The SuperNEMO experiment

Hugon Christophe Université Aix-Marseille, CPPM, IN2P3/CNRS on behalf of the SuperNEMO collaboration

The double beta decay

Mass excess of isobar nucleides N = 82

For some isotopes as the 82 Se only the $\beta\beta$ decay is allowed

Gives an access to 3 fundamental informations

- Neutrino nature (Dirac or Majorana)
- Effective mass v_{ee}
- Neutrino mass hierarchy

The both decays have a different energy spectrum and a very long lifetime, for 82Se:

- $T_{1/2}(2\beta 2\nu) = 10^{19}$ years
- $T_{1/2}^{1/2}(2\beta 0\nu) > 10^{24} \text{ years}$

$$T^{1/2}(2\beta 0\nu) \propto \frac{1}{|M|^2 |m_{\beta\beta}|^2}$$

Underground laboratories and muon flux

- Very rare events → needs a very low background
- "Laboratoire souterrain de Modane"
 - In the frejus tunnel
 - Dug in 1983 for the proton decay research
 1700 m underground, 4800 m MWE

Reduction of muon flux by a factor of 10⁶

Laboratoire Souterrain de Modane (LSM): 4800 M.W.E.

Underground laboratories and muon flux

WIPP
SNOLAB
Baksan
Gran Sasso
Canfranc
Fréjus/Modane
Boulby Kamioka 1000 Depth (m.w.e.) 2000 3000 4000 5000 6000-

Deepest in Europe

Depth (meters of water equivalent)

The SuperNEMO international collaboration

The calorimetry/tracking technology From NEMÓ-3 to SuperNEMO

SuperNEMO démonstrateur (≥ 2016)

→ GERDA, KamLAND-Zen, CUORE, ...

The calorimetry/tracking technology

- Has a lower efficiency
- Poor energy resolution (8%@1MeV for SuperNEMO)

But

- It has a good electron identification and ββ kinematics
- It can identify other particles (α,γ,β⁺,β⁻)
- It can be multi-sources
- Background identification an rejection
 Multi-channel study ββ0ν, ββ2ν, ββ*, ...

→ EXO, NEMO-3, SuperNEMO

Background identification

The Background noise: Internal background

Regroups the backgrounds coming from the source foil, mainly come from :

- Radio-impurities inside the source foil
 ²⁰⁸TI (from ²³²Th), ²¹⁴Bi (from ²³⁸U)
 Single beta emitter (⁴⁰K, ^{234m}Pa, ²¹⁰Bi)
- ²¹⁴Bi from radon decay in tracker volume

Backgrounds are measured through different background channels using event topologies

- ²⁰⁸Tl in 1e1γ, 1e2γ and 1e3γ
 ⁴⁰K, ²¹⁰Bi, ^{234m}Pa in 1e channel
 ²¹⁰Bi, ²²²Rn in 1e1α and 1e1γ channel

Example: Internal Background from NEMO-3 (116Cd)

The background noise: External background

- Regroups the backgrounds not coming from the source foil, come from :
- Radio-impurities in detector material (208 TI, 214 Bi)
- y from (n,y) reactions
- µ from Bremsstrahlung
- Are measured in 2 main channels, requiring the timing informations:
 - external crossing electron
 - external y → e

Example: External background from NEMO-3 (116Cd)

The background noise: The radon in the wire chamber

- ²¹⁴Bi is an important background with a Q_B=3,3 MeV
- Arise from ²³⁸U chain or ²²²Rn emanation
- Measured in 1e1a channel
 → Background free measurement
 Alpha track length provide
- Alpha track length provide information on contamination origins

Some results from NEMO-3

and others:

- $2\nu\beta\beta$ (meas.) and $0\nu\beta\beta$ of ⁸²Se
- $2\nu\beta\beta$ (meas.) of ⁴⁸Ca
- $2\nu\beta\beta$ (meas.) and $0\nu\beta\beta$ of ¹⁵⁰Nd
- $2\nu\beta\beta$ (meas.) of ¹¹⁶Cd
- decays to excited states

Many results with different isotopes and on different mechanisms

11

Assembling and status of SuperNEMO

SuperNEMO demonstrator sources

Source

- 7 kg of 82Se ≠ 17.5 kg.yr
- ~40 mg/cm²
- $T_{1/2}(2\nu\beta\beta) = 10.3 \pm 0.3$ (stat) ± 0.7 (syst) 10^{19} y
- $Q_{BB} = 2,966 \text{ MeV}$

SuperNEMO demonstrator tracker

- 2034 wires in Geiger mode in each module (~45 km of wires)
- Ultra pure material (copper, steel, duracon, HPGe tested)
- 3d track reconstruction

SuperNEMO demonstrator calorimeter walls

- Calorimeter
 - 520 x 8" PM + 192 x 5" PMs coupled with polystyrene scintillators
 - Energy resolution:8% FWHM @ 1 MeV
 - Time resolution: $\sigma = 400 \text{ ps } @ 1 \text{MeV}$

SuperNEMO demonstrator status

- Calorimeter on site, under commissioning
- Source foils radiopurity test ongoing at Canfranc (BiPo detector)
 The demonstrator data taking will start by the end of 2017

SuperNEMO demonstrator sensitivity

- Train BDTs to discriminate signal events from background events
- Radiopurity requirements : $A(^{208}TI) = 2 \mu Bq/kg$, $A(^{214}Bi) = 10 \mu Bq/kg$
- and A(Radon) = 150 μBq/m³
- Half-life limit as a function of the background contamination levels :

Conclusions

- SuperNEMO detector
 - Very low background experiment
 - 4800 MWE underground laboratory
 - Very good background reconstruction and exclusion
 - Calorimeter/tracking technology validated by NEMO-3 (new limits on $2\beta0\nu$), used by SuperNEMO
 - The data taking should start by the end of the year
 - Sensitivity $T_{1/2}^{0v} \sim 10^{24}$ years $(T_{1/2}^{0v} \sim 10^{26}$ years for full detector)

backup

The Double beta decay and the mass hierarchy

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

$$\langle m_{\beta\beta} \rangle \equiv |\sum_{k} m_k U_{ek}^2|$$

$$m_{\nu_e} \ = \ \bigg(\sum_i |V_{ei}^2| \ m_i^2 \bigg)^{1/2}$$

The measurement of the double beta decay lifetime and the PMNS angle values gives an access to the hierarchy:
• NH: <m_{ee}> = [4;0] meV

- IH: $\langle m_{ee} \rangle = [60;15] \text{ meV } \& m_{ve} \sim 40 \text{ meV}$

Nemo-3 100 Mo result: 300-900 meV

SuperNEMO goal: 50-100 meV

Radon and thoron decay chains

- Remarks:
- The two decay chains are identical in the chemical point of view
- The main difference comes from the periods : 56 seconds for the thoron 3.8 days for the radon

From NEMO-3 to SuperNEMO

- Tracker + calorimetric experiment searching for $0\nu\beta\beta$ decay
- Located at Modane underground laboratory from Feb. 2003 to Jan. 2011
- 5 years of effective data taking
- 10 kg total of different $\beta\beta$ isotopes

reconstruction

The reconstruction of the events and NEMO3 spectrums

ββ Fund.

state

ββ Exc.

states

e-

trav.

ext. ¥

ββ Exc.

states

ext. ¥ → e⁻e⁺¥

