Commissioning of the ACTAR TPC

Benoît Mauss, on behalf of the ACTAR TPC collaboration

European Research Council

Established by the European Commission

The ACtive TARget and Time Projection Chamber

 $\begin{array}{l} \textbf{TPC: } 295 \times 295 \times \\ 255 \ \text{mm}^3 \end{array}$

Pad plane: 128×128 pads of size 2 mm \times 2 mm

MICROMEGAS: gap size 220 μm

Optional, on the rear panel:

CsI wall

Si (size: 5 cm×5 cm and 700 μ m thick, $\sigma \approx$ 30 keV) wall

Electronic set-up, NARVAL topology

GET electronics used for the 16384 pads

Analog electronics used for the Si and Csl detectors

 \longrightarrow Si as L0 trigger and L1 ok from the pads

Experiment:

- Beam: 3.2 MeV/nucleon ¹⁸O Target: iC_4H_{10} at 100 mbar Observable channels:
 - ▶ p-p
 - ► p-α
 - 1. Experimental set-up
 - 2. Detector capabilities
 - 3. Extraction of the excitation function and results

Installation of the ACTAR TPC at GANIL

¹⁸O entering G3 with 6.6 MeV/nucleon

- 63µm thick aluminium foil for energy degradation down to 3.2 MeV/nucleon
- Energy straggling at the entry of ACTAR TPC: $\sigma \simeq 600 \text{ keV}$
- Beam intensity: \simeq 10 kHz during 20 hours

Experimental tracks and pad polarization

- Large energy deposit discrepancies during the experiment
- Use of pad polarization, ► electronic gain capacitance at 120 fC for all pads

150

200

Determining the beam range

Example of a typical beam event aligned on a SRIM energy loss curve

Shorter range depending on the energy transferred to the target after reaction

Track fit and angular resolution

3D fit projected on two 2D projections:

Extrapolation of the fit on the Si Wall:

Summary of extracted observables

- Beam range
- Laboratory angle of the recoiling particles
- Energy deposit of the recoiling particles
- Energy of the backward angle recoiling particles in the Si wall

Particle identification

Raw spectrum of $\frac{dE}{dx} = f(E_{Si})$ for all Si detectors

Correlation between the impact height

and charge deposit measured permits a

10/18

Extraction of the excitation function from the scattered particle's fundamental

p-p channel $p-\alpha$ channel reac E_{Si} (keV) (keV) <u>,</u> 100000 Ш 100 120 beam range (pad) beam range (pad)

 \longrightarrow Selection of the ground state channels from the range and the energy in the Si detectors

2 methods to extract the excitation function

Iterative procedure using the energy and the angle of the recoiling particle:

1.
$$E_{Si}$$
, $\theta_{lab} \Rightarrow E_{reaction1} \Rightarrow \text{vertex 1}$
2. vertex 1 , $\theta_{lab} \Rightarrow E_{p,\alpha \text{vertex1}} = E_{Si} + E_{SRIM1}$
3. $E_{p,\alpha \text{vertex1}}$, $\theta_{lab} \Rightarrow E_{reaction2} \Rightarrow \text{vertex 2}$
4. vertex 2 , $\theta_{lab} \Rightarrow E_{p,\alpha \text{vertex2}} = E_{Si} + E_{SRIM2}$
5. ...

Theoretical results to be reproduced:

p- α channel: previous experimental data

R-matrix calculation performed with the AZURE2 code.

R. R. Carlson, C. C. Kim, J. A. Jacobs and A. C. L. Barnard in Physical Review 122, 607-616 (1961)

Results and comparison with former data: p-p channel

Use of R-matrix calculation for the p-p channel, convoluted with a Gaussian function filter of resolution 23.5 keV FWHM. $\theta_{cm} = (160 \pm 5)^{\circ}$

Results and comparison with former data: p-a channel

Use of a previous experimental graph for the p- α channel, convoluted with a Gaussian function filter of resolution 47 keV FWHM. $\theta_{cm} = (170 \pm 5)^{\circ}$

Projected on kinematic line

After iteration on the reaction energy

Conclusion

- Use of many channel with GET was a success
- Pad polarization worked well
- Reconstruction of the excitation function consistent with previous data
- Finish the normalization of the excitation function
- Correct the few remaining problems for future experiments

Collaboration

GANIL	GANIL	CENBG
M. Blaizot	V. Vandevoorde	B. Blank
P. Bourgault	G. Wittwer	J. Giovinazzo
B. Duclos	F. Saillant	T. Goigoux
G. Fremont	SACLAY	J.L Pedroza
P. Gangnant	E.C. Pollacco	J. Pibernat
J. Goupil	P. Sizun	USC
C E Grinvar ¹	M. Vandebrouck	H. Alvarez-Pol
G.F. Ghinyer	K.U. Leuven	M. Camaano B. Fernández
A.T. Laffoley ²	S. Ceruti	
L. Legeard	J. Daemen	IPNO M. Babo
C. Maugeais	T. Marchi	
B. Mauss	O. Poleshchuk	
M. Michel	R. Raabe	RIKEN
P. Morfouace	R. Renzi	
J. Pancin	J.A. Swartz	D. Suzuki
T. Roger	C. Wouters	Cu
C. Spitaels	J.C. Yang	1 _ل

Current affiliation: ¹University of Regina, Canada ²University of Guelph, Canada

Thank you for your attention

The research leading to these results have received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC grant agreement n° 335593.