Workshop On Active Target and Time Projection Chamber

17th of January 2018

The ACTAR TPC and its Physics Program

Pierre Morfouace on behalf of the ACTAR TPC collaboration GANIL morfouace@ganil.fr

Outline

- Active target
- The ACTAR TPC
 - Mechanical design
 - Electronics
- The Physics cases
- Experiments approved at GANIL
 - Resonant elastic scattering
 - shell evolution
 - Exotic decay: two-proton decay

Goal of active target and time projection chamber

- Reaction with very negative Q-value in inverse kinematics
 - Recoil stops inside the target
 - Inelastic reaction for giant resonances or clustering...
- Study of excitation function
 - thick target, need to differentiate the reaction channels
 - Resonant scattering...
- Reaction with very low intensity beam (need of thick target)
 - toward the dripline, nuclei with short half life.
 - ▶ halo nuclei…
- Use of thick target without degradation of the resolution

Active target and GANIL

MAYA: a two dimensional charge - one dimensional time projection chamber

25 mm

MAYA design:

- Cathode recorded charge
 - 2 dimension (32x32 pads)
- Wire recorded time
 - ► 3rd dimension (32 wires)

Binary reaction only!

Csl (5x5 cm², e = 10 mm)

Next generation: ACTAR TPC

What has to be improved

- Multi-particle detection
- Low energy threshold
- Spatial resolution (angular and range)
- Reconstruction efficiency
- New electronics (16k channels)
- Energy dynamics
 - pad polarization
 - electrostatic mask

Next generation: ACTAR TPC

What has to be improved

- Multi-particle detection
- Low energy threshold
- Spatial resolution (angular and range)
- Reconstruction efficiency
- New electronics (16k channels)
- Energy dynamics
 - pad polarization
 - electrostatic mask

The ACTAR TPC

- Tracking considerations: transverse multiplicity > 3 pads
- Micromegas: multiplicity given by the lateral straggling of the e⁻ in the gas J.
 Pancin et al. NIM A735, 532-540 (2014).
- ACTAR: 2x2 mm² pads
 - Extending to many-body reactions
 - Technical challenge: connecting 2 mm side square pads the to electronics.
 - equipped with digital electronics (GET): 512 samples ADC readout depth + sparking protection circuit (ZAP)

- Should be able to sustain 3 bars differential pressure
- Possibility to couple with different ancillary detectors
- Possibility 2π coverage

- 2x parallel raws of 32 ASAD cards
- ASAD cards are arranged in semicircular shape to use the same ZAP length.

- Cubic field cage: 25.6 cm³.
- Highly segmented: pad plane with 16384 channels: 2x2 mm².
- Micromegas technology (≈220 µm gap).

- Fakir geometry
- The ZAP cards are directly connected to the back of the pad plane.
- Original proposition: J. Pibernat.
- Collaboration with CERN and FED.

Polarizing central pads

- Central pad below the beam can be set at a different voltage to reduce the gain.
- Avoid saturation problem due to high energy deposition of the beam.
- 6 or 12 central pads can be set.
- Done through jumpers on the ZAP card.

ZAP R (AGET 0-1)

General Electronics for TPC (GET)

- Digital signals and adjustable sampling (up to 100 MHz).
- Input dynamical range from 120 fC up to 10 pC.
- 3-level triggers (L0 external, L1 internal and L2).
- Multiplicity Trigger and Time (MuTanT) module distributes master and clock and event number.
- Extended data readout bandwidth (10 Gb/s) and on-board data filtering.

Commissioning

- The ACTAR TPC has been recently completed and commissioned: proton resonant elastic scattering of ¹⁸O from 3.5 MeV/u (see talk of Benoît Mauss).
- This example: ¹⁸O at 20 MeV/u
- Allow us to develop new tracking algorithms (Hough, Ransac, Neural network...) Y. Ayyad et al. NIM A880, 166-173 (2018)
- Ready to use for physics experiments.

¹⁸O+¹²C at 20 MeV/u Fragmentation event

Physics opportunity with ACTAR TPC

The ACTAR TPC will play an important role for:

- Resonant elastic scattering: Resonance states and unbound nuclei
- Astrophysical reactions: r-process and (α, p) reactions
- Inelastic scattering: Giant resonances and clusters
- Exotic decay mode: 2 proton radioactivity, β2p
- Transfer reactions

CENBG

credit A. Krasznahorkay (ATOMKI)

Experiments approved at GANIL

Four approved experiments at GANIL

- G.F. Grinyer E750: Resonant proton elastic scattering on ¹⁷F and 2-proton emission from excited states in ¹⁸Ne.
- B. Fernández-Domínguez E751: Spectroscopy of the unbound proton-rich nucleus ³³K.
- J. Giovinazzo E743: Study of protonproton correlations in the two-proton radioactivity of ⁵⁴Zn or ⁴⁸Ni with ACTAR TPC.
- D. Rudolph **E690**: Proton-decay branches from the 10+ isomer in ⁵⁴Ni.

E750: 2p emission from excited states in ¹⁸Ne

- Excited states in ¹⁸Ne above proton decay threshold: key role in the ¹⁴O(α,p)¹⁷F reaction rate.
- For typical novae outburst temperatures (0.1 to 0.4 GK), the reaction is dominated by a single resonance at 6.15 MeV (1⁻).
- Ay higher temperature (>2 GK), additional resonances at 7.35 and 8.10 MeV dominate.
- Not clear if these states decay by two-proton emission.
- A large 2p-decay branch would lead to a reduction of the ¹⁴O(α,p)¹⁷F astrophysical reduction rate by as much as 30%.

E750: 2p emission from excited states in ¹⁸Ne

E750: 2p emission from excited states in ¹⁸Ne

- ¹⁷F(p,p) resonant elastic scattering.
- ¹⁷F secondary beam at 7 MeV/u in CIME cyclotron and sent to G3.
- iC₄H₁₀ at 200 mbar.
- Ancillaries: Silicon wall (DSSD).
- Complete kinematic measurement (angle, energy and vertex position).
- Proton-proton correlations studies provide insight into the nature of the 2-proton decay.

Shell evolution

- The Mirror Energy Differences (MED) for the 2⁺ states in the mirror pair ³⁶Ca/³⁶S were found to be exceptionally large (T=2).
- Systematic of the T=1 and T=2 MED lead to a reduction of the Z=14 gap in the N=8 isotones and the N=14 gap in the Z=20 isotopes.
- Another "island of inversion in ³⁴Ca"?
- The structure of ³³K (one proton away from ³⁴Ca) should manifest the predicted quenching.
- Other effects such as coupling to continuum and 3N as well.

P. Doornenbal et al. PLB 647 237-242 (2007)

- Study of the proton-unbound ³³K nucleus
- Mirror or ³³Si.
- T_{1/2}< 25 ns
- Predicted unbound by S_p =-1.95 MeV
- Study of Z=16 and Z=20 proton shell gap at N=14.
- Prediction from shell-model: 3/2⁺ and 1/2⁺ only 300 keV appart => Z=16
- Energy between the 7/2⁻ and the 3/2⁺ will provide information on the Z=20 gap.

- ³³K: T_z=-5/2
- None of the T_z=-5/2 nuclei are expected to be bound (¹³F, ¹⁷Na, ²¹Al, ²⁵P and ²⁹Cl)
- Experimental studies on ²⁹Cl indicate a violation of isobaric symmetry due to a strong Thomas-Ehrmann shift. I. Mukha et al. PRL 115, 202501 (2015)
- Systematics of the Thomas-Ehrmann shift in T=5/2 with increasing Coulomb.

- Study of the proton-unbound ³³K nucleus
- Through proton resonant elastic scattering ³²Ar(p,p)@ 5.5 MeV/u.
- Populate from 5.5 MeV down to the ground state of ³³K.

- ³²Ar secondary beam at 5.5 MeV/u in CIME cyclotron and sent to G3.
- H₂ at 1.5 bar => Test needed.
- Ancillaries: Silicon wall (DSSD) at forward angles: ΔE 1mm thick + E 1.5 mm thick. Needed to determine the angle if gain issue to detect the proton in the TPC.
- Complete kinematic measurement (angle, energy and vertex position).

E743: Proton-proton correlation from 2p radioactivity in ⁵⁴Zn or ⁴⁸Ni

"Exotic" radioactive decays:

- 1-proton for odd-Z isotopes
- 2-protons for even-Z isotopes

Physics motivation:

- drip-line and masses.
- nuclear structure effect beyond the drip line.
- pairing: energy and angular correlations of emitted protons.
- decay dynamics and tunnel effect

The 2-proton radioactivity mixes the structure (wave function) and the dynamics (decay).

E743: Proton-proton correlation from 2p radioactivity in ⁵⁴Zn or ⁴⁸Ni

Four known ground state 2p emitters

- ⁴⁵Fe: first and most studied case
 - First direct observation (2006, TPC CENBG)
 - angular correlation (2007, OTPC Warsaw/MSU)
- ⁴⁸Ni: few counts only
- ⁵⁴Zn: low statistics, decay scheme well established
 - indirect observation (2004, GANIL)
 - Iimited angular distribution (2011, TPC CENBG)
- ⁶⁷Kr: last observed 2p emitter
 - indirect observation (2015, RIKEN)
 - no individual protons information

Tracking experiments with TPC needed

E743: Proton-proton correlation from 2p radioactivity in ⁵⁴Zn or ⁴⁸Ni

• Specific 2p mode for the GET electronics.

E690: Proton-decay branches from the 10⁺ isomer in ⁵⁴Ni

- Very similar γ-decay pattern between ⁵⁴Ni and its mirror nucleus ⁵⁴Fe.
- Very different half-life: T_{1/2}(⁵⁴Ni)≈0.4*T_{1/2}(⁵⁴Fe)
- Experiments in GSI measured only γ from the implantation of ^{54}Ni
 - ▶ 1327 keV from ⁵³Co: proton-branch br_{p1}
 - ▶ No access to the branching-ratio to the ground state br_{p2}

Summary

The short term physics plan will cover

- Exotic decay with proton-proton correlations to probe the nature of the decay.
- Reaction relevant for astrophysical physics.
- Shell evolution in very exotic nuclei.

The ACTAR TPC will also be used for

- Giant resonances: GMR, GDR, GQR, Pygme...
- Cluster physics in light neutron-rich nuclei.

Summary

The short term physics plan will cover

- Exotic decay with proton-proton correlations to probe the nature of the decay.
- Reaction relevant for astrophysical physics.
- Shell evolution in very exotic nuclei.

The ACTAR TPC will also be used for

- Giant resonances: GMR, GDR, GQR, Pygme...
- Cluster physics in light neutron-rich nuclei.

Detector development

- Finalizing current development
 - Micromegas scanning
 - GANIL solution for the pad plane
- Gain measurement (gas type and pressure)
- GEM, THGEM...

Software development

Tracking algorithm comparison

Collaboration

GANIL

M. Blaizot

P. Bourgault

- B. Duclos
- G. Fremont
- P. Gangnant
- J. Goupil
- G.F. Grinyer¹
- A.T. Laffoley²
- L. Legeard
- C. Maugeais
- B. Mauss
- M. Michel
- P. Morfouace
- J. Pancin
- T. Roger
- P. Senecal
- C. Spitaels
- K. Turzo

GANIL

G. Voltolini V. Vandevoorde G. Wittwer F. Saillant

SACLAY

- E.C. Pollacco P. Sizun
- M. Vandebrouck

K.U. Leuven

- S. Ceruti
- J. Daemen T. Marchi
- O. Poleshchuk
- R. Raabe
- R. Renzi
- J.A. Swartz
- C. Wouters
- J.C. Yang

CENBG

- B. Blank
- J. Giovinazzo
- T. Goigoux
- J.L Pedroza
- J. Pibernat

USC

- H. Alvarez-Pol
- M. Camaano
- B. Fernández
- P. Konczykowski

M. Babo F. Flavigny

RIKEN

D. Suzuki

European Research Council Established by the European Commission

Current affiliation: ¹University of Regina, Canada ²University of Guelph, Canada

IPNO

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC Grant agreement number 335593 (ACTAR TPC)

For more information:

http://pro.ganil-spiral2.eu/laboratory/detectors/actartpc

European Research Council Established by the European Commission

European Research Council

