Dosimetric comparison between 1H, 4He, 12C and 16O at the **Heidelberg Ion Beam Therapy Center**

UNICANCER

Centre

Thomas Tessonnier - 07/12/2017

• Worldwide interest in particle therapy

- Physical properties
 - Inverted depth dose profile
 - Finite range
 - Ion properties

Kraft et al.

• Worldwide interest in particle therapy

- Physical properties
 - Inverted depth dose profile
 - Finite range
 - Ion properties
 - Spread-out Bragg peak (SOBP)

Levin et al 2005

- Worldwide interest in particle therapy
 - Physical properties
 - Inverted depth dose profile
 - Finite range
 - Ion properties
 - Spread-out Bragg peak (SOBP)
 - Biological properties (RBE, OER, ...) RBE = f(LET,D,Tissue)

- Protontherapy in Caen...
 - Archade ... Summer 2018 !

- Particle therapy...
 - Wilson... 1946
 - Berkeley 1954: 1st patient

- Heidelberg Ion Beam Therapy Center
 - Synchrotron-based facility¹
 - Active beam scanning delivery²
 - 1H and 12C in clinics
 - 4He and 16O for research

- Active Beam Scanning delivery with Synchrotron
 - \rightarrow Depth position
 - \rightarrow Spot size
 - \rightarrow Lateral position

^{1,2} Haberer *et al.* (2004, 1993)

Goughenour 2017

UNICANCER

• Why Helium and Oxygen ions ?

François Baclesse

• Why Helium and Oxygen ions ?

Oxygen ... →RBE →OER (Sokol et al 2017)

RBE, $(\alpha/\beta)_{T} = (\alpha/\beta)_{NT} = 2Gy$

RBE, $(\alpha/\beta)_T = 10$; $(\alpha/\beta)_{NT} = 2Gy$

	Entrance	Proximal	Mid	Distal	Entrance	Proximal	Mid	Distal
lon species	(0 mm)	(67.5 mm)	(80 mm)	(92.5 mm)	(0 mm)	(67.5 mm)	(80 mm)	(92.5 mm)
Proton	1.00	1.13	1.27	2.00	1.00	1.06	1.14	1.51
Helium	1.07	1.52	2.11	4.26	1.06	1.22	1.50	2.57
Carbon	1.44	2.61	3.24	4.82	1.36	1.63	1.92	2.70
Oxygen	1.68	2.83	3.28	4.26	1.55	1.68	1.86	2.31

Tommasino IJPT 2016

Dosimetric comparison ... -Depth Dose Distribution

Materials and Methods

- Comparisons for 4 ions
- 10 energies in therapeutic range
- Measurements with PeakFinder (PTW)
- Delivery of a quasi-monoenergetic pencillike beam
- w/wo RiFi
- Investigation of several parameters
 - EPR Entrance-to-Peak ratio (at 16 mm)
 - PW Peak Width (proximal 80% / distal 80%)
 - FO Fall-Off (distal 80%/ distal 20%)
 - TPR Tail-to-Peak ratio (relative dose at 10 mm of distal 90%)
- Charge Collection Efficiency (CCE)

<u>PeakFinder Water column</u>

Investigated parameters

<u>**Results :**</u> Depth dose distribution in water $/ R_{90} = f(E)$

<u>**Results :**</u> Depth dose distribution in water / R_{90} =f(E)

<u>**Results :**</u> Depth dose distribution in water $/ R_{90} = f(E)$

<u>Results</u> : distal fall-off

- Improvement of distal FO when using He ions compare to protons
- **FO comparable** between **heavy ions** and **He ions** with RiFi

<u>Results</u> : tail to peak ratio

Low TPR at 10 mm due to fragmentation for He ions compared to C/O ions

C/O up to 16 %

Dosimetric comparison ... -Lateral Dose Distribution

Materials and Methods

- Comparisons for 4 ions
- 3 energies in therapeutic range
- Measurements in a water tank coupled to 24 motor driven Ionization Chambers
- Delivery of a vertically scanned beam
- Measurements of profile at different depth
 - Simple Gaussian parametrization
 - Double Gaussian parametrization
 - Parametrization corrected

Water Tank + IC

Results

Gaussian parametrizations :

SGP ~ $G_0(\sigma 0)$

 $DGP \sim (1-w)G_1(\sigma 1) + wG_2(\sigma 2)$

man Different focussize at the entrance of the planton mot comparable

 $\sum_{rance see } contraction and the final terms in the symbols of the symbols of$

 $\sigma_{focus}(z_{water})^2 = \sigma_{\delta}(z_{water})^2 + \sigma_{focus_iso}^2$

Results

Gaussian parametrizations :

SGP ~ $G_0(\sigma 0)$

 $DGP \sim (1-w)G_1(\sigma 1) + wG_2(\sigma 2)$

mana Different focussize at the entrance of the phanton mot comparable

 \mathcal{S}

 $\sigma_{focus}(z_{water})^2 = \sigma_{\delta}(z_{water})^2 + \sigma_{focus_iso}^2$

- SGP describing the width of the central core

Results

- **Correction** for the extrapolated initial focus at the entrance

proton carbon ions FWHM [mm] FWHM [mm] Energy [MeV/u] Energy [MeV/u]

Different focus size at isocenter
Correction for fair comparisons

Results

• Agreement between expected focus and extrapolated one

Results

UNICANCER

Centre François

- SGP describing the width of the central core
- Net advantages of heavy ions
 - Intermediate results for He ions
 - < 2-4 mm compared to H ~+ 1-2 mm compared to C

 $\sigma \sim 1/\sqrt{(M)}$

Dosimetric comparison ... -Spread Out Bragg Peak

After modelisation in FLUKA...

Physical Optimisation of SOBP

After modelisation in FLUKA...

Physical Optimisation of SOBP

 \rightarrow HI tail > 20% at large depth !

After modelisation in FLUKA... Physical Optimisation of SOBP

- Irradiated lateral size similar in the SOBP region for He, C and O ions. Larger size for H of about ~10-15mm

UNICANCER

MCTP Platform - Physical Optimisation

Lateral position in water [mm]

Böhlen et al. (2013)

MCTP Platform - Biological Optimisation

Mairani et al. (2016)

- Meningiomas treated with proton (4 patients)
- **Re-optimization** with **FLUKA-MCTP** for **helium** ions **AND protons**
- Dose in PTV 1.8 GyRBE
- Tissue types CNS $\alpha/\beta=2$, PTV $\alpha/\beta=3.7$
- **Protons** without RiFi, variable RBE (calculated "online")
- Helium ions with RiFi, variable RBE (calculated "online")
- Comparisons : DVH for **PTV** and **OAR**

Comparable **PTV coverage Better** sparing of OAR with He **Less dose** to normal tissues

Perspective ...

- Still a lot to do ...

- LET / RBE / OER optimization (+ biological characterization)
- Dual ions optimization !
- In-Vivo monitoring/Range verification ... (prompt, PET, fragments)
- Nuclear models ...
- Ion imaging ...

- Clinical practice !

- Uncertainty reductions
- Robust Optimization
- DECT
- Biological dose fast recalculation
- Detectors !!!

Heidelberger Ionenstrahl-Therapiezentrum

Prof. Thomas Haberer Andrea Mairani (HIT/CNAO) Stephan Brons Julia Bauer ... HIT team !

UniversitätsKlinikum Heidelberg Prof. Jürgen Debus Wenjing Chen Mac Mein Benedikt Kopp Josefine Handrack

<u>Prof. Katia Parodi</u> Tiago Marcelos (BrainLab)

Aldredo Ferrari Paola Sala Fransesco Ceruti Till Böhlen (MedAustron)

UNICANCER

