Quenching measurements in noble liquids

Anyssa Navrer-Agasson LPNHE

Journée Matière Sombre France 2017

Paris - November 30, 2017

Noble liquid dual-phase TPC

Uncertainties on the response of noble liquids to nuclear and electronic recoils is a major systematics in dark matter searches

- Photoelectron yield of electronic recoils as a function of energy
- Effect of electric field on scintillation output
- Relative scintillation efficiency (Leff) between electronic and nuclear recoils

Measurement methods

Natural internal source (39Ar, 127Xe)

Uniformly distributed
Limited number of
sources

Injected gaseous source (83mKr)

Direct measurement
Limited number of
sources

External neutron source (AmBe)

Direct measurement Non-monochromatic

D-D gun in the veto

Monochromatic neutrons
Recoil energy
reconstruction

External gamma source (241 Am, 133 Ba)

Known energy Events close to the borders

External calibration

Precise recoil energy reconstruction Indirect measurement

LXe response to electron recoils

LXe response to ER is non-linear at null field

Dependance of the scintillation yield on the drift field

LXe response modeled by the NEST package: simulation based on Thomas-Imel (low energy) and Doke-Birks(high energy) models

LXe response to nuclear recoils

New method proposed by LUX:

Neutrons provided by a D-D neutron gun and directly introduced in the LUX TPC

- ⇒Exploit double-scatter events to calibrate S2 response
- →Use single scatters to calibrate S1 yield, using S2 as a measure of the recoil energy

Leff measured down to 1.08 keV_{nr}

UnivEarthS

| | experiment

ARIS experiment: data taking at Licorne

12 days of data taking in October 2016

Neutron kinematics

The ARIS setup

Small scale TPC ⇒single scatters

TPC:

- → ~0.5 kg of LAr
- PTFE reflector with TPB coated surface
- → 7 Hamamatsu 1" PMTs on top, one 3" PMT on bottom
- Ability to create a gas pocket for dual-phase running
- Anode/Cathode created with ITO plated fused-silica windows
- Grid 1 cm below the anode provides bias for electron extraction

8 neutron detectors:

- → NE213 liquid scintillator
- → 20 cm diameter
- → 5 cm height
- → Signal pulse shape discrimination available

Probed recoil energies

	Scattering	MC Determined
	Angle [deg]	Mean NR Energy [keV]
A0	25.5	7.14
A1	35.8	13.72
A2	41.2	17.78
A3	45.7	21.69
A4	64.2	40.45
A5	85.5	65.37
A6	113.2	98.14
A7	133.1	117.78

TPC calibration

Light yield in LAr

Light yield extracted using data from ²⁴¹Am and ¹³³Ba sources

Final average light-yield: 6.35 ± 0.05 pe / keV

TOF resolution

Emission of 478 keV gammas (7Li* de-excitation)

TOF Resolutions:

TPC: ~1.8 ns

EDEN: ~1.6 - 3 ns

Data selection

4 populations

- Neutrons from ⁷Li(p, ⁷Be)n reaction
- Compton scattered beam-correlated γ from 7Li* de-excitation
- Neutrons from fusion evaporation reactions
- Accidental coincidences between a neutron in the TPC and a γ in the ND

4 cuts

- Beam-TPC TOF
- Beam-ND TOF
- Charge collection in the ND
- PSD in the ND

Exploitable samples of both ER and NR with well defined energies

Spectra after selection cuts

Light yield linearity at null field in LAr

Quenching effect expected to be amplified for multiple scatter with respect to single scatters

Light yield proven to be constant within 1.6% fitting all sources

No evidence for a strong ER quenching at null field

Fitted NR spectra

Quenching of NR in LAr

Most precise measurement of Leff and lowest energy point

Good agreement with PARIS model (modified Mei model) up to 60 keVnr

Recombination probability in LAr: ER

$$\frac{\mathrm{S1}_{field}}{\mathrm{S1}_{null_field}} = \frac{R + \alpha}{1 + \alpha}$$

extracted from **ER** data

$$\alpha = \frac{N_{ex}}{N_i} = 0.21 \text{ for ER}$$

Fit by Doke-Birks model

(tuned to account for field dependance)

Doke-Birks' R goes to 1 at low energies while data shows that R should decrease

Comparison to prediction of PARIS model

PARIS model consistent with ARIS ER data at 200 V/cm

Recombination probability in LAr: NR

Fit S1_{null}/S1_{null_field} data for NR with Thomas-Imel model (assuming $\alpha = 1$)

Tuned model compared to S2 at 6.7 keV data from Joshi et al. as a cross check

Thomas-Imel model reproduces both NR S1 and S2 (6.7 keV) at different drift fields

Conclusions

<u>Xenon</u>

- ◆ Response of LXe to ER proven to be non-linear
- ◆ Quenching of NR well constrained over the WIMP search range
- ◆ LUX innovative method allows access to very low energy (~ 1 keV_{nr})
- ◆ Leff ranging from ~ 0.2 to ~ 0.1

<u>Argon</u>

- Precise measurement of LY linearity
 - → Linear within 1.6% above 40 keV
- ◆ NR quenching measured down to 7 keV_{nr}
- Fully comprehensive modeling of recombination for ER (PARIS) and NR (Thomas-Imel) at 200 V/cm

Backup

Physics goals

Argon Response to Ionization and Scintillation

Recombination probability

Noble liquid dual-phase TPC

ER/NR discrimination

	tsinglet	ttriplet
Argon	7 ns	1600 ns
Xenon	4.3 ns	22 ns

ER/NR discrimination

PSD parameter f_{90} : fraction of light seen in the **first 90 ns**

	tsinglet	t _{triplet}
Argon	7 ns	1600 ns
Xenon	4.3 ns	22 ns

Liquid Ar ER rejection factor: ~108

WARP Astr. Phys 28, 495 (2008)

Licorne beam

Lithium Inverse Cinematique ORsay Neutron source

Neutron production: inverse ${}^{7}\mathrm{Li}(p.n){}^{7}\mathrm{Be}$

- → Monochromatic
- → Collimated beam

TOF resolution

Emission of 478 keV gammas (7Li* de-excitation)

→ γ-flash

TOF Resolutions:

 $TPC = \sim 1.8 \text{ ns}$

EDEN: ~1.6 - 3 ns (depending on the detector)

Trigger efficiency

Efficiency varies with the TBA

Extracted and fitted for different TBA regions

NR energy spectra

TOF: data/MC comparison

Angular distribution data

See Davide presentation: https://arisanalysis.slack.com/files/dfranco/F2P5AC2AH/kinematics.pdf

Trigger efficiency

NR an ER have different trigger efficiency due to the different S1 pulse profiles

TPC trigger: Two PMTs fired in 100 ns window

The efficiency given as function of the prompt part is insensitive to the recoil nature (checked with toy MC)

Efficiency fitted on S1₁₀₀ for ER and directly applied to NR

Background subtraction

Background subtraction

TOF: Data-MC comparison

No real differences in the TOF spectra for all kinematics

S1: MC-MC comparison

No real differences in the S1 spectra for all kinematics

PARIS model

Precision Argon Response to Ionization and Scintillation

Modification of Mei's model relying on an empirical parametrization of the recombination probability.

Tuned on DS-50 200 V/cm data.

