Low-pressure TPC detector for studying photonuclear reactions at astrophysical energies with gamma-ray beams at ELI-NP

Mikołaj Ćwiok

University of Warsaw, Poland

for **ELITPC** collaboration (UW, ELI-NP / IFIN-HH, Univ. of Connecticut)

Workshop on Active Targets and Time Projection Chambers for High-intensity & Heavy-ion beams in Nuclear Physics 17-19 January 2018 – Santiago de Compostela, Spain

Outline

1. Nuclear photo-disintegration reactions.

2. ELITPC detector concept:

- detector structure
- toy Monte Carlo signal simulations
- 3. R&D studies:
 - gas gain at low-pressures
 - small scale prototype tests

Motivation

- 1. Physics goals:
 - study (α, γ) and (\mathbf{p}, γ) reactions of current astrophysical interest:
 - burn helium → regulate C / O ratio in the Universe
 - **burn** ${}^{18}O \rightarrow$ regulate ${}^{16}O/{}^{18}O$ ratio in the Universe
 - particular effort on ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction at $E_{cm} \sim 1 \text{ MeV}$

2. Approach:

- capture vs. photo-disintegration reactions
- monochromatic gamma-ray beams @ ELI-NP
- active-target Time Projection Chamber for ELI-NP (ELITPC)

Nuclear Astrophysics studies with monochromatic γ–ray beams

- use detailed balance principle for time-reverse reactions
- measure decay products of nuclear photo-dissociation reactions

Time-reverse reaction	Detector type	Target	Astrophysical relevance
¹⁶ Ο(γ,α) ¹² C	TPC	CO ₂	ratio C/O
¹⁹ F(γ,p) ¹⁸ O	TPC	CF_4	ratio ¹⁶ O/ ¹⁸ O, CNO-cycle
²¹ Ne(γ,α) ¹⁷ O	TPC	²¹ Ne	role of ¹⁶ O as neutron poison
²² Ne(γ,α) ¹⁸ O	TPC	²² Ne	ratio ¹⁶ O/ ¹⁸ O, CNO-cycle synthesis of ²² Ne (source of <i>n</i> in <i>s</i> -processes)
²⁴ Mg(γ,α) ²⁰ Ne	SSD	²⁴ Mg	Si-burning
⁹⁶ Ru(γ,α) ⁹² Mo	SSD	⁹⁶ Ru	synthesis of elements with A>73 in <i>p</i> -processes

O.Tesileanu et al., Romanian Rep. in Phys. 68, Supplement (2016) S699

4

Gamma-ray beam @ ELI-NP

Extreme Light Infrastructure – Nuclear Physics

Bucharest-Magurele, Romania

Compton Back Scattering:

- high-brilliance
- narrow energy bandwidth

First beams expected in 2018

S.Gales et al., Phys. Scr. 91 (2016) 093004 D.Filipescu et al., Eur. Phys. J. A 51 (2015) 185

rgy	0 2 – 19 5 MeV

Gamma energy range	0.2 – 19.5 MeV
Energy bandwidth (rms)	< 0.5 %
Spectral density	> 0.5 10³ γ/s/eV
Peak brilliance	10 ²⁰ — 10 ²³ γ/(s mm² mrad² 0.1%BW)
Angular divergence (rms)	25 – 200 μrad
Macro-pulse rate	100 Hz
Linear polarization	> 95%

- fixed electron-photon crossing angle (θ ,=7.5°)
- multi-pass laser beam recirculation

3. Collimation & diagnostics systems

O. Adriani et al., arXiv:1407.3669 [physics.acc-ph], July 2014

nuclear physics

1.

2.

Low Energy Laser

ELITPC : low-pressure Active-Target TPC

- 33 x 20 cm² (readout) x 20 cm (drift)
- gas pressure ~100 mbar \Rightarrow increase track lengths

O.Tesileanu et al., Romanian Rep. in Phys. 68, Supplement (2016) S699

ELITPC readout concept

3 grids of strips, crossed at 60° with each other:

- 3-coordinate, planar, redundant readout, strip pitch ~ 1.5 mm
- Simple event topologies \rightarrow only few tracks per event
- Moderate cost → only O(10³) channels of digitized channels
- **U-V-W** strip arrays on XY plane + Z-coordinate from drift time \rightarrow virtual 3D pixels

S. Bachmann et al., NIMA 478 (2002) 104
V. Ableev et al., NIMA 535 (2004) 294
M. Ćwiok, Acta Phys. Pol. B 47 (2016) 707
J. Bihałowicz et al., Proc. of SPIE 9290 (2014) 92902C

8

Monte Carlo event yields

• Reaction case ${}^{16}O(\gamma,\alpha){}^{12}C$:

a contraction of the second se

- Method:

- measure energy & angular distributions of charged particles
- obtain accurate values of E2 / E1 components
- **Efficiency** (example for CO₂ @ 100 mbar):
 - beam energy: E_{γ} =8.26 MeV \rightarrow E_{cm} =1.1 MeV [Q=7.162 MeV for ¹²C(α,γ)¹⁶O]
 - beam intensity on target: 2.5 × 10⁴ γ /s/eV, 0.5% bandwidth \rightarrow 10⁹ γ /s
 - **1500 events** to measure angular distributions \rightarrow **21 days of beam time**

Monte Carlo: signal topology

• Reaction case ${}^{16}O(\gamma,\alpha){}^{12}C$:

Monte Carlo: track lengths

Reaction case ¹⁶O(γ,α)¹²C:

- SRIM-simulated ranges of charged particles vs. CO₂ pressure
- Bands correspond to:
- E_γ range: 8.26 8.67 MeV
- 90° emission angles w.r.t.
 γ-beam axis

O.Tesileanu et al., Romanian Rep. in Phys. 68, Supplement (2016) S699

– GEANT4

Digitizer time-sampling cell Workshop on active-target TPCs – Santiago de Compostela, Spain, January 17-19, 2018

12

Monte Carlo: background

Compton electrons, e⁺e⁻ pairs from: Kapton window + gas target

- Small in comparison with direct (α, γ) reaction experiments
- Single ELI-NP macro-bunch: ~10⁷ photons
- Macro-bunch rate: 100 Hz (10 ms apart)

Reduced background

Monte Carlo: background

- E_{γ} = 8.3 MeV
- 100 mbar CO₂
- 35 x 20 cm² active area, 20 cm drift
- GEANT4 / 10⁷ photons

Pure background event

- $E_{\gamma} = 8.3 \text{ MeV}$ —
- 100 mbar CO₂ / no diffusion & gas gain
- 10 x 10 cm² area / 1.5 mm strip pitch

U vs time

Charge [arb.u.]

5.

4 3

70⁰~

U strip number

30

20

60

500

4Ò0

300

2Ò0

100

Combined SIG + BKG event

- $E_{\gamma} = 8.3 \text{ MeV}$
- E(α) = 0.85 MeV, E(¹²C) = 0.25 MeV
- **100 mbar CO_2** / no diffusion & gas gain
- 10 x 10 cm² area / 1.5 mm strip pitch
- GEANT4

ELITPC – R&D status

Customized FPGA-based DAQ:

- using GET front-end boards

• Proof of principle studies:

- demonstrator detector: 10 x10 cm² area,
 20 cm drift @ 1 atm
- tested with charged particles

Optimization studies:

- test bench for low-pressure gas-gain studies with X-rays
- amplification structures, He+CO₂ gas mixtures, etc...

ELITPC – DAQ system

Demonstrator detector

- Readout area: 10 × 10 cm², drift: 20 cm
- GET electronics: 256 channels
- He+CO₂ gas mixtures @ 1 atm
- Tested with α -particles (rad. src, beam)

NEXT STEPS:

- migrate to a vacuum vessel
- tests with CO₂ and He+CO₂ at 100-200 mbar

- Gas gain & energy resolution measured by soft X-rays conversion
- X-rays from Ag lamp filtered through: Ti + Kapton foils
 - quasi-monochromatic input energy spectrum: peak @ 5 keV, FWHM 9% from SiDet
- **Pure CO₂** and different **He+CO₂** gas mixtures (50-200 mbar total pressure)
- Standard 50-μm GEMs made by CERN / RD51

NEXT STEPS: measure diffusion, test 125-µm GEMs...

Workshop on active-target TPCs – Santiago de Compostela, Spain, January 17-19, 2018 21

Summary & outlooks

- MC techniques used to optimize ELITPC detector structure.
- Low-pressure studies will be continued with 256-ch demonstrator detector for various He+CO₂ pressures.
- Mechanical design and strip segmentation to be fixed by Mar 2018.
- 1024-ch customized GET electronics to be ready by Oct 2018.

Thank you for your attention !!!

The ELITPC collaboration:

M. Bieda¹, J.S. Bihałowicz¹, M. Ćwiok¹, W. Dominik¹, A. Fijałkowska¹, Z. Janas¹, Ł. Janiak¹, A. Korgul¹, J. Mańczak¹, T. Matulewicz¹, C. Mazzocchi¹, M. Pfützner¹, P. Podlaski¹, S. Sharma¹, M. Zaremba¹, D. Balabanski², A. Bey², D.G. Ghita², O. Tesileanu², M. Gai³

- ¹⁾ Univ. of Warsaw, Poland
- ²⁾ IFIN-HH / ELI-NP, Romania
- ³⁾ Univ. of Connecticut, USA

Acknowledgements:

Work supported by the Polish Ministry of Science and Higher Education from the funds for years 2017-2018 dedicated to implement the international co-funded project no. 3687/ELI-NP/2017/0 and by ELI-NP/IFIN-HH under the Collaborative R&D Project Agreement no. 88/25.10.2016.

BACKUP SLIDES

Experimental data on {}^{12}C(\alpha,\gamma){}^{16}O

 Extrapolated p-wave (E1) & d-wave (E2) astrophysical S-factors to the Gamow peak in red giants: 40 – 80% uncertainty

Generic Electronics for TPCs

- Developed by: CEA/IRFU, CENBG, GANIL, MSU/NSCL
- 64-ch ASIC chip (*AGET* = *ASIC for GET*):
 - flexible sampling frequency: 1-100 MHz
 - **512 time-cells** per channel, analog SCA memory
 - adjustable gain & filtering per channel
- 1024-ch front-end board (AsAd = ASIC & ADC):
 - hosts 4 AGET chips
 - 12-bit ADC, one channel per AGET chip
- Data concentration, timing & trigger boards:
 - big systems: uTCA crate, CoBo boards, MuTant boards (up to 32,000 channels)
 - small systems: standalone FPGA boards (usually 256 channels)

E. Pollacco et al., Physics Procedia 37 (2012) 1799

Demonstrator detector (1)

- Tests @ 9 MV Tandem (IFIN-HH, Romania) with 15 MeV α-particle beam in April 2016
 - gas mixture: He+CO₂ (70:30) @1 atm
 - entrance window: 3μm Mylar

SIDE view - XZ plane along beam axis

Demonstrator detector (2)

Demonstrator detector (3)

- **Example #2:** event with **3 tracks** from ⁴He + ¹⁶O scattering:
 - Gas mixture: He+CO₂ (70:30) @1 atm

Raw data 10² 10² Charge/bin [arb.u.] Charge/bin [arb.u.] U strip no. V strip no. W strip no. W Time bin [arb.u.] Time bin [arb.u.] Time bin [arb.u.]

0 °0 Charge/bin [arb.u.]

Low-pressure test bench: X-rays

✓ Source of radiation:

- Amptek MiniX generator : Ag target, Be window, U_{XRAY}=10 kV
- XRF fluorescence filters : 110 um Ti + 50 um Kapton
- Quasi-monochromatic X-ray spectrum : peak @ 4.9 keV (9% FWHM)
- Conversion rate @ 100 mbar CO_2 : 12–70 Hz for $I_{XRAY} = 40 200 \text{ uA}$

Monte Carlo: background

