφµν�φ

+
(4B4,XC

X
+

6B4C,X 2

C
+ 8C,XB4,X

)
φµφµνφλφ

λν

+
8C,XB4,X

X
(φµφµνφν)2 .

Horndeski is related via a transformation

gµν −→ g̃µν = C(φ,X)gµν + D(φ,X)∇µφ∇νφ

to the LcT =1 for given C and D.
One can start with a cT 6= 1 Horndeski theory and map it to a DHOST cT = 1
theory for a specific function D.
The former is what we could have called the Einstein frame respective to the
latter, the Jordan frame...
except that the metric is disformed in the procedure...
The more the symmetry the better
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Conclusions

Modifying GR is a difficult task but with countable possibilities.
Even more so after the GW experiments. :)))
Scalar tensor theories are parametrized by 4 free functions which we
hope will be further constrained.
Numerous spherically symmetric solutions known. Black holes,
neutron stars. One has to adjust them to acceptable theories. One
has to study GW-compatible theories independently.
Exact solutions are important to understand the MG theory and find
novel effects. Are there solutions free of singularities? What of
rotating hairy black holes and Neutron stars?
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Implementing the Vainshtein mechanism

linear regime, 
non-General Relativity

Non-perturbative regime, 
General Relativity

MG theories with higher order kinetic
terms sensitive to higher order effects,
RNL >> RSolar >> RSch.
Where GR had a linear approximation MG
does not!
Vainshtein scale RV >> RS . A kind of
Schw. scale for MG theories
RV = RV (M, rSch)
Vainshtein mechanism gives GR as
classical limit due to non-linear
self-interaction.
Restoring GR in massive gravity, in
scalar-tensor models etc.
Review on the Vainshtein mechanism
EB & C.Deffayet 2013
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