Numerical relativity

Philippe Grandclément

Laboratoire de I'Univers et de ses Théories (LUTH)
CNRS / Observatoire de Paris F-92195 Meudon, France
philippe.grandclement@obspm.fr

22 November 2017

Numerical relativity ?

The object of numerical relativity is to solve Einstein equations with computers.

- Complementary to semi-analytic approaches (post-Newtonian, perturbative techniques).
- Largely motivated by the gravitational wave detectors.
- Main application: binary black hole computations.
- Many other applications (supernovae, neutron stars, boson stars, ADS/CFT conjecture, alternative theories...)

Einstein's equations

- Geometry is described by a 4D, Lorentzian metric $g_{\mu \nu}$.
- The coupling between geometry and energy is described by Einstein's equations $G_{\mu \nu}=8 \pi T_{\mu \nu}$
- $G_{\mu \nu}$ is Einstein's tensor, non-linear, and second order in $g_{\mu \nu}$.
- In their standard form, Einstein's equations are not well suited for numerical resolution.

Foliation of spacetime

The $3+1$ formalism is the most widely used way to write Einstein equations for NR. It makes explicit the split between space and time. Spacetime is foliated by a family of spatial hypersurfaces

- Coordinate system of $\Sigma_{t}:\left(x_{1}, x_{2}, x_{3}\right)$.
- Coordinate system of spacetime : $\left(t, x_{1}, x_{2}, x_{3}\right)$.

Greek indices 4D ($0,1,2,3$) and Latin 3D ($1,2,3$).

Unit normal

The unit normal can be written as $n^{\mu}=\left(\frac{1}{N},-\frac{B^{i}}{N}\right)$.

- N is the lapse, a choice of time coordinate.
- B^{i} is the shift, a choice of spatial coordinates.

Projections

- Projection on the normal of a vector \vec{V} is given by $n_{\mu} V^{\mu}$.
- Projection operator on the hypersurfaces $\gamma_{\mu}^{\nu}=g_{\mu}^{\nu}+n_{\mu} n^{\nu}$.
- Projection of a vector \vec{V} is given by $\gamma_{\mu}^{\nu} V^{\mu}$.
- Projection the 4D metric is

$$
\gamma_{\alpha}^{\nu} \gamma_{\beta}^{\mu} g_{\mu \nu}=\gamma_{\alpha \beta}=g_{\alpha \beta}+n_{\alpha} n_{\beta}
$$

The 4D line-element reads

$$
\mathrm{d} s^{2}=-\left(N^{2}-B^{i} B_{i}\right) \mathrm{d} t^{2}+2 B_{i} \mathrm{~d} t \mathrm{~d} x^{i}+\gamma_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

Extrinsic curvature $K_{i j}$

- Describes the part of the geometry not accounted for by the induced metric.
- It describes the variation of normal projected on the hypersurface.

$$
K_{i j}=-\gamma_{i}^{\mu} \gamma_{j}^{\nu} \nabla_{\mu} n_{\nu}
$$

- In the 3+1 framework, it is given by

$$
\left(\partial_{t}-\mathcal{L}_{\vec{B}}\right) \gamma_{i j}=-2 N K_{i j}
$$

- It is known as the second fundamental form.
- The first fundamental form is the induced metric $\gamma_{i j}$
- Both forms live on the hypersurface (i.e. contractions with \vec{n} are null).

Link between 4D and 3D quantities

In order to derive the $3+1$ version of Einstein's equations, one needs to relate the 4D quantities to the 3D ones.

- 4D quantities : $g_{\mu \nu}, n^{\alpha},{ }^{4} R_{\beta \mu \nu}^{\alpha}, \nabla_{\alpha} \ldots$
- 3D quantities : $\gamma_{i j}, K_{i j}, D_{i}, N, B^{i} \ldots$

Some examples

- Gauss relation :

$$
\gamma_{\alpha}^{\mu} \gamma_{\beta}^{\nu} \gamma_{\rho}^{\gamma} \gamma_{\delta}^{\sigma}{ }^{4} R_{\sigma \mu \nu}^{\rho}=R_{\delta \alpha \beta}^{\gamma}+K_{\alpha}^{\gamma} K_{\delta \beta}-K_{\beta}^{\gamma} K_{\alpha \delta} .
$$

- Codazzi relation :

$$
\gamma_{\rho}^{\gamma} n^{\sigma} \gamma_{\alpha}^{\mu} \gamma_{\beta}^{\nu}{ }^{4} R_{\sigma \mu \nu}^{\rho}=D_{\beta} K_{\alpha}^{\gamma}-D_{\alpha} K_{\beta}^{\gamma} .
$$

Projection of Einstein's equations

The 3+1 equations are obtained by projecting $G_{\mu \nu}=8 \pi T_{\mu \nu}$ on n^{α} and on the hypersurfaces.

- projections onto $n^{\mu} n^{\nu}$, the Hamiltonian constraint:

$$
R+K^{2}-K_{i j} K^{i j}=16 \pi E .
$$

- projection onto $n^{\mu} \gamma_{i}^{\nu}$, the momentum constraint:

$$
D_{j} K_{i}^{j}-D_{i} K=8 \pi P_{i} .
$$

- projection onto $\gamma_{i}^{\nu} \gamma_{j}^{\mu}$, the evolution equation:

$$
\begin{array}{ll}
\left(\frac{\partial}{\partial t}-\mathcal{L}_{\vec{B}}\right) & K_{i j}= \\
-D_{i} D_{j} N & +N\left(R_{i j}+K K_{i j}-2 K_{i k} K_{j}^{k}+4 \pi\left[(S-E) \gamma_{i j}-2 S_{i j}\right]\right)
\end{array}
$$

- E, P_{i} and $S_{i j}$ are the various projections of $T_{\mu \nu}$.

Evolution problem

- Give yourself a set of initial data $\gamma_{i j}(t=0)$ and $K_{i j}(t=0)$.
- The fields at latter time are obtained by two first order equations :
- Definition of $K_{i j}:\left(\partial_{t}-\mathcal{L}_{\vec{B}}\right) \gamma_{i j}=\ldots$
- Evolution equation: $\left(\partial_{t}-\mathcal{L}_{\vec{B}}\right) K_{i j}=\ldots$
- Similar to writing the Newton's law in terms of \vec{x} and \vec{v} :
- $\gamma_{i j} \leftrightarrow \vec{x}$.
- $K_{i j} \leftrightarrow \vec{v}$.
- Definition of $K_{i j} \leftrightarrow \partial_{t} \vec{x}=\vec{v}$.
- Evolution equation \leftrightarrow Newton's second law.
- Need to prescribe lapse N and shift B^{i} : choice of coordinates.

Form well adapted for numerical simulations (Runge-Kutta type algorithms).

Constraint equations

- The evolution equations are not all of Einstein's equations.
- The constraints are 4 equations, that do not contain ∂_{t}.
- Such equations are absent in Newtonian dynamics but not for Maxwell.

Type	Einstein	Maxwell
Constraints	Hamiltonian $R+K^{2}-K_{i j} K^{i j}=0$	$\nabla \cdot \vec{E}=0$
	Momentum : $D_{j} K^{i j}-D^{i} K=0$	$\nabla \cdot \vec{B}=0$
Evolution	$\frac{\partial \gamma_{i j}}{\partial t}-\mathcal{L}_{\vec{B}} \gamma_{i j}=-2 N K_{i j}$	$\frac{\partial \vec{E}}{\partial t}=\frac{1}{\varepsilon_{0} \mu_{0}}(\vec{\nabla} \times \vec{B})$
	$\frac{\partial K_{i j}}{\partial t}-\mathcal{L}_{\vec{B}} K_{i j}=-D_{i} D_{j} N+$	$\frac{\partial \vec{B}}{\partial t}=-\vec{\nabla} \times \vec{E}$
	$N\left(R_{i j}-2 K_{i k} K_{j}^{k}+K K_{i j}\right)$	

A two-step process

Initial value problem

- Find a set of fields $\gamma_{i j}(t=0)$ and $K_{i j}(t=0)$ fulfilling the constraints.
- It means solving coupled non-linear elliptic equations.
- Difficulty to make the link with physical situations.

The evolution

- Solve hyperbolic evolution equations.
- Difficulties :
- maintaining the accuracy (i.e. the constraints).
- Dealing with formation of shocks, black holes.
- Treating outgoing wave boundary conditions.

The holy grail of numerical relativity : the binary black hole case

A few important milestones

- 1975-1977 : First head-on collision (Smarr \& Eppley).
- 1994-1998 : The Grand Challenge : improved head-on collision.
- 1999-2000 : Grazing collision (AEI, PSU).
- 2005-2006 : First orbits (Caltech, UTB, NASA)
- 2007-2014 : many orbits, study of various physical effects.
- 2015 : the detection

After decades of struggling ... a breakthrough

F. Pretorius 2005

Reason for the breakthrough ?

Several factors

- Better formulation : BSSN formalism.
- Improved gauge choice.
- High order numerical algorithms.
- Better treatment of the holes.
- Bigger computers.

Simplest cases are well controlled

simulation from Cornell group

Very good match with observations

Not only time-evolution

Some situations do no require time evolution

- Stationary configurations (boson stars, neutron stars...)
- Configurations with some time symmetry: helical Killing vector (quasi-circular orbit, geons).
- (Quasi-)periodic solutions (oscillons, oscillatons).
- Mathematically : prescribe ∂_{t} operator $\left(0, \Omega \partial_{\varphi} \ldots\right)$
- Produces elliptic system.
- Additional difficulties : regularity, boundary conditions...

Quasi-circular binaries

Properties

- Assume the orbits are closed and circular.
- Not exact due to gravitational waves emission.
- Enables to remove time by $\partial_{t} \longrightarrow \Omega \partial_{\varphi}$.
- Good approximation for widely separated objects.
- GW can be killed by the so-called conformal flatness approximation $\gamma_{i j}=\Psi^{4} f_{i j}$.

Mathematical problem

- 5 unknown fields.
- 5 coupled, non-linear, elliptic equations.
- non-trivial boundary conditions on the horizons.

Laws of thermodynamics for corotating BBH

Zeroth law

The surface gravity is constant (but different) on the horizons.

$$
\kappa^{2}=-\left.\frac{1}{2} \nabla^{\alpha} k^{\beta} \nabla_{\alpha} k_{\beta}\right|_{\mathcal{H}}
$$

where k^{α} is the null generator of the horizon.
There exist also 2 other laws...

Surface gravity

Conclusions

Numerical relativity has overcome many hurdles and work has just begun to extract meaningful astrophysical informations from the simulations.
(Baumgarte and Shapiro).

- Gravitational supernovae
- Many other ingredients (EOS, neutrinos...)
- Not many relevant results in full GR.
- Some works with approximations of GR (conformal flatness).
- Links with cosmology
- Critical phenomenons
- Alternative theories
- Different geometries (fields in AdS for instance)

