AT-TPC Tracking Software and Detector Development

Clementine Santamaria (NSCL)

January 17th, 2018
Active Target of 1 m length, 55 cm diameter
- Thick target, good resolution, 4π detection
- MicroMegas detection pad plane
- 10,240 pads, equilateral triangles
- GET electronics with internal trigger
- Coupling with magnetic field

Resolution capabilities
- Scattering angle = 1° for (α, α')
- Energy resolution of 30-40 keV/u in c.m. despite phasing issues
GET ELECTRONICS

★ Trigger needs to filter out unreacted beam events
 - GET electronics provides discriminators on each pad
 - Running multiplicities of each AsAd routed to MuTanT through CoBos
 - Trigger configuration can be programmed

★ AGET front-end chips provide various gains and shaping times
★ GET: CEA-Saclay, CENBG- Bordeaux, GANIL-Caen, NSCL
Define pad regions with different trigger attributes

Example shows configuration for elastic scattering

More complex pattern triggering can be programmed
NSCL
Stable beam commissioning of the AT-TPC (D. Bazin): $\alpha + \alpha$ scattering
Commissioning of the AT-TPC with radioactive beam (D. Bazin): 46Ar experiment
Capture cross sections and fusion barrier measurements with the AT-TPC (S. Beceiro-Novo)
Fusion with neutron-rich rare isotope beams (S. Beceiro-Novo)
Measurement of the fission barriers for heavy exotic nuclei (Z. Chajecki)
Direct measurement of a key reaction for the rp-process with the AT-TPC (Y. Ayyad)
Spectroscopy of chlorine isotopes at the proton-drip line (R. Kanungo)
Death of first stars. Measurement of ANC of 12N(p,g)13O relevant for the rap process (J. Pereira)

Notre Dame (pAT-TPC)
10Be+α (D. Suzuki) + higher energy (3-body analysis)
10Be + 40Ar fusion barrier (J. Kolata)
 F.D. Bechetti et al., NIM B 376, 397 (2016)
12C Hoyle state decay
10C + α, mirror of 10Be

TRIUMF (pAT-TPC)
Investigation of nuclear forces, nucleon correlation and resonances in 8He (R. Kanungo)
8He+α
Search for cluster structures in 16C through resonant alpha scattering (Y. Ayyad, W. Mittig)

LBNL (pAT-TPC) => Campaign in Spring 2018 ?

RCNP (AT-TPC)
17C (d,p) (B. Fernandez Dominguez)
★ Commissioning in December 2014
- Beam: ^4He at 3 MeV/u
- Target: He(90%) + CO2(10%) @ 100 torr
- Magnetic field: 1 Tesla

★ Event displays
- Right: hit pattern on pad plane, **orange region** is trigger exclusion zone
- Top Left: integrated time projection
- Bottom Left: 3D reconstruction of the event
7° tilt angle creates time-position correlation for the beam

Track reconstruction more complex as B and E field not aligned
Two analysis frameworks developed in parallel:
 • ATTPCROOT (C++, ROOT, and FairROOT)
 • pyTPC (Python)

Provides tools for analysis & simulation in the same framework:
 • Merger of raw data taken by GET electronics (hdf5 or ROOT files)
 • Pulse Shape Analysis of signals on pads + calibration (time, charge)
 • Transforms (Hough, RANSAC…) to distinguish tracks & get starting points for the fitting procedure
 • Fitter (MC fitting) to get final parameters for the tracks

Development of cross-platform libraries INDEPENDENT of framework
Maintenance of those libraries by the AT-TPC group, with the availability to use the 2 frameworks (no maintenance for them)
High Energy Physics
- Many tracks
- Tracks leave volume
- Constant curvature

AT-TPC
- Few tracks
- Tracks stop in volume
- Changing curvature
- Tracking protons to fission products
- With & without B field
FairSoft

★ All the necessary packages collected to run FairRoot
★ Designed to be installed on both Linux and OS X
★ Included packages:
 ★ gtest, gsl, boost, Pythia6, Pythia8, HepMC, GEANT3, GEANT4, XRootD, Pluto, ROOT, VGM, VMC, Millepede, ZeroMQ, Protocol Buffers, nanomsg
 ★ RAVE, CLHEP, and GENFIT2 packages added for SπRITROOT

FairRoot

★ A framework containing base classes for running simulation, reconstruction and analysis

ATTPCROOT

★ Based on the SπRIT analysis framework SpiRITROOT
★ A framework containing specific modules for AT-TPC experiment on top of FairRoot
★ Composed of task-based modules, TGeo geometry and steering macro
★ Written by following the structure of FOPIROOT

ATTPCROOT: A TASK BASED MODULE

★ Easy to turn on and off
★ Analysis separated in steps
★ Easy to debug and maintain

Task

In
- ASCII
- GRAW
- ROOT
- An object on memory (TClonesArray*)

Out
- ROOT
- An object on memory (TClonesArray*)

*TClonesArray is a container class provided in ROOT which can be stored in ROOT file.
Experimental Data Flow

Simulation Data Flow

1. MC Generation
2. Digitization
3. Reconstruction
4. Analysis
Initial fit of tracks
- Hough transform for lines (without B field) and for circles (with B field)
- RANSAC= RANdom SAmple Consensus algorithm for line detection
- Hierarchical clustering
- 3D Hough Transform
- Neural network ?

Final fit of the tracks
- Monte Carlo iterative procedure to correctly fit the tracks
- Starting point of the parameters from the initial fit
2D Hough transform
Real space line ↔ Hough space (ρ,θ) point

<table>
<thead>
<tr>
<th>ρ</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ₁</td>
<td>θ₁</td>
</tr>
<tr>
<td>ρ₂</td>
<td>θ₂</td>
</tr>
<tr>
<td>ρ₃</td>
<td>θ₃</td>
</tr>
<tr>
<td>ρ₄</td>
<td>θ₄</td>
</tr>
<tr>
<td>ρ₅</td>
<td>θ₅</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ρ</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ₆</td>
<td>θ₆</td>
</tr>
<tr>
<td>ρ₇</td>
<td>θ₇</td>
</tr>
<tr>
<td>ρ₈</td>
<td>θ₈</td>
</tr>
<tr>
<td>ρ₉</td>
<td>θ₉</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ρ</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ₁₀</td>
<td>θ₁₀</td>
</tr>
<tr>
<td>ρ₁₁</td>
<td>θ₁₁</td>
</tr>
<tr>
<td>ρ₁₂</td>
<td>θ₁₂</td>
</tr>
<tr>
<td>ρ₁₃</td>
<td>θ₁₃</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ρ</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ₅</td>
<td>θ₅</td>
</tr>
<tr>
<td>ρ₅</td>
<td>θ₅</td>
</tr>
<tr>
<td>ρ₅</td>
<td>θ₅</td>
</tr>
</tbody>
</table>
Random sample consensus (RANSAC):

- iterative method
- estimate parameters of a mathematical model
- from a set of observed data that contains outliers (noise)

- sample subset chosen at random
- fitting model computed
- algorithm checks which elements are outliers from a threshold applied
Goal

find tracks without assumption of particular shape:

Problem formulation

Almost a classic clustering problem:

- partition points into tracks (= clusters)
- however:
 - points at collisions belong to more than one track
 - additional cluster “noise” (disjoint from other clusters)

Reformulation as a clustering problem:

① transform points into triplets
 - group of three points representing a line segment
 - points in same triplet approximately collinear
 - one point can belong to several (or no) triplets

② cluster these triplets instead of original points

③ points not in grouped triplets are noise
Rough idea

Triplet idea inspired by Lezama et al., 2017
• devised for 2D locally equidistant point patterns
• searches shortest path in weighted triplet graph

Our algorithm is different and consists of the steps:
① smooth points by averaging
② find somewhat collinear triplets
③ hierarchical clustering
 (parameters: triplet distance & cutoff threshold)
④ remove too small clusters

Lezama et al.: An Unsupervised Algorithm for Detecting Good Continuation in Dot Patterns. IPOL 7 (2017), pp. 81–92
Preliminary results

- every color in visualization represents a detected cluster
- red points have been classified as noise
- Implementation with ATTPCROOT
- Testing of 4He+4He scattering data
- Comparison with Hough and RANSAC

Christoph Dalitz, Lukas Aymans, Jens Wilberg
Right: Sample event from 46Ar run, result of the MC fit with line, proton energy reconstructed at 2.081 MeV with a scattering angle of 63.5° (lab frame)
Bottom Left: Monte Carlo fitted energy for proton track with respect to iteration
Bottom Center: χ^2 energy fit, we can distinguish proton from carbon scattering

★ Single electron detection (delayed decay such as 2p disintegration)

★ Dual gain on pads to measure light particles and heavier nuclei
★ MicroMegas Th-GEM detector for higher gains
★ 3He gas, CD$_4$ gas in future TPC experiments
PAT-TPC UPGRADE

- new pad plane
- ~2000 pads
- triangular pads
- better granularity
- smaller radius than AT-TPC
- coupling to other detectors
★ smaller TPC (200 mm diameter)
★ smaller drift time
➡ Higher count rates
★ Exit window possible in the design for higher beam energies
★ Different pad plane orientation for beam tracking
★ Coupling with gamma detection & neutron detection
★ example: (d,n) reactions
SUMMARY

★ ATTPCROOT in development using SpiRITROOT as basis
★ PyROOT development in parallel
★ Independent libraries for cross-platform programming
★ Upgrade of the pAT-TPC
★ New TPC design for the future
★ Physics campaigns at LBNL, NSCL, RCNP => Y. Ayyad