Direct measurement of fission barrier heights of unstable heavy nuclei at ISOL facilities & ACTAR TPC

for IS581: Jozef Klimo

spoken person: Mgr. Martin Veselský, PhD
Motivation

- Fission is expected to play a key role in the description of r-process in nucleosynthesis of n-rich nuclei in two neutron star merger.

- Fission barrier height is the parameter determining fission rate.

- Description of fission rate/fission barrier in induce fission is demanded in **NuPECC Long Range Plan 2017**.

- A very little progress was done up to present due to the methodology.
The Present Status

- Most of the known, directly measured, fission barriers heights (B_f) were obtained by more than 30 years ago.
- A very little progress was done up to present due to the methodology.

Part of the chart of the nuclides. Nuclei for which the fission barrier was determined experimentally are indicated by an asterisk. Dahlinger et al., 1982
The Present Status

- Most of the known, directly measured, fission barriers heights (Bf) were obtained by more than 30 years ago.
- A very little progress was done up to present due to the methodology.
- On the n-deficient side of the NC, Bf parameters determined in induced fission via

Part of the chart of the nuclides. Nuclei for which the fission barrier was determined experimentally are indicated by an asterisk.

Dahlinger et. al., 1982
The Present Status

• Most of the known, directly measured, fission barriers heights (Bf) were obtained by more than 30 years ago.

• A very little progress was done up to present due to the methodology.

• On the n-deficient side of the NC, Bf parameters determined in induced fission via

• The most of them from the nearest vicinity of the β stability line

“The Age of RIB” opens possibilities to measured Bf of exotic n-deficient nuclei in low energy fissions:
- βDF (even-even nuclei) – significant uncertainty in Bf!
- (d,pf) - (inverse kinematics) – New method for RIB!

Part of the chart of the nuclides. Nuclei for which the fission barrier was determined experimentally are indicated by an asterisk Dahlinger et al., 1982
Physical background of fission barriers @ low E^*

Probability of low energy fission

$$ P_{LEf} = \frac{\int_0^{E_{\text{max}}} W(E^*) \frac{\Gamma_f(E^*)}{\Gamma_f(E^*) + \Gamma_\gamma(E^*)} dE^*}{\int_0^{E_{\text{max}}} W(E^*) dE^*} $$

- $W(E^*)$: Probability to populate a given excited state \rightarrow Exp.
- $\Gamma_\gamma(E^*)$: Fission / γ emission decay width, no other channel contributes \rightarrow Exp./Th.

Fission decay width

$$ \Gamma_f(E^*) = \frac{1}{2\pi \rho_c(E^* - \Delta)} \int_0^{E^* - B_f - \Delta_{sp}} \rho_{sp}(E^* - B_f - \Delta_{sp} - E') dE' $$
Physical background of fission barriers @ low E*

Probability of low energy fission

\[
P_{\text{LEf}} = \frac{\int_0^{E_{\text{max}}} W(E^*) \frac{\Gamma_{f}(E^*)}{\Gamma_{f}(E^*) + \Gamma_{\gamma}(E^*)} dE^*}{\int_0^{E_{\text{max}}} W(E^*) dE^*}
\]

Probabilities of excitation of a given excited state \(\rightarrow \text{Exp.}\)

Fission / γ emission decay width, no other channel contributes \(\rightarrow \text{Exp./Th.}\)

Fission decay width

\[
\Gamma_{f}(E^*) = \frac{1}{2\pi \rho_c(E^* - \Delta)} \int_0^{E^* - B_{f} - \Delta_{sp}} \rho_{sp}(E^* - B_{f} - \Delta_{sp} - E')dE'.
\]

Because of pairing energy \(\Delta_{sp}\) at the saddle point configuration of nucleus Bf could not be determined with good precision by present theory \(\rightarrow\) uncertainty for deduced Bf for others than odd-odd nuclei.

A small difference in Bf can caused a huge difference in \(P_{\text{LEf}}\)!!

even-even, odd A: \(\Delta_{sp} = \text{unnegligible and significant uncertainty - } \beta\text{DF, (d,pf)}\)

odd-odd: \(\Delta_{sp} = \text{zero contribution - (d,pf)}\)
(d, pf) & HIE-ISOLDE & ACTAR TPC

- ACTAR TPC enables to measure (d, pf) with post-accelerated n-deficient RIB in inverse kinematics

- ACTAR TPC offers higher fission rate and enables to obtain fission cross section for range of the energies \(\rightarrow \text{excitation function} \)

Technique

- the two fission fragments are detected in the forward-placed silicon array
- the proton from the transfer is either stopped in the volume or in Si-CsI telescope arrays surrounding the active volume

- \(E^*_RE \) from two body kinematics of proton vs. \(RE^* \)
 - ACTAR angle resolution < 1°/proton
 - uncertainty for \(E^*_RE \) < 0.5 MeV

- different position of (d, p) transfer in the ACTAR TPC corresponds to different \(E_{(beam)} \) of RIB (5 to 4.1 AMeV)
- fission excitation function for more than 60 points is possible
- multiple measured fission probabilities!!
(d,pf) & HIE-ISOLDE & ACTAR TPC

- ACTAR TPC enables to measure (d,pf) with post-accelerated n-deficient RIB in inverse kinematics
- ACTAR TPC offers higher fission rate and enables to obtain fission cross section for range of the energies → excitation function

Technique
- the two fission fragments are detected in the forward-placed silicon array
- the proton from the transfer is either stopped in the volume or in Si-CsI telescope arrays surrounding the active volume
- E^*_{RE} from two body kinematics of proton vs. RE^*
 - ACTAR angle resolution < 1°/proton
 - uncertainty for E^*_{RE} < 0.5 MeV
- different position of (d,p) transfer in the ACTAR TPC corresponds to different $E_{(beam)}$ of RIB (5 to 4.1 AMeV)

Bf determined with accuracy not achievable in another type of low-energy fission!
&
We proposed such experiment to INTC commission (HIE-ISOLDE)
IS581 experiment

- The experiment for measurement of fission barrier heights of n-deficient odd-odd nuclei in (d,pf) was proposed to INTC in 2012
- IS581 experiment was approved by INTC commission in 2013
- IS581 was put in to the program of planned HIE-ISOLDE experiments
Experimental conditions of IS581 experiment

- the deuterium gas inside the active target (effective target thickness of 1.6 mg/cm², target chamber length parallel to beam of ~ 12.8 cm)
- the beam slows down from the initial energy of 5 AMeV to about 4.1 AMeV
- the reaction vertex can be reconstructed with a resolution better than 3 mm
 -> more than 60 points of the excitation function within the given energy range
- the beam intensity of 10^6 pps
 -> **has to be optimized due to electrostatic mask along the beam of heavy nuclei!**
 -> a rate ranging from about 2 events/minute (at the highest energy) to 1 event/hour (at the lowest energy)

Requested shifts: 28 shifts (split into 2 runs over 2 years)
Beamline: 2nd REX beamline
Experiment approved as IS581 with all 28 shifts!
The period 2013 - 2017

- No progress until now – all experiments with ACTAR TPC demonstrator were focused on light ion beams

- There is a need to make the 1-sth measurement of IS581 with ACTAR TPC in 2018 -> longer shutdown of HIE-ISOLDE facilities

- **However, guarantee to get measurement time with ACTAR TPC is necessary!**

Requested shifts: 28 shifts (split into 2 runs over 2 years)
Beamline: 2nd REX beamline
Experiment approved as IS581 with all 28 shifts!
The period 2013 - 2017

- No progress until now – all experiments with ACTAR TPC demonstrator were focused on light ion beams.

- There is a need to make the 1-sth measurement of IS581 with ACTAR TPC in 2018 -> longer shutdown of HIE-ISOLDE facilities.

- However, guarantee to get measurement time with ACTAR TPC is necessary!

Requested shifts: 28 shifts (split into 2 runs over 2 years)
Beamline: 2nd REX beamline
Experiment approved as IS581 with all 28 shifts!

Thank you for your attention!