

Need two ingredients: two test masses and a ruler

Need two ingredients: two test masses and a ruler

"Free falling" objects that sense the gravitational wave

Need two ingredients: two test masses and a ruler

"Free falling" objects that sense the gravitational wave

- ⇒ laser light
- → the wavelength is the ruler tick mark

Need two ingredients: two test masses and a ruler

Longer arms → larger effect

Noise can spoil measurements in many different ways

Noises don't increase with arm length

Advanced detectors time-line

O2 vs O1 in LIGO

- Binary neutron star range:
 - Average horizon distance
 - ▶ Horizon \simeq 2.26 \times range
- Similar sensitivity
- Longer duration
 - ► O1: 16 weeks, ~50 days of coincident operations
 - ▶ O2: 37 weeks, ~120 days of coincident operations

advanced Virgo joined O2 for last month

- Only 3.5 weeks
- Sensitivity 2-3 times lower than LIGO
- Very good stability, 82% duty cycle: 20 days of data
- Lots of science

Advanced Virgo design

Advanced Virgo during O2

Advanced detectors time-line

Advanced Virgo full noise budget

Advanced Virgo main limitations

Thermal fluctuation: mirror surface moves by itself

- Atoms fluctuate by $\sim 10^{-9}$ m
- Laser probes over $10\,\text{cm} \times 10\,\text{cm} \Rightarrow \textit{N} \sim 10^{16} \text{ atoms}$
- \bullet Statistics saves us: $10^{-9}\,\text{m}/\sqrt{N}\sim 10^{-17}\,\text{m}$

Thermal fluctuation: mirror surface moves by itself

- Low loss material → high Q
- Concentrate thermal fluctuations at a single frequency
- Reduce fluctuations elsewhere by $1/\sqrt{Q}$

$$Q \sim 10^6 \Rightarrow \frac{10^{-17} \, \mathrm{m}}{\sqrt{Q}} \simeq 10^{-20} \, \mathrm{m}$$

Thermal fluctuation: mirror surface moves by itself

- Fused silica (suprasil) 40 kg mirrors
- Polished with roughness of 0.05 nm on 1 mm scale
- Curvature deviation of 1 nm over 10 cm
- Avoid glass-steel friction ⇒ suspend mirrors on 0.4 mm glass fiber
- Improves Q from $\sim 10^6$ to $\sim 10^8 \rightarrow$ factor 10 in thermal noise
- In 2016 glass fibers systematically broken by dust temporarily suspended mirrors on steel wires

Quantum shot noise

ullet Quantum fluctuations in number of detected photon in time au

$$\frac{\Delta P}{P} = \sqrt{\frac{hc}{\tau \lambda P}}$$

Ways to reduce quantum shot noise:

- higher power P, noise $\propto 1/\sqrt{P}$
- squeeze the light quantum state

Improvements planned for 2018

- High power laser 35 W → 100 W
- Squeezing
- Mirror suspended on fused silica fiber

Improvements planned for 2018

- High power laser 35 W → 100 W
- Squeezing
- Mirror suspended on fused silica fiber

Improvement at LIGO

- Replace mirror with point defect at Hanford
- Change high power laser (200 W → 70 W)
 → less jitter due to water cooling
- Replace end mirrors and reaction mass
 - Better quality of coatings
 - Annular reaction mass
 - → remove squeezed film gas damping
- Monolithic signal recycling mirror

Advanced detectors time-line

ullet O3 starts end of 2018 for \sim 1 year

Following step after 2019 data taking

- Install signal recycling mirror
- •

Summary

- LIGO and Virgo finished a very successful observing run in August 2017
- Many upgrades on-going till end of 2018
- A year long observation in 2019
- More improvements will follow