

UNIVERSITÄT FRANKFURT AM MAIN

Space-charge distortions in the ALICE TPC with continuous readout

Jens Wiechula for the ALICE-TPC upgrade collaboration

Workshop on Active Targets and Time Projection Chambers 17-19 January 2018 Santiago de Compostela

Outline

- The ALICE upgrade program
- R&D with GEM and GEM + MicroMegas systems for the TPC upgrade
- Impact of space charge on distortions
- Calibration strategy
- Summary

The ALICE detector

Overview

Inner Tracking System **General purpose detector Optimised for recording Pb-Pb** collisions Main tracking device: Large volume **Time Projection Chamber**

Transition Radiation Detector

Time Of Flight

January 18 2018

The ALICE Time Projection Chamber

557568 readout pads 1000 samples in time direction Designed for charged-particle tracking and dE/dx measurement in Pb-Pb collisions with dNch/dη=8000, σ(dE/dx)/(dE/dx)<10% January 18 2018 Jens Wiechula

ALICE upgrade

(LHCC-4022) ALICE-DOC-2012-001 6 September 2012

Upgrade of the **ALICE** Experiment

- Rich physics program (Run3 2020)
 - Heavy flavour
 - Quarkonia
 - Low-mass dileptons
 - Jets
 - Anti- and hypernuclei
- Implies TPC readout at full minimum bias interaction rate → 50kHz in Pb-Pb
- Significant TPC upgrade (LS2 2018)
 - Readout chambers (2015-2017)
 - Frontend electronics (2015-2017)
 - Online calibration and reconstruction

January 18 2018

Jens Wiechula

The ALICE TPC

Limitations of the present system

- Very good ion suppression (ion back flow IB ~10-4 10-5)
- Limited rate capability
 - Readout cycle: $t_{readout} = t_{e-drift,max} + t_{ion}_{drift}$
 - 100µs + 200µs → ~3.5kHz
- Change of readout system required to make full use of 50kHz interactions

6

The ALICE TPC

Upgrade program

<page-header><page-header><page-header>

TDR

	ALCE ALCE CERVICE ALCE TOR 6/6 ADD-1 CERVILCC 2035 602 February 3, 2015				
	Addendum to the				
	Technical Design Report				
	for the				
84329	Upgrade of the ALICE Time Projection Chamber				
ddendum cem.ch/record/19	The ALICE Collaboration*				
OR A	Copyright CBRN, for the benefit of the ALICE Collaboration. This article is distributed under the terms of Constitute Commence Attribution License (CC-BY-3.0), which permits any use provided the original author(s) and source are credited.				
μĦ	*See list of authors in App. B				

Intense R'n'D program

- Mainly GEM systems (3- and 4-stack)
- Also 2GEM + MM tested

Base line solution

- No gating and continuous readout with 4-GEM system
 Implication
- Event pile-up in TPC: ~5 overlapping events

Requirements for readout

- Operate at gain 2000 in Ne-CO₂-N₂ \rightarrow Signal to noise
- Ion back flow (*IB*) < $1\% \rightarrow$ Impact on distortions
- $\sigma_E/E < 12\%$ for ⁵⁵Fe \rightarrow Impact on d*E*/d*x* resolution
- Stable operation under LHC conditions
- + novel calibration and online reconstruction schemes

- Similar drift velocity, diffusion and IB
- Primary ionisation 2x larger in Argon
- Ion mobility about 1.8x lower in Argon Deisting et al.
 - \rightarrow ~3.6x larger SC in Argon from primary ionisation
 - \rightarrow ~1.8x larger SC in Argon for *IB* component
- Add additional quencher N₂ for increased stability

Gas	Drift velocity	Diffusion coeff.			Eff. ionization	Number of electrons per MIP	
	$v_{\rm d}$ (cm/ μ s)	$D_{\rm L} \over (\sqrt{\rm cm})$	$D_{\rm T} \over (\sqrt{\rm cm})$	$\omega \tau$	energy W _i (eV)	N _p (primary) (e/cm)	N _t (total) (e/cm)
Ne-CO ₂ -N ₂ (90-10-5)	2.58	0.0221	0.0209	0.32	37.3	14.0	36.1
Ne-CO ₂ (90-10)	2.73	0.0231	0.0208	0.34	38.1	13.3	36.8
Ar-CO ₂ (90-10)	3.31	0.0262	0.0221	0.43	28.8	26.4	74.8
Ne-CF ₄ (80-20)	8.41	0.0131	0.0111	1.84	37.3	20.5	54.1

January 18 2018

GEM technology

Introduction

- Thin polyimide foil ~50 μm
- Cu-clad on both sides ~5 µm
- Photolithography: ~10⁴ holes/cm²

Typical GEM geometry:

- Inner/Outer hole diameter: 50/70 μm
- Pitch: 140 µm
- Other geometries with different pitch sizes:
 - 90µm (SP), 200µm (MP), 280µm (LP)

- E_{Hole} up to 100 kV/cm with $\Delta V_{GEM} = 500 V$
- E_{Hole} >> E_{Above}

most of the ions are collected on the top side of GEM

E_{Below} > E_{Above}

electron extraction is improved

January 18 2018

IB measurements

Introduction – nomenclature

- Ion blocking (~10⁻²) not as efficient as with gating grid (10⁻⁴ 10⁻⁵)
- Total ions in drift volume (n_{tot}) strongly depending on *IB*
- Huge parameter space $\rightarrow N_{\text{foils}}$, hole geometry, $\Delta V_{\text{GEM1}} \Delta V_{\text{GEM4}}$, E_{T1} - E_{ind}
- Use lower GEMs (3, 4) to adjust the gain (usually $\Delta V_{GEM3} / \Delta V_{GEM4}$ = const.)

4-GEM measurements

Summary of results

- Many GEM configurations scanned
- With 3-GEM (S-S-S) system
 IB > 2.5%
- With 4-GEM (S-S-S-S) system IB > 2.0%
- Base line solution 4-GEM (S-LP-LP-S)
 - Working point: IB ~0.65%, σ ~12%
 - ΔV_{GEM} = 275, 235, 284, 345 (V)
 - E_{T/Ind} = 4, 2, 0.1, 4 (kV/cm)
 - Small discharge probability (~5 per GEM stack per heavy-ion run)

IBF simulations

Dependence on GEM hole distance

- Ne/CO₂ simulation studies
- In case of high ET1, alignment is an issue.
 - Gain and IBF vs. distance between holes in GEM1 and GEM2
- x10 difference in IBF w.r.t hole alignment

January 18 2018

IBF simulations

Dependence on GEM hole distance – optical transparency

- Alignment cannot be controlled on µm level
- 'Optical' transparency very different over the GEM surface
 - Resulting from hexagonal GEM pattern
 - Would result in very inhomogeneous IBF → unfavourable
- Rotate adjacent foils by 90°
 - More homogeneous pattern

GEM Foils rotated by 90°

2GEM + MM measurements

- At same energy resolution *IB* only marginally smaller then in 4-GEM
- Discharge rate 2-3 orders of magnitude larger
 - Not further investigated

Space-charge distortions

Calculation of the distortions

Space-charge distortions Impact of the Ion Back Flow

- 50kHz Pb-Pb, gain = 2000, IB=1% (ε=20)
 - $t_{d,ion}$ = 160ms \rightarrow ion pileup from 8000 events
- Distortions up to dr \approx 20cm dr $\phi \approx$ 8cm (small *r* and *z*)
 - Final calibration to ~10⁻³ required

January 18 2018

Space-charge distortions

Distortion fluctuations

- Space charge estimated from min. bias raw data
 - \rightarrow subject to fluctuations
 - Number of ions piled up in drift volume
 - Event multiplicity fluctuations
 - Track charge fluctuations

$$\frac{\sigma_{\rm sc}}{\mu_{\rm sc}} = \frac{1}{\sqrt{N_{\rm pileup}^{\rm ion}}} \sqrt{1 + \left(\frac{\sigma_{N_{mult}}}{\mu_{N_{mult}}}\right)^2 + \frac{1}{F\mu_{N_{mult}}} \left(1 + \left(\frac{\sigma_{Qtrack}}{\mu_{Qtrack}}\right)^2\right)}$$

Space-charge distortions

Magnitude of distortion fluctuations

- Space-charge fluctuations at the level of 3%
- With knowledge of the average space-charge density this leads to
 - Max ± 6mm residual distortion in r
 - Max ± 2.5mm residual distortion in *rφ*
- Space-charge fluctuations are dominated by event and multiplicity fluctuations
- Must be taken into account for distortion corrections
 - Sets constraints on the update interval \rightarrow every 5-10ms

January 18 2018

Distortion calibration

Average distortion map

r

- Refit of ITS, TRD and TOF track segments as reference
- Difference of distorted TPC clusters and reference to extract 3D distortion maps
- Used to calculate "long term" (O(min)) average distortion map

Distortion calibration

Short term fluctuations

- Digital current related to space charge: n_{tot} = n_{prim} * G * IB
 - Assume constant gain and IB over short time scales (O(min))
- Build local average of digital currents in 1ms intervals
- Estimate SC density variations and correct for distortion fluctuations

$$\vec{\Delta} = \vec{\Delta}_{
m ref} + \sum_{i} \frac{\partial \vec{\Delta}_{
m ref}}{\partial_{
ho_{
m sc}^{i}}} \delta
ho_{
m sc}^{i}$$

- The ALICE TPC will be upgraded for continuous readout
- Base line solution: 4-GEM stack (S-LP-LP-S)
 - $\sigma_{E}/E < 12\%$ for ⁵⁵Fe
 - IB < 1% @ gain 2000
 - Low discharge rate (5 trips per GEM stack per Pb–Pb running year)
- Large distortions (up to O(10cm)) expected
 - Calibration scheme developed to correct down to the intrinsic resolution (O(100µm))

January 18 2018

Backup

IBF simulations

Ionisation dependence

- Dependence of IBF on space-charge density (SCD) observed in measurements
- Trends reproduced well in simulations
 - SCD estimates in measurements coarse estimates
 - SCD in simulations assumed homogeneous
- At high SCD the effective drift field at GEM1 top is decreased
 - More filed lines end on GEM1 top \rightarrow lower IBF

January 18 2018

Intrinsic performance

Space point resolution

- Optmised Pad Response Function for MWPCs
- PRF of GEMs very narrow → diffusion helps to spread signal over several pads
- Slightly worse overall resolution with GEMs

Performance with pileup

- Moderate worsening with increasing pileup (cluster merging)
- No difference between MWPC and GEM system

January 18 2018

IBF measurements

Systematic scans – IBF minimisation

- Large parameter space scanned for triple GEM
 - IBF not lower than ~2.5%
- Move to quadruple GEM stack
 - IBF not lower than ~2% (S-S-S-S configuration)
 - \rightarrow Test other GEM foil configurations

January 18 2018

IBF measurements

Optimisation of IBF and local energy resolution

- 55Fe resolution and IBF are competing
 - \rightarrow always both parameters need to be monitored
- Mainly driven by ΔV_{GEM1} , ΔV_{GEM2}
- Plot variables against each other → show working point region
 January 18 2018 → Show working point region
 27

IBF measurements

Differential picture

- Measure currents on all electrode
- Get differential picture of charge transport
- Main contribution to IBF from first two layers
- Main amplification from last layer
- Collection efficiency on first GEM drives the energy resolution

January 18 2018

