

SpecMAT Magnetic Active Target for the spectroscopy of exotic nuclei

Riccardo Raabe

KU Leuven, Instituut voor Kern- en Stralingsfysica

GDS GDS Topical Meeting: GDS for high-intensity and heavy-ion beams

Riccardo Raabe – KU Leuven GDS Topical Meeting – Santiago de Compostela, 17/01/2018

SpecMAT OOO

Summary O

Physics goals

- What are the **forces driving the shell structure in nuclei and how do they change** in nuclei far from stability?
- What remains of the Z = 28 and N = 50 "magic numbers" in ⁷⁸Ni?
- Do we understand **shape coexistence in nuclei**, and what are the mechanisms controlling its appearance?

Changes in nuclear structure far from stability

- Shell evolution towards ⁷⁸Ni
- Shape coexistence "west" of ²⁰⁸Pb

Motivation

Method OO

SpecMAT OOO

Summary O

Shell evolution towards ⁷⁸Ni

 Migration of πf_{7/2}, πf_{5/2} as vg_{9/2} is filled (tensor interaction)

68Zn	69Zn	70Zn	71Zn	72Zn	73Zn	74Zn	75Zn	76Zn	77Zn	78Zn	79Zn	80	In	81Zn
67Cu	68Cu	69Cu	70Cu	71Cu	72Cu	73Cu	74Cu	75Cu	76Cu	77Cu	78Cu	79	Cu	80Cu
1														
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Ni	

S. Franchoo et al., PRL 81 (1998) 3100

FIG. 3. Energy of the lowest levels from experiment [2,5,6] compared to large-scale shell-model calculation [25].

K. Flanagan et al., PRL 103 (2009) 142501

KU LEUVEN

Motivation

Method OO

SpecMAT OOO

Summary O

Shell evolution towards ⁷⁸Ni

 Migration of πf_{7/2}, πf_{5/2} as vg_{9/2} is filled (tensor interaction)

68Zn	69Zn	70Zn	71Zn	72Zn	73Zn	74Zn	75Zn	76Zn	77Zn	78Zn	79Zn	80	Zn	81Zn
67Cu	68Cu	69Cu	70Cu	71Cu	72Cu	73Cu	74Cu	75Cu	76Cu	77Cu	78Cu	79	Cu	80Cu
												_		
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Ni	
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Ni	
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Nï	
66Ni 65Co	67Ni 66Co	68Ni 67Co	69Ni 68Co	70Ni 69Co	71Ni 70Co	72Ni 71Co	73Ni 72Co	74Ni 73Co	75Ni 74Co	76Ni 75Co	77Ni	78	Ni	
66Ni 65Co	67Ni 66Co	68Ni 67Co	69Ni 68Co	70Ni 69Co	71Ni 70Co	72Ni 71Co	73Ni 72Co	74Ni 73Co	75Ni 74Co	76Ni 75Co	77Ni	78	Ni	

T. Otsuka, et al., PRL 104 (2010) 012501

K. Sieja, F. Nowacki, PRC 81 (2010) 061303(R)

KU LEUVEN

Motivation

Method OO

SpecMAT OOO

Summary O

KU LEUVEN

Shell evolution towards ⁷⁸Ni

 Migration of πf_{7/2}, πf_{5/2} as vg_{9/2} is filled (tensor interaction)

												_		
68Zn	69Zn	70Zn	71Zn	72Zn	73Zn	74Zn	75Zn	76Zn	77Zn	78Zn	79Zn	80	Zn	81Zn
67.00	co	60.Cm	70.00	71.00	7200	720.	7400	75.00	700.	77.00	70.00	70		00.00
67 C U	60CU	69Cu	70Cu	/ICu	720u	75Cu	74Cu	75Cu	76Cu	//Cu	/ocu	73	Ju	oucu
0.002		00017	0007	7027		7017	7017	7 43 2	7517	7.017				
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Ni	
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Ni	
66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72Ni	73Ni	74Ni	75Ni	76Ni	77Ni	78	Ni	
66Ni 65Co	67Ni 66Co	68Ni 67Co	69Ni 68Co	70Ni 69Co	71Ni 70Co	72Ni 71Co	73Ni 72Co	74Ni 73Co	75Ni 74Co	76Ni 75Co	77Ni	78	Ni	
66Ni 65Co	67Ni 66Co	68Ni 67Co	69Ni 68Co	70Ni 69Co	71Ni 70Co	72Ni 71Co	73Ni 72Co	74Ni 73Co	75Ni 74Co	76Ni 75Co	77Ni	78	Ni	

Riccardo Raabe – KU Leuven GDS Topic

SpecMAT OOO

Summary O

Shell evolution towards ⁷⁸Ni

Riccardo Raabe – KU Leuven

SpecMAT OOO

Summary O

Shape coexistence

- States characterised by different shapes appear at low excitation energy
- Example: n-deficient Pb region
 ¹⁸⁶Pb triple-shape coexistence
 Hg nuclei: "parabolic intrusion" at mid-shell

Data: NNDC, figure courtesy of Liam Gaffney Original figure in R. Julin et al., J. Phys. G 27 (2001) R109

A. Andreyev et al., Nature 405 (2000) 430

Riccardo Raabe – KU Leuven

SpecMAT OOO

Summary O

KU LEUVEN

Shape coexistence: a general occurrence?

- Link collective properties with single-particle structure
- Shell-model picture: position of shells is crucial
- Far from stability: monopole migration from underlying NN forces
- We need both collective and single-particle probes

Summary O

SpecMAT

KU LEUVEN

erc

Single-particle structure and collectivity

PHYSICAL REVIEW C 89, 031301(R) (2014)

Novel shape evolution in exotic Ni isotopes and configuration-dependent shell structure

Yusuke Tsunoda,¹ Takaharu Otsuka,^{1,2,3} Noritaka Shimizu,² Michio Honma,⁴ and Yutaka Utsuno⁵

¹Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

²Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

⁴Center for Mathematical Sciences, University of Aizu, Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan

⁵Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

(Received 19 September 2013; revised manuscript received 25 November 2013; published 17 March 2014)

Summary O

Single-particle structure and collectivity

PHYSICAL REVIEW C 89, 031301(R) (2014)

Novel shape evolution in exotic Ni isotopes and configuration-dependent shell structure

Yusuke Tsunoda,¹ Takaharu Otsuka,^{1,2,3} Noritaka Shimizu,² Michio Honma,⁴ and Yutaka Utsuno⁵

¹Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

²Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

⁴Center for Mathematical Sciences, University of Aizu, Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan

⁵Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

(Received 19 September 2013; revised manuscript received 25 November 2013; published 17 March 2014)

"Type II" shell evolution

- In excited states, the different occupancies drive the variations in the shell gaps...
- which may favour collectivity...
- which modifies energy levels even further

KU LEUVEN

Summary O

ry O Spec

The n-deficient Pb region

Summary O

The n-deficient Pb region

1-n transfer in Hg

- ^{185g,m}Hg (d,p) and (p,d)
- Beam intensity $\approx 10^5$ pps \rightarrow feasible!

KU LEUVEN

50

Summary O

The n-deficient Pb region

1-n transfer in Hg

- ^{185g,m}Hg (d,p) and (p,d)
- Beam intensity $\approx 10^5$ pps \rightarrow feasible!

 $(d,p)^{186}$ Hg 10 MeV/nucleon, Q-value +8.2 MeV

Lab angle (deg)

50 45 40

(Me No 25

15

Summary O

up to 80 deg in cm

The n-deficient Pb region

1-n transfer in Hg

- ^{185g,m}Hg (d,p) and (p,d)
- Beam intensity $\approx 10^5$ pps \rightarrow feasible!

 $(p,d)^{184}$ Hg 10 MeV/nucleon, *Q*-value –5.7 MeV

KU LEUVEN

Riccardo Raabe – KU Leuven

SpecMAT OOO

Summary O

SPECMAT

Problem: density of states

Importance of γ -ray detection

- Transition probabilities
- Energy resolution from coincidences
- Build the decay scheme

G. Wilson et al., PLB 759, 417 (2016)

J. Diriken et al., PLB 736, 533 (2014) J. Diriken et al., PRC 91, 054321 (2015)

KU LEUVEN

Riccardo Raabe – KU Leuven

Summary O

Method: active target + γ -ray array

Challenges

- Good efficiency...
- ...keeping a sufficient resolution
- Integration of detectors

→ Choices

- Active target
- Magnetic field parallel to beam direction to confine emitted particles and minimize absorbing material
- γ-ray detection: scintillators
 CeBr₃ with SiPM
 GET electronics (?)

KU LEUVEN

SpecMAT OO

Summary O

SpecMAT

Figures by O. Poleshchuk

Features

- Parallel-field configuration
 → attenuation of problems
 related to the heavy beams
- Beam should NOT be stopped
- (d,³He) better efficiency

SpecMAT OO

Summary O

SpecMAT

Development and status

• See Oleksii's talk today 17:45

• The magnet: a long story...

Riccardo Raabe – KU Leuven

SpecMAT

Summary O

SpecMAT: ISS

• ...with a happy end

P Butler, S Freeman, R Page, RR Liverpool, Manchester, Daresbury, Leuven

Riccardo Raabe – KU Leuven

SpecMAT: ISS

Method

SpecMAT

Summary O

- Field mapping and beam tests
 - successfully completed

center

SpecMAT

Summary

Summary

- Exciting physics with heavy beams
 - shell evolution towards ⁷⁸Ni
 - shape coexistence in n-deficient Pb region
- Scintillation detectors purchased, prototype delivered
- Chamber design in progress
- GET electronics (2000 channels) acquired

Thanks to the SpecMAT team!

A. Arokja Raj, S. Ceruti, H. De Witte, O. Poleshchuk, M. Renaud, J. Yang With us in the past: M. Babo, T. Marchi, C. Swartz

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 617156

KU LEUV

Riccardo Raabe – KU Leuven