
 Heterogeneous Computing System
Platform For High-Performance Pattern
 Recognition Applications

M Ali Mirzaei, Vincent Voisin,
Alberto Annovi, Guillaume Baulieu, Matteo Beretta,

Giovanni Calderini, Saverio Citraro, Francesco Crescioli, Geoffrey Galbit, Valentino
Liberali, Seyed Ruhollah Shojaii, Alberto Stabile, William Tromeur, and Sebastien Viret

October 3, 2017

 Heterogeneous System
Architecture2

 Various Heterogeneous System exists :

● CPU / GPGPU

● CPU / FPGA

● CPU / ASIC

● CPU / FPGA /ASIC

 Our Heterogeneous System
Architecture3

 ZYNQ+AMchip = ARM CPU + FPGA + AMchip:

● AMchip: AMchip can perform Pattern-Matching
very quickly with parallel computing

● FPGA: Main logic and interfacing blocks can be
host by FPGA

● ARM CPU: ARM is a conventional CPU which
executes embedded linux

ZYNQ + AMchip Board

AMchip in FTK and ATLAS
 ExperimentAMchip in FTK and ATLAS detector

AMchip

AMchip

AM board

FTK

ATLAS
detector 4

FastTrack @ ATLAS : https://cds.cern.ch/record/1552953/

https://cds.cern.ch/record/1552953/

 AMchip
5

 AMchip (Associative Memory Chip):

● an ASIC system with fully parallel architecture
designed to perform thousands of pattern matching
in few clock cycles

● An AM06chip has 128k patterns, each pattern is 16*
8 bits, it makes comparisons at 100MHz, so the chip
is able to compare the input and the pattern bank at
a rate of 190 TBytes/s

● We thought of using this chip in other pattern
recognition applications to prove the efciency of the
chip in other science/engineering felds

● AMchip bandwidth is about 1,6GBytes/s

AMchip

6

 Currently we have two version of AMchip available:
● AMchip05 with 2k patterns
● AMchip06 with 128k patterns

 In the future (2019-2020) we will have an AMchip with
~512k patterns

 AMchip can be chained together to form larger banks
(such in FTK), but our actual hardware use a single
-chip mezzanine

 AMchip

7
 AMchip

AMchip

5 Mbits/s

1,6 GBytes/s
200 MBytes/s

Hardware of The
Development Platform

Zynq
FPGA

AMchip
board

Zynq FPGA
board

8
Confgure Amchip

AMchip

AMchip confguration by
JTAG

9

 To Confgure the AMchip we need to communicate
through a JTAG port

● The JTAG communication is ensure via a simple bit
banging on JTAG signals (TDI, TMS,TCK, TDO, TRST)

● Inspired by a library in Kovan-JTAG project
https://github.com/xobs/kovan-jtag

 For AMchip05, it takes 2 minutes by JTAG to load the full
bank (2k patterns) which is acceptable, but doesn’t
scale for AM06 (128k patterns)

 For AMchip06, the solution is to perform JTAG cycles in
hardware (FPGA) and control at higher level in the
software:

https://www.xilinx.com/support/documentation/applic
ation_notes/xapp503.pdf

Confgure AMchip

https://www.xilinx.com/support/documentation/application_notes/xapp503.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp503.pdf

 Examples Applications
10

 Small Scale Particule Physics Experiments such a test beam telescope

● The AMchip pattern matching can provide real time tracking

● Tracking could be further refned with a ft in FPGA

● The associative memory for the self-triggered SLIM5 silicon telescope

[1] - G. Batignani and al., “The associative memory for the self-triggered
SLIM5 silicon telescope”, Nuclear Science Symposium Conference Record, 2008
. NSS '08. IEEE

 Image Processing:

[2] - M. M. Del Viva, G. Punzi, and D. Benedetti, “Information and perception o
f meaningful patterns,” PLOS ONE, vol. 8, 07 2013.

[3] - “A Hardware Implementation of a Brain Inspired Filter for Image
Processing” (to be published in IEEE TNS)

http://ieeexplore.ieee.org/document/4774945/
http://ieeexplore.ieee.org/document/4774945/
http://ieeexplore.ieee.org/document/4774945/
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069154
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069154

System Architecture For Genomics Sequence
Analysis

 Examples Applications11

[4] M. Ali Mirzaei, Francesco Crescioli and al.,
“A Novel Associative Memory Based Architecture for Sequence Alignment”

HiCOMB 2016

 Linux Embedded System
12

 Bootloaders
● First State BootLoader + U-Boot
● https://github.com/Xilinx/u-boot-xlnx

 The Linux Kernel
● Very recent Kernel: Linux v4.4.x
● https://github.com/Xilinx/linux-xlnx

 The Root File System
● Based on Ubuntu Core 16.04.02
● http://cdimage.ubuntu.com/ubuntu-base/rele

ases/16.04.2/release/ubuntu-base-16.04-cor
e-armhf.tar.gz

https://github.com/Xilinx/u-boot-xlnx
https://github.com/Xilinx/linux-xlnx
http://cdimage.ubuntu.com/ubuntu-base/releases/16.04.2/release/ubuntu-base-16.04-core-armhf.tar.gz
http://cdimage.ubuntu.com/ubuntu-base/releases/16.04.2/release/ubuntu-base-16.04-core-armhf.tar.gz
http://cdimage.ubuntu.com/ubuntu-base/releases/16.04.2/release/ubuntu-base-16.04-core-armhf.tar.gz

Hardware of The
Development Platform

13
DMA Testbench

Full-chain high-speed link for data
communication

 DMA Testbench

ZYNQ FPGA-PLZYNQ FPGA-PS
(ARM processor)

User
application

(C++
code/python

script)

FIFODMA Transfer

14

FIFO

The libgannet solution

 DMA Testbench
15

 A complete framework to create DMA
interface

● Programmable Logic

● Softwares (linux driver + user-space library to
handle DMA)

 https://gitlab.com/SmartAcoustics/libgannet

 Python wrappers were created to make the
development easier

https://gitlab.com/SmartAcoustics/libgannet

DMA Bandwidth

 DMA Testbench16

Max = 1.4 GBytes/s

“Full-Chain” bandwidth

 “Full-chain” Bandwidth
17

 Bandwidth evaluation:

● “Full-Chain”:

● Data are read from a fle and put in memory

● Data in memory are send to PL (here a FIFO)
through DMA

● Data are read back to Memory from FIFO

● Data in memory are saved in another fle

“Full-Chain” bandwidth

 “Full-chain” Bandwidth
18

 Two kinds of fle format

● Data File is in a binary format

● Data File is in a JSON format

 Three types of fle systems

● NFS (slow)
● SDCard
● tmpfs (useful to discover bottlenecks)

With fles in binary format

 “Full-chain” Bandwidth19

NFS = 730 KBytes/s

SD = 5.36 MBytes/s

TMPFS = 23.25 MBytes/s

With fles in JSON format

 “Full-chain” Bandwidth20

NFS = 205 KBytes/s

SD = 256 KBytes/s

TMPFS = 259 KBytes/s

 “Full-chain” Bandwidth
 Results21

 The DMA bandwidth is 1,4GBytes / s !

 With Binary File Format as Input/Ouput, the “full
bandwith” is limited to 23MBytes/s

 With JSON File Format as Input/Output; the “full
bandwidth” is limited to 260KBytes/s

● JSON parsing is a CPU intensive task

● But JSON is a fexible format, suitable in a variety of
applications

● So we’ll investigate other methods, like store it in a
database (such MongoDB)

 Full chain bandwidth is still low for a read, calculate and
write operation when storing data locally

Conclusions
22

 A Heterogeneous Computing System Platform for
Pattern Recognition has been presented

 A high-speed data communication infrastructure
between Linux UserSpace, FPGA and AMchip has
been presented

 Proposed approach reach up to 1,4GBytes/s
communication speed between UserSpace
Memory and FPGA

 “Full chain bandwidth” is still low, we are working
to improve it.

 Links
23

 All developments are published through the following links

● Embedded Linux Platform:
https://gitlab.in2p3.fr/zynq-am/linux

● Softwares Development:
https://gitlab.in2p3.fr/zynq-am/softwares

● Firmwares:
https://gitlab.in2p3.fr/zynq-am/frmwares

 If someone is interested in evaluating the platform :

● The Zynq Development kit is of-the-shell

● Software and Firmware are available

● Contact us for the AMchip board, we could provide it after
discussion with the diferent partners

24

 Thanks You !

Acknowledgments25

 Project received founding from the French ANR
project FastTrack:

ANR-13-BS05-0011 FastTrack

 The authors would like to thank AMchip design
team at LPNHE, INFN and IPNL

http://www.agence-nationale-recherche.fr/?Projet=ANR-13-BS05-0011

26

 BACKUP SLIDES

Backup Slides

System Architecture For Genomics Sequence
Analysis

 Example Applications

Algorith
m/driver
and IP
core

AMchipZYNQ FPGA-
PL

ZYNQ FPGA-PS
(ARM processor)

User
application

(C++
code/python

script

Scoring
potential
candidate
Hamming

weight

Primary
pattern

matching
with AMchip

Local
sequence
alignment
using SW
algorithm

27

Heterogeneous Computing
System Platform For high-
Performance Pattern
Recognition Applications

M. Vincent Voisin
CNRS, Software Engineer
LPNHE,
ATLAS group, AMchip team
Contact:

vvoisin@lpnhe.in2p3.fr

Content:

1. Heterogeneous Computing System

2. Our Heterogeneous Computing
● ZYNQ + AMchip board

3. AMchip Applications
● AMchip confguration

4. Examples Applications
● Small Scale Physics Experiments
● Computer Vision, Image Processing
● System Architecture for Genomics Sequences

Analysis

5. Embedded Linux System
● FSBL+Uboot
● Kernel
• Root FileSystem

6. DMA Evaluation
● DMA Principle
● Schematics for DMA evaluation
● DMA Software
● DMA performance

7. “Full-Chain” Bandwidth Evaluation
● Binary File
• JSON File
• Results

8. Conclusions

9. Future works

10. Acknowledgments

28

mailto:vvoisin@lpnhe.in2p3.fr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

