Commissioning of the ACTAR TPC

Benoît Mauss, on behalf of the ACTAR TPC collaboration

The ACtive TARget and Time Projection Chamber

Optional, on the rear panel:

- Csl wall
- Si (size: $5 \mathrm{~cm} \times 5 \mathrm{~cm}$ and $700 \mu \mathrm{~m}$ thick, $\sigma \approx 30 \mathrm{keV}$) wall

Electronic set-up, NARVAL topology

GET electronics used for the 16384 pads

> Analog electronics used for the Si and Csl detectors
\longrightarrow Si as L0 trigger and L1 ok from the pads

Experiment:

Beam: 3.2 MeV/nucleon ${ }^{18} \mathrm{O}$ Target: $\mathrm{iC}_{4} \mathrm{H}_{10}$ at 100 mbar Observable channels:

- p-p
- $\mathrm{p}-\alpha$

1. Experimental set-up
2. Detector capabilities
3. Extraction of the excitation function and results

Installation of the ACTAR TPC at GANIL

${ }^{18} \mathrm{O}$ entering G 3 with $6.6 \mathrm{MeV} /$ nucleon

- $63 \mu \mathrm{~m}$ thick aluminium foil for energy degradation down to 3.2 MeV/nucleon
- Energy straggling at the entry of ACTAR TPC: $\sigma \simeq 600 \mathrm{keV}$
- Beam intensity: $\simeq 10 \mathrm{kHz}$ during 20 hours

Experimental tracks and pad polarization

- Target: $\mathrm{iC}_{4} \mathrm{H}_{10}$ at 100 mbar, stops the beam
- Large energy deposit discrepancies during the experiment
- Use of pad polarization, electronic gain capacitance at 120 fC for all pads

SRIM tables for typical particle energies during the commissioning

Determining the beam range

Example of a typical beam event aligned on a SRIM energy loss curve

Shorter range depending on the energy transferred to the target after reaction

Track fit and angular resolution

3D fit projected on two 2D projections:

Extrapolation of the fit on the Si Wall:

Summary of extracted observables

- Beam range
- Laboratory angle of the recoiling particles
- Energy deposit of the recoiling particles
- Energy of the backward angle recoiling particles in the Si wall

Particle identification

Raw spectrum of $\frac{d E}{d x}=f\left(E_{S i}\right)$ for all Si detectors

Height and energy deposit correlation due to electron attachment from O_{2} pollution

Correlation between the impact height and charge deposit measured permits a correction:

Extraction of the excitation function from the scattered particle's fundamental

\longrightarrow Selection of the ground state channels from the range and the energy in the Si detectors

2 methods to extract the excitation function

Projection on the simulated kinematic line.

Iterative procedure using the energy and the angle of the recoiling particle:

1. $E_{S i}, \theta_{\text {lab }} \Rightarrow E_{\text {reaction } 1} \Rightarrow$ vertex 1
2. vertex 1, $\theta_{l a b} \Rightarrow E_{p, \alpha \text { vertex } 1}=E_{S i}+E_{S R I M 1}$
3. $E_{p, \alpha \text { vertex } 1}, \theta_{l a b} \Rightarrow E_{\text {reaction } 2} \Rightarrow$ vertex 2
4. vertex $2, \theta_{l a b} \Rightarrow E_{p, \alpha \text { vertex } 2}=E_{S i}+E_{S R I M 2}$
5. ...

Theoretical results to be reproduced:

p-p channel: R-matrix calculation

R-matrix calculation performed with the AZURE2 code.
$\mathrm{p}-\alpha$ channel: previous experimental data

R. R. Carlson, C. C. Kim, J. A. Jacobs and A. C. L. Barnard in Physical Review 122, 607-616 (1961)

Results and comparison with former data: p-p channel

Use of R-matrix calculation for the p-p channel, convoluted with a Gaussian function filter of resolution 23.5 keV FWHM. $\theta_{c m}=(160 \pm 5)^{\circ}$

Projected on kinematic line

After iteration on the reaction energy

Results and comparison with former data: p-a channel

Use of a previous experimental graph for the p- α channel, convoluted with a Gaussian function filter of resolution 47 keV FWHM. $\theta_{c m}=(170 \pm 5)^{\circ}$

Projected on kinematic line

After iteration on the reaction energy

Conclusion

- Use of many channel with GET was a success
- Pad polarization worked well
- Reconstruction of the excitation function consistent with previous data
- Finish the normalization of the excitation function
- Correct the few remaining problems for future experiments

Collaboration

GANIL

M. Blaizot
P. Bourgault
B. Duclos
G. Fremont
P. Gangnant
J. Goupil
G.F. Grinyer ${ }^{1}$
A.T. Laffoley ${ }^{2}$
L. Legeard
C. Maugeais
B. Mauss
M. Michel
P. Morfouace
J. Pancin
T. Roger
C. Spitaels

GANIL
V. Vandevoorde
G. Wittwer
F. Saillant

SACLAY
E.C. Pollacco
P. Sizun
M. Vandebrouck
K.U. Leuven
S. Ceruti
J. Daemen
T. Marchi
O. Poleshchuk
R. Raabe
R. Renzi
J.A. Swartz
C. Wouters
J.C. Yang

CENBG
B. Blank
J. Giovinazzo
T. Goigoux
J.L Pedroza
J. Pibernat

USC
H. Alvarez-Pol
M. Camaano
B. Fernández

IPNO

M. Babo
F. Flavigny

RIKEN
D. Suzuki

Current affiliation:
${ }^{1}$ University of Regina, Canada
${ }^{2}$ University of Guelph, Canada

Thank you for your attention

The research leading to these results have received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC grant agreement $\mathrm{n}^{\circ} 335593$.

