Commissioning of the ACTAR TPC

Benoît Mauss, on behalf of the ACTAR TPC collaboration
The ACtive TARget and Time Projection Chamber

TPC: $295 \times 295 \times 255 \text{ mm}^3$

Pad plane:
128 \times 128 pads of size 2 mm \times 2 mm

MICROMEGAS:
gap size 220 μm

Optional, on the rear panel:
- CsI wall
- Si (size: 5 cm \times 5 cm and 700 μm thick, $\sigma \approx 30$ keV) wall
Electronic set-up, NARVAL topology

GET electronics used for the 16384 pads

Analog electronics used for the Si and CsI detectors

→ Si as L0 trigger and L1 ok from the pads
Experiment:

Beam: 3.2 MeV/nucleon 18O
Target: iC$_4$H$_{10}$ at 100 mbar
Observable channels:

- p-p
- p-α

1. Experimental set-up
2. Detector capabilities
3. Extraction of the excitation function and results
Installation of the ACTAR TPC at GANIL

18O entering G3 with 6.6 MeV/nucleon

- 63µm thick aluminium foil for energy degradation down to 3.2 MeV/nucleon
- Energy straggling at the entry of ACTAR TPC: $\sigma \sim 600$ keV
- Beam intensity: ~ 10 kHz during 20 hours
Experimental tracks and pad polarization

- Target: iC_4H_{10} at 100 mbar, stops the beam
- Large energy deposit discrepancies during the experiment
- Use of pad polarization, electronic gain capacitance at 120 fC for all pads
Determining the beam range

Example of a typical beam event aligned on a SRIM energy loss curve

Shorter range depending on the energy transferred to the target after reaction
Track fit and angular resolution

3D fit projected on two 2D projections:

Extrapolation of the fit on the Si Wall:

Resolution: 3.0 mm FWHM
i.e. resolution < 1.7° FWHM

Resolution: 3.8 mm FWHM
i.e. resolution < 2.2° FWHM
Summary of extracted observables

- Beam range
- Laboratory angle of the recoiling particles
- Energy deposit of the recoiling particles
- Energy of the backward angle recoiling particles in the Si wall
Particle identification

Raw spectrum of $\frac{dE}{dx} = f(E_{Si})$ for all Si detectors

Correlation between the impact height and charge deposit measured permits a correction:

Height and energy deposit correlation due to electron attachment from O$_2$ pollution

→ p-p and p-α channel selection
Extraction of the excitation function from the scattered particle’s fundamental

\[p-p \text{ channel} \quad \rightarrow \quad p-\alpha \text{ channel} \]

\[E_{\text{reac}} \quad \rightarrow \quad E^* \]

\[E_{\text{Si}} \text{ (keV)} \]

beam range (pad)

Selection of the ground state channels from the range and the energy in the Si detectors
2 methods to extract the excitation function

Projection on the simulated kinematic line.

Iterative procedure using the energy and the angle of the recoiling particle:

1. $E_{Si}, \theta_{lab} \Rightarrow E_{reaction 1} \Rightarrow$ vertex 1
2. vertex 1, $\theta_{lab} \Rightarrow E_{p, \alpha, vertex 1} = E_{Si} + E_{SRIM1}$
3. $E_{p, \alpha, vertex 1}, \theta_{lab} \Rightarrow E_{reaction 2} \Rightarrow$ vertex 2
4. vertex 2, $\theta_{lab} \Rightarrow E_{p, \alpha, vertex 2} = E_{Si} + E_{SRIM2}$
5. ...
Theoretical results to be reproduced:

p-p channel: R-matrix calculation

R-matrix calculation performed with the AZURE2 code.

p-α channel: previous experimental data

Results and comparison with former data: p-p channel

Use of R-matrix calculation for the p-p channel, convoluted with a Gaussian function filter of resolution 23.5 keV FWHM. $\theta_{cm} = (160 \pm 5)^\circ$

Projected on kinematic line

After iteration on the reaction energy
Results and comparison with former data: \(p-\alpha \) channel

Use of a previous experimental graph for the \(p-\alpha \) channel, convoluted with a Gaussian function filter of resolution 47 keV FWHM. \(\theta_{cm} = (170 \pm 5)\degree \)

Projected on kinematic line

After iteration on the reaction energy
Conclusion

- Use of many channel with GET was a success
- Pad polarization worked well
- Reconstruction of the excitation function consistent with previous data
- Finish the normalization of the excitation function
- Correct the few remaining problems for future experiments
Collaboration

<table>
<thead>
<tr>
<th>GANIL</th>
<th>GANIL</th>
<th>CENBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Blaizot</td>
<td>V. Vandevoorde</td>
<td>B. Blank</td>
</tr>
<tr>
<td>P. Bourgault</td>
<td>G. Wittwer</td>
<td>J. Giovinazzo</td>
</tr>
<tr>
<td>B. Duclos</td>
<td>F. Saillant</td>
<td>T. Goigoux</td>
</tr>
<tr>
<td>G. Fremont</td>
<td>SACLAY</td>
<td>J.L Pedroza</td>
</tr>
<tr>
<td>P. Gangnant</td>
<td>E.C. Pollacco</td>
<td>J. Pibernat</td>
</tr>
<tr>
<td>J. Goupil</td>
<td>P. Sizun</td>
<td></td>
</tr>
<tr>
<td>G.F. Grinyer(^1)</td>
<td>M. Vandebrouck</td>
<td></td>
</tr>
<tr>
<td>A.T. Laffoley(^2)</td>
<td>K.U. Leuven</td>
<td></td>
</tr>
<tr>
<td>L. Legeard</td>
<td>S. Ceruti</td>
<td>H. Alvarez-Pol</td>
</tr>
<tr>
<td>C. Maugeais</td>
<td>J. Daemen</td>
<td>M. Camaano</td>
</tr>
<tr>
<td>B. Mauss</td>
<td>T. Marchi</td>
<td>B. Fernández</td>
</tr>
<tr>
<td>M. Michel</td>
<td>O. Poloshchuk</td>
<td></td>
</tr>
<tr>
<td>P. Morfouace</td>
<td>R. Raabe</td>
<td></td>
</tr>
<tr>
<td>J. Pancin</td>
<td>R. Renzi</td>
<td></td>
</tr>
<tr>
<td>T. Roger</td>
<td>J.A. Swartz</td>
<td></td>
</tr>
<tr>
<td>C. Spitaels</td>
<td>C. Wouters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J.C. Yang</td>
<td></td>
</tr>
</tbody>
</table>

Current affiliation:

\(^1\)University of Regina, Canada

\(^2\)University of Guelph, Canada
Thank you for your attention

The research leading to these results have received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013)/ERC grant agreement n° 335593.