Numerical relativity

Philippe Grandclément

Laboratoire de l'Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France

philippe.grandclement@obspm.fr

22 November 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The object of numerical relativity is to solve Einstein equations with computers.

- Complementary to semi-analytic approaches (post-Newtonian, perturbative techniques).
- Largely motivated by the gravitational wave detectors.
- Main application : binary black hole computations.
- Many other applications (supernovae, neutron stars, boson stars, ADS/CFT conjecture, alternative theories...)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Einstein's equations

- Geometry is described by a 4D, Lorentzian metric $g_{\mu\nu}$.
- The coupling between geometry and energy is described by Einstein's equations $G_{\mu\nu}=8\pi T_{\mu\nu}$
- $G_{\mu\nu}$ is Einstein's tensor, non-linear, and second order in $g_{\mu\nu}$.
- In their standard form, Einstein's equations are not well suited for numerical resolution.

Foliation of spacetime

The 3+1 formalism is the most widely used way to write Einstein equations for NR. It makes explicit the split between space and time. Spacetime is foliated by a family of spatial hypersurfaces

- Coordinate system of Σ_t : (x_1, x_2, x_3) .
- Coordinate system of spacetime : (t, x_1, x_2, x_3) .

Greek indices 4D (0, 1, 2, 3) and Latin 3D (1, 2, 3).

Unit normal

- N is the lapse, a choice of time coordinate.
- B^i is the shift, a choice of spatial coordinates.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Projections

- Projection on the normal of a vector \vec{V} is given by $n_{\mu}V^{\mu}$.
- Projection operator on the hypersurfaces $\gamma^{\nu}_{\mu} = g^{\nu}_{\mu} + n_{\mu}n^{\nu}$.
- Projection of a vector \vec{V} is given by $\gamma^{\nu}_{\mu}V^{\mu}$.
- Projection the 4D metric is

$$\gamma^{\nu}_{\alpha}\gamma^{\mu}_{\beta}g_{\mu\nu} = \gamma_{\alpha\beta} = g_{\alpha\beta} + n_{\alpha}n_{\beta}$$

The 4D line-element reads

$$\mathrm{d}s^2 = -\left(N^2 - B^i B_i\right) \mathrm{d}t^2 + 2B_i \mathrm{d}t \mathrm{d}x^i + \gamma_{ij} \mathrm{d}x^i \mathrm{d}x^j$$

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

Extrinsic curvature K_{ij}

- Describes the part of the geometry not accounted for by the induced metric.
- It describes the variation of normal projected on the hypersurface.

$$K_{ij} = -\gamma_i^{\mu} \gamma_j^{\nu} \nabla_{\mu} n_{\nu}$$

• In the 3+1 framework, it is given by

$$\left(\partial_t - \mathcal{L}_{\vec{B}}\right)\gamma_{ij} = -2NK_{ij}$$

- It is known as the second fundamental form.
- The first fundamental form is the induced metric γ_{ij}
- Both forms live on the hypersurface (i.e. contractions with \vec{n} are null).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Link between 4D and 3D quantities

In order to derive the 3+1 version of Einstein's equations, one needs to relate the 4D quantities to the 3D ones.

- 4D quantities : $g_{\mu\nu}$, n^{α} , ${}^{4}R^{\alpha}_{\beta\mu\nu}$, ∇_{α} ...
- 3D quantities : γ_{ij} , K_{ij} , D_i , N, B^i ...

Some examples

• Gauss relation :

$$\gamma^{\mu}_{\alpha}\gamma^{\nu}_{\beta}\gamma^{\gamma}_{\rho}\gamma^{\sigma-4}_{\delta}R^{\rho}_{\sigma\mu\nu} = R^{\gamma}_{\delta\alpha\beta} + K^{\gamma}_{\alpha}K_{\delta\beta} - K^{\gamma}_{\beta}K_{\alpha\delta}$$

Codazzi relation :

$$\gamma^{\gamma}_{\rho}n^{\sigma}\gamma^{\mu}_{\alpha}\gamma^{\nu}_{\beta} {}^{4}R^{\rho}_{\sigma\mu\nu} = D_{\beta}K^{\gamma}_{\alpha} - D_{\alpha}K^{\gamma}_{\beta}.$$

The 3+1 equations are obtained by projecting $G_{\mu\nu} = 8\pi T_{\mu\nu}$ on n^{α} and on the hypersurfaces.

- projections onto $n^{\mu}n^{\nu}$, the Hamiltonian constraint: $R+K^2-K_{ij}K^{ij}=16\pi E.$
- projection onto $n^{\mu}\gamma_i^{\nu}$, the momentum constraint:

 $D_j K_i^j - D_i K = 8\pi P_i.$

• projection onto $\gamma_i^{\nu} \gamma_j^{\mu}$, the evolution equation:

 $\begin{pmatrix} \frac{\partial}{\partial t} - \mathcal{L}_{\vec{B}} \end{pmatrix} \quad K_{ij} =$ $-D_i D_j N \quad +N \left(R_{ij} + K K_{ij} - 2K_{ik} K_j^k + 4\pi \left[(S-E) \gamma_{ij} - 2S_{ij} \right] \right).$

• E, P_i and S_{ij} are the various projections of $T_{\mu\nu}$.

Evolution problem

- Give yourself a set of initial data $\gamma_{ij} (t=0)$ and $K_{ij} (t=0)$.
- The fields at latter time are obtained by two first order equations :
 - Definition of K_{ij} : $(\partial_t \mathcal{L}_{\vec{B}}) \gamma_{ij} = ...$
 - Evolution equation : $(\partial_t \mathcal{L}_{\vec{B}}) K_{ij} = ...$
- Similar to writing the Newton's law in terms of \vec{x} and \vec{v} :
 - $\gamma_{ij} \leftrightarrow \vec{x}$.
 - $K_{ij} \leftrightarrow \vec{v}$.
 - Definition of $K_{ij} \leftrightarrow \partial_t \vec{x} = \vec{v}$.
 - Evolution equation \leftrightarrow Newton's second law.
- Need to prescribe lapse N and shift B^i : choice of coordinates.

Form well adapted for numerical simulations (Runge-Kutta type algorithms).

Constraint equations

- The evolution equations are not all of Einstein's equations.
- The constraints are 4 equations, that do not contain ∂_t .
- Such equations are absent in Newtonian dynamics but not for Maxwell.

Туре	Einstein	Maxwell
	Hamiltonian $R + K^2 - K_{ij}K^{ij} = 0$	$ abla \cdot \vec{E} = 0$
Constraints		
	Momentum : $D_j K^{ij} - D^i K = 0$	$\nabla \cdot \vec{B} = 0$
	$\frac{\partial \gamma_{ij}}{\partial t} - \mathcal{L}_{\vec{B}} \gamma_{ij} = -2NK_{ij}$	$\frac{\partial \vec{E}}{\partial t} = \frac{1}{\varepsilon_0 \mu_0} \left(\vec{\nabla} \times \vec{B} \right)$
Evolution		_ →
	$\frac{\partial K_{ij}}{\partial t} - \mathcal{L}_{\vec{B}} K_{ij} = -D_i D_j N + N \left(R_{ij} - 2K_{ik} K_j^k + K K_{ij} \right)$	$\frac{\partial B}{\partial t} = -\vec{\nabla} \times \vec{E}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Initial value problem

- Find a set of fields γ_{ij} (t = 0) and K_{ij} (t = 0) fulfilling the constraints.
- It means solving coupled non-linear elliptic equations.
- Difficulty to make the link with physical situations.

The evolution

- Solve hyperbolic evolution equations.
- Difficulties :
 - maintaining the accuracy (i.e. the constraints).
 - Dealing with formation of shocks, black holes.

• Treating outgoing wave boundary conditions.

The *holy grail* of numerical relativity : the binary black hole case

A few important milestones

- 1975-1977 : First head-on collision (Smarr & Eppley).
- 1994-1998 : The Grand Challenge : improved head-on collision.

- 1999-2000 : Grazing collision (AEI, PSU).
- 2005-2006 : First orbits (Caltech, UTB, NASA)
- 2007-2014 : many orbits, study of various physical effects.
- 2015 : the detection

After decades of struggling ... a breakthrough

F. Pretorius 2005

Reason for the breakthrough ?

Several factors

• Better formulation : BSSN formalism.

- Improved gauge choice.
- High order numerical algorithms.
- Better treatment of the holes.
- Bigger computers.

Simplest cases are well controlled

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

simulation from Cornell group

Very good match with observations

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Some situations do no require time evolution

- Stationary configurations (boson stars, neutron stars...)
- Configurations with some time symmetry: helical Killing vector (quasi-circular orbit, geons).
- (Quasi-)periodic solutions (oscillons, oscillatons).
- Mathematically : prescribe ∂_t operator $(0, \Omega \partial_{\varphi} ...)$
- Produces elliptic system.
- Additional difficulties : regularity, boundary conditions...

Quasi-circular binaries

Properties

- Assume the orbits are closed and circular.
- Not exact due to gravitational waves emission.
- Enables to remove time by $\partial_t \longrightarrow \Omega \partial_{\varphi}$.
- Good approximation for widely separated objects.
- GW can be killed by the so-called conformal flatness approximation $\gamma_{ij}=\Psi^4 f_{ij}.$

Mathematical problem

- 5 unknown fields.
- 5 coupled, non-linear, elliptic equations.
- non-trivial boundary conditions on the horizons.

Laws of thermodynamics for corotating BBH

Zeroth law

The surface gravity is constant (but different) on the horizons.

$$\kappa^2 = \left. -\frac{1}{2} \nabla^\alpha k^\beta \nabla_\alpha k_\beta \right|_{\mathcal{H}}$$

where k^{α} is the null generator of the horizon.

There exist also 2 other laws...

Surface gravity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Numerical relativity has overcome many hurdles and work has just begun to extract meaningful astrophysical informations from the simulations. (Baumgarte and Shapiro).

- Gravitational supernovae
 - Many other ingredients (EOS, neutrinos...)
 - Not many relevant results in full GR.
 - Some works with approximations of GR (conformal flatness).

- Links with cosmology
- Critical phenomenons
- Alternative theories
- Different geometries (fields in AdS for instance)