Active target MAIKo and measurement of ¹⁰C(a,a') at 75 MeV/u

Tatsuya FURUNO

Department of Physics, Kyoto University

ATTPC18 2017/01/17

Collaboration

- Department of Physics, Kyoto University
 T. Furuno, T. Kawabata, M. Tsumura, M. Murata,
 K. Inaba, Y. Takahashi, T. Takeda, Y. Fujikawa
- *RCNP, Osaka University* I. Tanihata, H. J. Ong, S. Adachi, D. T. Trong,
- ✤ LBNL
 - Y. Ayyad

RCNP E463(Oct. 2017)

Contents

- Physics motivation
 - Clusters in unstable nuclei
- Active target MAIKo
- ✤ Test experiment with 50-MeV ⁴He beam
 - □ Tracking algorithm
- RI beam experiment with 75-MeV/u ¹⁰C beam
 Preliminary results

Physics motivation

Clusters in unstable nuclei

- Active target MAIKo
- Test experiment with 50-MeV ⁴He beam
 - □ Tracking algorithm
- ♣ RI beam experiment with 75-MeV/u ¹⁰C beam
 Preliminary results

α clusters in unstable nuclei

Can proton-rich nuclei also form α molecular structures?

We propose a study of the mirror symmetry of clustering in ¹⁰C and ¹⁰Be.

The mirror system of ¹⁰C & ¹⁰Be

Monopole excitations in ¹⁰C

Monopole strength is a key parameter to pin-down cluster structure.

M(IS) is enhanced for cluster excitations from the g.s.
 Characteristic pattern in M(IS) reflects the cluster structures.
 Measure M(IS) systematically by ¹⁰C(α, α') scattering.

What to be measured

D Perform ${}^{10}C(\alpha, \alpha')$ scattering under the inverse kinematics condition.

- ✓ ROI: 5 MeV < E_x < 15 MeV
- Incident energy: ~100 MeV/u
 - smaller physical background (c.f. Harakeh's textbook)
- **Obtain** E_x spectrum
- **DA** analysis to determine J^{π}
- Measure the monopole strengths .

Missing mass spectroscopy is suitable to measure above thresholds, but ...

Compare with ¹⁰Be (TES)

Challenges in inverse kinematics

Physics motivation

Clusters in unstable nuclei

Active target MAIKo

Test experiment with 50-MeV ⁴He beam

□ Tracking algorithm

RI beam experiment with 75-MeV/u ¹⁰C beam
Preliminary results

<u>Mu-pic based Active target for</u> <u>Inverse Kinematics . (MAIKo)</u>

- Gas: He + CO₂(7%) @0.5 2.0 atm
- Introduce μ -PIC + GEM.
 - μ-PIC (gain~1000): 2-dimensional strip readout (400 μm pitch).
 256A+256C = 512 ch.

GEM (gain~30): 140 μm pitch, d=70 μm, t=100 μm (thick GEM)

TPC track $\rightarrow \Theta_{\alpha}$, range in the gas / Si+CsI $\rightarrow E_{\alpha}$

Readout system

Data structure

✓ Drift time as a function of µ-PIC strips provides two-dimensional projections.
 ✓ Anode + Cathode projections → 3D track reconstruction.

Performed experiments

Gas	Pressure	Beam	Reaction	Purpose
He + $iC_4H_{10}(7\%)$ He + $CO_2(7\%)$	430 hPa	⁴ He, 12.5 MeV/u @RCNP	(α, α)	test exp.
He + CF ₄ (2%)	1000 hPa 2000 hPa	¹³ C, 60 MeV/u @RCNP	(α, α')	test exp.
iC ₄ H ₁₀ (100%)	100 hPa	¹³ C, 60 MeV/u @RCNP	(p, p'), (p, d)	test exp.
He + CF ₄ (2%)	2000 hPa	γ bean @New SUBARU E _γ = 22 – 32 MeV	⁴ He(γ, p+t) ⁴ He(γ, ³ He)n	Big-bang nuclear synthesis
He + CO ₂ (4%)	500 hPa 1000 hPa	¹⁰ C, 75 MeV/u @RCNP	(α, α')	cluster

Physics motivation

Clusters in unstable nuclei

Active target MAIKo

Test experiment with 50-MeV ⁴He beam

□ Tracking algorithm

RI beam experiment with 75-MeV/u ¹⁰C beam
 Preliminary results

Test with a 50-MeV ⁴He beam

side view of the TPC and Si

Purposes of the test experiment

Performance test of the He+ iso-C₄H₁₀ / CO₂(7%) @ 430 hPa.
 Study TPC performance under high beam intensity (up to 300 kcps).
 Acquire ⁴He+⁴He scattering events to develop a tracking algorithm.

Example of scattering events

✓ gas: He(93%) + iC₄H₁₀(7%) @430 hPa

To identify the ⁴He + ⁴He elastic scattering, tracking algorithm to reconstruct multiple tracks are needed !

Track finding by Hough transform

Hough method is very suitable to find a straight line in the track space.

Tracking procedure

Tracking procedure

Analysis of ⁴He+⁴He scattering

Only Hough: σ=3.9°

✓ Hough + fitting: σ =1.9

Analysis of ⁴He+⁴He scattering

□ Elastic scattering of identical particles → θ₃ + θ₄ is always 90°
 □ Angular resolution of θ₃ + θ₄
 ✓ Only Hough: σ=3.9°
 ✓ Hough + fitting: σ=1.9

Physics motivation

Clusters in unstable nuclei

Active target MAIKo

Test experiment with 50-MeV ⁴He beam

□Tracking algorithm

RI beam experiment with 75-MeV/u ¹⁰C beam Preliminary results

Experimental setup for ${}^{10}C(\alpha, \alpha')$

Experimental setup for ${}^{10}C(\alpha, \alpha')$

Experimental setup for ${}^{10}C(\alpha, \alpha')$

Beam line detectors

- ✓ plastic(t=1mm) , event by event PID
- ✓ Low pressure MWDC
 - \rightarrow ¹⁰C beam tracking (σ ~250 μ m)

✓ plastic →
$$\Delta E$$
 of scattered ¹⁰C / 2p+2 α

DAQ trigger = TPC self (w/o beam axis) + Si

Data summary

Beam	Reaction	Gas Pressure	Measurement Time	Purpose
¹⁰ C @80 kcps	¹⁰ C(α, α')	500 hPa	100 hours	Physics run
¹⁰ C @80 kcps	¹⁰ C(α, α')	1000 hPa	30 hours	Physics run
¹² C @70 kcps	¹² C elastic	500 hPa	5.8 hours	Eff. check
¹² C @70 kcps	¹² C elastic	1000 hPa	3.5 hours	Eff. check

Track examples & Online analysis

eye scanner

Eye scan analysis

- 1. Identify ${}^{10}C(\alpha, \alpha')$ events
- 2. Extract incident, vertex, track end
- 3. Reconstruct ϑ , range of the recoil α
- 4. Calculate the excitation energy

scanned 20,000 events during the beam time

Online analysis of ${}^{12}C(\alpha, \alpha')$

✓ Analyzed only the TPC data (w/o MWDCs)
 ✓ Detection threshold: ~500 keV
 ✓ Clear correlation of the elastic scattering
 ✓ E_x resolution (~1 MeV in σ) will be improved after calculate the beam angle from the MWDC

Online analysis of ${}^{10}C(\alpha, \alpha')$

Strategy of the analysis

- 1. Combine data of TPC and beam line detectors (eye scan)
- 2. Automatic track finding with Hough transform
- 3. PID for α by range-total charge correlation
- 4. Analyze all of the data.
- 5. Efficiency check by comparing with the ¹²C elastic scatt. data

Summary

α clustering is an important aspect of atomic nuclei.
 α clustering in mirror system will reveal the inner structure of the clusters. (Thomas-Ehrman shift)

□ An active target MAIKo has beem developed for the measurement.

- ✓ Detect low-energy recoil α particles.
- ✓ TPC with μ -PIC+TGEM
- ✓ Track finding with Hough transform $\rightarrow \sigma$ =1.3°

□ The first RI beam experiment has been just completed !

- ✓ ¹⁰C (α, α') @75 MeV/u.
- ✓ Detection threshold: 500 keV

□ Analysis is on going !