

Towards an Active Target at SPES

T. Marchi

Second GDS Topical Meeting 17 Jan 2018 Santiago de Compostela, Spain

Pan-European activities, ongoing

Outline

The ATS project and the ACTAR demonstrator

LNS proposal: heavy beams

The SPES facility

Extra: GET/GES + GPUs (?)

$f_{7/2}$ vs $p_{3/2}$ neutron orbitals, in Sn like in Ca?

Lol endorsed by SPES SAC

MagicTin*

Not only exotic beams

Reference reaction: ¹³⁶Xe(d,p)¹³⁷Xe - inv kinem

B.P. Kay et al, PRC 84 0243325 (2011) HELIOS @ ANL

Possibly extend to θ_{cm} < 10°
 Study ¹³⁵I via (d,³He)

possible at GANIL or LNS also with high intensity

ACTAR TPC Demonstrator

Figure 4.19: Charge deposition on the pad plane of (a) a ${}^{12}C({}^{12}C,{}^{12}C){}^{12}C$ and (b) a ${}^{12}C(\alpha,\alpha){}^{12}C$ scattering reaction.

ACTAR TPC Demonstrator

European Research Council

T. Roger et al, Submitted to NIM A (2017)

Energy loss measurement and calculation

https://github.com/ActarSimGroup/Actarsim/

From the LNS proposal

Table 1. List of the proposed projectile for the energy loss profile measurements. As an example, the pressure needed to stop the gas on the pad plane is given for the iC4H10 case.

lon	Beam Energy	Gases to be measured	BTU	iC4H10 pressure (mbar)			
	(MeV/u)		requested	typical case example			
⁷ Li	1.0 - 4.5		4.5	500			
⁹ Be	1.5 - 4.5		4.5	500			
¹⁰ B	1.8 - 4.5		4.5	500			
12C	2.0 - 4.5		4.5	250			
¹⁵ N	2.0 - 4.5	H2, D2, CH4, iC4H10, CF4, CO2, He	4.5	250			
¹⁶ 0	2.0 - 4.5		4.5	250			
¹⁹ F	2.0 - 4.5		4.5	250			
²⁴ Mg	2.0 - 4.5		4.5	250			
⁴⁰ Ca	2.0 - 3.8		4.5	250			
¹²⁰ Sn	1.5 - 1.7		4.5	125			
		Total	45				

Test case 1: ¹⁹F(p,a) reaction at E_p=5-7 MeV (TANDEM)

Test case 2: ¹²⁰Sn(d,p) reaction at E_{Sn}= 15 AMeV (CS)

FIG. 2. Angular distributions of transitions in the 129 Sn $(d, p)^{121}$ Sn reaction. The experimental points are given with error bars corresponding to statistics and background subtraction. The solid lines are DWBA curves fitted to the experimental data.

(See also caption for Table I.)							
E* (MeV)		d,p) Јт	$(d\sigma/d\Omega)_{max}$ (mb/sr)	$S_{d, p}$	(4 E* (MeV)	l,t) dσ/dΩ(45°)) (mb/sr)	
0	2	3+ 2	3.17	0.43	0	1.45	
0.05	0	1+	1.93	0.39	0.056	3.09	
0.05	5	$11/2^{-}$	0.235	0.21	0.05		
0.93	4	7+	0.276	0.19	0.90	0.381	
1.12	2	5+	1.03	0.065	1.11	1.47	
1.40	2	~	0.477	0.029	1.37	0.802	
1.71	2	$(\frac{5}{2}^{+})$	0.082	0.004			
1.91	(1)	$(\frac{3}{2})$	0.125	0.007			
2.06	(3)	$(\frac{7}{2})$	0.047	0.005			
2.25	(2)	$(\frac{5}{2}^{+})$	0.503	0.027			
2.45	(3)	$(\frac{7}{2})$	0.234	0.021			
2.59	(3)	$(\frac{7}{2})$	0.405	0.035			
2.69	(3)	$(\frac{7}{2})$	2.24	0.185			
2.93			0.432				
3.10	(1)	$(\frac{3}{2})$	2.01	0.13			
3.37	(1)	$(\frac{3}{2})$	1.32	0.077			
3.51	(1)	(² / ₂)	2.44	0.15			
3.69	(1)	(<u>3</u> -)	2.24	0.14			
3.85	(1)	(3)	0.600	0.037			
3.93	(1)	(3-)	1.53	0.095			
4.16	(1)	(3~)	1.14	0.073			
4.25	m	(3-)	0.830	0.053			
	1.47						

TABLE V. Energy levels of Sn^{121} from the (d, p) and (d, t) reactions.

Bechara et al, Phys Rev C 12 (1975) 1

Schneid et al, Phys Rev 156 (1967) 4

Figure 4: A schematic view of the second detection stage of OSCAR. The rear board contains two series of 8 compact charge sensitive pre-amplifiers to collect signals from 16 silicon pads welded on the front board.

D. Dell'Acquila et al, NIM A 877 (2017) 227

<u>Auxiliary detectors:</u> -Si Strip Pads (BB7) -OSCAR-like Si pins -SPECMAT CeBr3

Challenges:

-High density of states -Kinematics reconstruction

Active Targets are promising tools for direct reaction studies, resonant elastic scattering experiments, clustering physics, etc.

BUT

the capabilities of measuring reactions with heavy ions need to be verified THEREFORE

a better characterization of the ACTAR Demonstrator device is needed.

ACTAR-test aims at

 Getting energy loss information (Shape of the Bragg Peak) to be used for Particle Identification and energy measurement and can be of more general interest [ACTAR Sim, AT-TPC].

Test	Торіс	Beam	Accelerator	BTU
Part 1	Energy loss	Several beams at different	Tandem	45
	measurements.	energies (see table 1)		
Part 2-a	¹⁹ F(p,α ₀) ¹⁶ O reaction	¹ H at 5.5, 7.0, 8.0 MeV	Tandem	9
Part 2-b	¹²⁰ Sn(d,p) ¹²¹ Sn reaction	¹²⁰ Sn at 15 AMeV	Cyclotron	21
	in inverse kinematics			

• Using benchmark reactions to validate the techniques.

The SPES facility

RIB production: SPES-β

Beam test at iThemba lab. (2014): 66MeV protons, 60 μA on full scale SiC prototype at 1600 °C (FEM sim. Validation) Former beam tests: ORNL (2007, 2010-2011) SiC, Ucx; ISOLDE(2009) UCx, IPNO (2013) UCx. Front End and Target System: advanced nuclearization phase. Target handling systems, <u>Heat resistance tests</u>, Nuclear Safety.

Facility layout

ATS: an Active Target for SPES

Beyond MagicTin: physics opportunities with an active target at SPES

Two letters of intent for SPES endorsed by the SAC:

B. Fernandez Dominguez et al, Direct Reactions with exotic nuclei in the r-process using an active target R. Raabe, T. Marchi et al, Shell Structure in the vicinity of ¹³²Sn with an active target

Reacceleration using ALPI

GET/GES and **GPUs**

TPC = 16k ch

TPC = 16k ch

KU LEUVEN

European Research Council

Thank you!

http://pro.ganil-spiral2.eu/laboratory/detectors/actartpc

	iC ₄ H ₁₀		H ₂		CH ₄		CF ₄		CO ₂			D ₂						
BEAM	E/A	PRESSURE	x Bragg Peak	E/A	PRESSURE	x Bragg Peak	E/A	PRESSURE	x Bragg Peak	E/A	PRESSURE	x Bragg Peak	E/A	PRESSURE	x Bragg Peak	E/A	PRESSURE	x Bragg Peak
р	3.5 MeV	550 mbar	7.3 cm	3.5 MeV	1000 mbar	/	3.5 MeV	1000 mbar	/	3.5 MeV	550 mbar	7.2 cm	3.5 MeV	1000 mbar	7.3 cm	3.5 MeV	1000 mbar	/
d	1.8 MeV/A	350 mbar	7.3 cm	1.8 MeV/A	1000 mbar	/	1.8 MeV/A	1000 mbar	9.05 cm	1.8 MeV/A	350 mbar	7.8 cm	1.8 MeV/A	650 mbar	7.5 m	1.8 MeV/A	1000 mbar	/
⁴ He																		
⁷ Li	1 MeV/A	70 mbar	6.2 cm	1 MeV/A	1000 mbar	4.6 cm	1 MeV/A	250 mbar	5.09 cm	1 MeV/A	70 mbar	7.9 cm	1 MeV/A	125 mbar	7.7 cm	1 MeV/A	800 mbar	7.1 cm
⁹ Be	1.3 MeV/A	100 mbar	4.09 cm	1.3 MeV/A	1000 mbar	6.5 cm	1.3 MeV/A	270 mbar	6.09 cm	1.3 MeV/A	100 mbar	5.4 cm	1.3 MeV/A	150 mbar	7.3 cm	1.3 MeV/A	900 mbar	7.9 cm
¹⁰ B	1.5 MeV/A	70 mbar	7.6 cm	1.5 MeV/A	1000 mbar	6.1 cm	1.5 MeV/A	250 mbar	6.4 cm	1.5 MeV/A	80 mbar	7.2 cm	1.5 MeV/A	150 mbar	7.4 cm	1.5 MeV/A	900 mbar	7.4 cm
¹² C	1.8 MeV/A	100 mbar	5.4 cm	1.8 MeV/A	1000 mbar	7.3 cm	1.8 MeV/A	270 mbar	7.5 cm	1.8 MeV/A	100 mbar	6.3 cm	1.8 MeV/A	200 mbar	5.1 cm	1.8 MeV/A	1000 mbar	8.4 cm
¹⁵ N	1.8 MeV/A	100 mbar	5.4 cm	1.8 MeV/A	1000 mbar	7.3 cm	1.8 MeV/A	270 mbar	7.5 cm	1.8 MeV/A	100 mbar	6.3 cm	1.8 MeV/A	200 mbar	5.1 cm	1.8 MeV/A	1000 mbar	8.3 cm
¹⁶ 0	2 MeV/A	100 mbar	5.5 cm	2 MeV/A	1000 mbar	8.6 cm	2 MeV/A	270 mbar	7.7 cm	2 MeV/A	100 mbar	6.5 cm	2 MeV/A	200 mbar	5.3 cm	2 MeV/A	1000 mbar	8.6 cm
¹⁹ F	1.8 MeV/A	80 mbar	6.7 cm	1.8 MeV/A	1000 mbar	6.9 cm	1.8 MeV/A	270 mbar	6.2 cm	1.8 MeV/A	100 mbar	5.3 cm	1.8 MeV/A	150 mbar	7.2 cm	1.8 MeV/A	1000 mbar	6.9 cm
²⁴ Mg	2 MeV/A	80 mbar	6.8 cm	2 MeV/A	1000 mbar	7.09 cm	2 MeV/A	250 mbar	7.2 cm	2 MeV/A	100 mbar	5.6 cm	2 MeV/A	125 mbar	5.8 cm	2 MeV/A	1000 mbar	7.1 cm
⁴⁰ Ca	2 MeV/A	80 mbar	5.6 cm	2 MeV/A	1000 mbar	5.8 cm	2 MeV/A	225 mbar	7.2 cm	2 MeV/A	80 mbar	6.9 cm	2 MeV/A	150 mbar	6.2 cm	2 MeV/A	900 mbar	7.1 cm
¹²⁰ Sn	1.3 MeV/A	100 mbar	5.1 cm	1.3 MeV/A	1000 mbar	7.4 cm	1.3 MeV/A	270 mbar	7.1 cm	1.3 MeV/A	100 mbar	6.9 cm	1.3 MeV/A	170 mbar	7.3 cm	1.3 MeV/A	1000 mbar	7.8 cm

Does kinematics help?

¹³⁶Xe(d,p)¹³⁷Xe - inv kinem

¹³⁶Xe(d,³He)¹³⁵Ie - inv kinem

Kinematics seems to help in selecting the reaction channel

Or not?

- Fragment - 136 - Residual - ³He

45

40

¹³⁶Xe(d,p)¹³⁷Xe - inv kinem

¹³⁶Xe(d,³He)¹³⁵Ie - inv kinem

Tradeoff: Range vs good tracking

Getting more details - transfer reactions

- Probe single particle properties determining spectroscopic factors
- Extend towards more neutron-rich region (+1n)

[K.L. Jones et al, Nature 465 (2010) 454]

Evidences of ¹³²Sn double magicity Resolution ~ 300 keV [J.M. Allmond et al, PRL 112, 172701 (2014)]

High resolution spectroscopy for ¹³¹Sn ¹³³Sn using (⁹Be, ⁸Be) transfer reactions

Beyond ¹³²Sn

d(¹³²Sn,¹³³Sn)p Q = 177 keV

d(¹³³Sn,¹³⁴Sn)p $Q_{qs} = 1.4 \text{ MeV}$ Q = 47 keV

¹³⁵Sn

d(¹³⁴Sn,¹³⁵Sn)p

(4+) -

Q = 1.1 MeV

d(¹³⁵Sn,¹³⁶Sn)p

-0 190 MS

¹³⁷Sn

d(¹³⁶Sn,¹³⁷Sn)p Q = -264 keV

(5 µA p beam) (200 µA p beam)

SPES full power

¹³² Sn	7.8 10 ⁵	3.1 10⁷
¹³³ Sn	7.0 10 ⁴	2.8 10 ⁶
¹³⁴ Sn	1.2 10 ⁴	4.9 10 ⁵
¹³⁵ Sn	1.6 10²	6.2 10 ³
¹³⁶ Sn	-	0.9 10 ²

-1079

Band 1

(6+)

(4+)

0+

-1344210

1176

-715

¹³⁸Sn d(137Sn,138Sn)p Q = 0.9 MeV

[ENSDF 2016]

30

Expected beam intensities @ 10 AMeV

SPES 1st day

Shell evolution and collectivity in Tin isotopes

[R.L. Varner et al, EPJA 25 (2005) 391]

^{132,134}Sn Coulex @ HRIBF
9000 ions/s
150 BaF₂ (~30% eff)

vlk vlkm Exp vlk Exp Exp vlk vlkm vlk 1295 6⁺1255 6⁺1280 1247 6*1245 6+1172 6+1133 4⁺1095 4⁺1110 079 10204+1026 4+1004 2+ 737 688 2+ 718 2+ 734 (2^+) 715 2+ 638 631 715 688 0+ 0 ¹³⁸Sn ¹³⁴Sn ¹³⁶Sn

[G. Simpson et al, Phys Rev Lett 113 (2014) 132502]

[He Wang et al, PTEP 023D02 (2014)]

⁹Be(¹³⁷Sb,¹³⁶Sn) @ RIKEN DALI2 (186 Nal(TI)~22% eff)