Recent ALICE Results

Astrid Morreale, SUBATECH/CNRS CPPM Seminar– October 30 2017

Parton confinement

- QCD describes the strong interactions between spin 1/2 objects called quarks which possess color as an internal degree of freedom.
- Color is a quantum number that couples to a vector field whose quantas are the gluons.
- Gluons are the gauge bosons of QCD, they are massless and they mediate the interaction between the quarks , similar to photons mediating the interaction between charged particles in QED.

- When the distance between two quarks increases, the recoil interaction between these two quarks increases.
- It is not possible to observe isolated quarks or gluons under ordinary temperature and energy density conditions.

How can we liberate quarks?

Heat and pressure leads to a phase transition: collisions of heavy atomic nuclei Pb²⁰⁸, Au ¹⁹⁷

New state of matter: quarks and gluons are liberated. $T\sim 10^{12}$ K $\sim 10^{5}$ sun's core Evolution of the early universe, QGP may still exist in neutron stars

Heat and pressure leads to a phase transition:

collisions of heavy atomic nuclei Pb^{208} , Au 197

New state of matter: quarks and gluons are liberated. $T\sim 10^{12}$ K $\sim 10^{5}$ sun's core Evolution of the early universe, QGP may still exist in neutron stars

Heat and pressure leads to a phase transition:

collisions of heavy atomic nuclei Pb^{208} , Au 197

New state of matter: quarks and gluons are liberated. $T\sim 10^{12}$ K $\sim 10^{5}$ sun's core Evolution of the early universe, QGP may still exist in neutron stars

Time evolution of the QGP created in nucleus-nucleus collisions:

- Dynamical modeling of the different stages of the the collision
- Understand a significant fraction of the dynamics from hadron measurements
- Distinguish what can be related to the first and last stages Astrid MORTERIE CPPM 2017

Heat and pressure leads to a phase transition:

collisions of heavy atomic nuclei Pb^{208} , Au 197

New state of matter: quarks and gluons are liberated. $T\sim 10^{12}$ K $\sim 10^{5}$ sun's core Evolution of the early universe, QGP may still exist in neutron stars

Time evolution of the QGP created in nucleus-nucleus collisions:

- Dynamical modeling of the different stages of the the collision
- Understand a significant fraction of the dynamics from hadron measurements
- Distinguish what can be related to the first and last stages Astrid MORTERIE CPPM 2017

Heat and pressure leads to a phase transition:

collisions of heavy atomic nuclei Pb^{208} , Au ¹⁹⁷

New state of matter: quarks and gluons are liberated. $T\sim 10^{12}$ K $\sim 10^{5}$ sun's core Evolution of the early universe, QGP may still exist in neutron stars

Collective expansion: Hydrodynamical Flow

Energy loss: Particle abundances

(How a liquid in motion flows)

Astrid Morreale CPPM 2017

ALICE

- PID over a very broad $p_{_{\rm T}}$ range (> ~100 MeV/c mid- η and down to zero at fwd η)

10

- Full acceptance in azimuth
- Mid-rapidity coverage ($|\eta| < 0.9$) and -4 < $\eta < -2.5$ in forward region Astronomic SQM2017

Strategy

Large and dense \rightarrow heavy ion physics

AA: Npdf, pQCD, FF, collectivity

Small and dilute → comparison measurement

pp: pdf, pQCD FF pA Npdf, pQCD FF

Npdf: Modified parton distribution functions

pQCD: perturbative QCD

FF: Fragmentation functions

Collectivity: when a formed medium can be described as a locally equilibrated system evolving hydrodynamically as opposed to a group of individually interacting constituents.

Centrality determination in ALICE

 Correlate the multiplicity of produced particles with the geometry of the system i.e. impact parameter (not directly accessible), volume and (roughly) the shape...

Courtesy of B Hyppolyte

University of Strasbourg stitute for Advanced Study

Outline

1. Hadronization, particle spectra and abundances

2. Collective Expansion

3. Hard Processes

1. Hadronization, particle spectra and abundances

Among the first proposed signatures of the QGP PRL48(1982)1066 Observed in A-A at SPS, RHIC, LHC

Enhancement of strange particles with respect to non-strange yield **is also observed** for high multiplicity **pp**

- Smooth evolution of particle ratios with multiplicity
- Challenges universality and factorization of fragmentation (Fischer, Sjostrand, JHEP01(2017)140)
- Study of hadronization mechanisms
- Multiple Parton Interactions? (MPI)

Nature Phys. 13 (2017) 535-539

Enhancement of strange particles with respect to non-strange yield **is also observed** for high multiplicity **pp**

- Smooth evolution of particle ratios with multiplicity
- Challenges universality and factorization of fragmentation (Fischer, Sjostrand, JHEP01(2017)140)
- Study of hadronization mechanisms
- Multiple Parton Interactions? (MPI)

Nature Phys. 13 (2017) 535-539

Enhancement of strange particles with respect to non-strange yield is also observed for high multiplicity **pp** and **p-Pb** collisions

- Smooth evolution of particle ratios with multiplicity
- Challenges universality and factorization of fragmentation (Fischer, Sjostrand, JHEP01(2017)140)
- Study of hadronization mechanisms
- Multiple Parton Interactions? (MPI)

Nature Phys. 13 (2017) 535-539

Enhancement of strange particles with respect to non-strange yield is also observed for high multiplicity pp and p-Pb collisions

- Smooth evolution of particle ratios with multiplicity
- Challenges universality and factorization of fragmentation (Fischer, Sjostrand, JHEP01(2017)140)
- Study of hadronization mechanisms
- Multiple Parton Interactions? (MPI)

Strangeness Pb-Pb at $\sqrt{S_{NN}}$ =5.02 TeV

-Pb-Pb ratios follow the trend from pp and p-Pb

-The ratios of integrated yields seem to be saturating for higher values of $dN_{ch}/d\eta$.

-In Pb-Pb hadrons produced in apparent near thermal and chemical equilibrium

-Will pp and pPb also saturate? EPS 2017 presentation

The contribution of the QCD vacuum condensates to the masses for the three light quark flavours u, d, s considerably exceed the mass believed to be generated by the Higgs field.

Blue: masses generated by electroweak symmetry breaking (current quark mass)

Yellow: additional masses of the light quark flavors generated by spontaneous chiral symmetry breaking in QCD (constituent quark masses)

• Charm and beauty quark masses are not affected by QCD vacuum (ideal probes to study QGP)

- Charm and beauty quarks provide hard scale for QCD calculations
- Charmonium production proceeds from hard initial processes and no strong correlations with event activity are expected

Heavy flavor vs multiplicity: quarkonia

-Charmonium production proceeds from hard initial processes and no strong correlations with event activity are expected

ALI-PREL-118226

Initial stages 2017 Presentation

-Charmonium production proceeds from hard initial processes and no strong correlations with event activity are expected

ALI-PREL-118318

Increase is not linear: highlights importance of other physical processes: MPI, percolation effects, color re-connection

Initial stages 2017 Presentation

Heavy flavor vs multiplicity

pp collisions

-Similar effects observed for D's

-Hadronization doesn't seem to play a role

Heavy flavor vs multiplicity

pp collisions

-Similar effects observed for D's

-Hadronization doesn't seem to play a role

Heavy flavor vs multiplicity

pp collisions

-Similar effects observed for D's

-Hadronization doesn't seem to play a role

Mid-and backward rapidity (Pb-going): -Qualitatively similar behaviour as in pp collisions Forward rapidity (p-going): Saturation at high multiplicities (Bjorken-x range in the domain of shadowing / saturation)

2. Collective Expansion

Radial Flow:

Affects shape of low $\boldsymbol{p}_{_{\!T}}$ particle spectra

Elliptic Flow:

Sensitive to initial geometry Requires early thermalization of the medium

Identified particle spectra

Radial flow boosts hadrons:

- low $p_{_{\rm T}}$: mass dependent slope, high $p_{_{\rm T}}$ common hardening of $p_{_{\rm T}}$ spectra
- -The spectra become harder for more central collisions
- -The change is most pronounced for heavier particles: effect of radial flow

Initial Stages 2017 Presentation

Run 2

-Pb-Pb no significant energy dependence

Radial flow pushes
 protons to intermediate
 p₁and depletes low p₁

- Stronger radial flow in central Pb–Pb collisions

-Low to mid-p_T described by **hydrodynamic models**

- Similar effects observed in high-multiplicity pp and p–Pb collisions

Initial Stages 2017 Presentation

Identified particles in pp

Run 2

Would be interesting to perform studies as a function of multiplicity of these same particles (possible hardening of particle spectra with increasing event multiplicity)

(×2⁻⁷)

(×2⁻⁶)

20

Initial Stages 2017 Presentation

Anisotropic flow

Initial overlap asymmetric \rightarrow pressure gradients

Light meson flow

-Low p_{τ} : Mass ordering expected in a collective expansion scenario.

-Low- p_{τ} : v_{2} sensitive to hydrodynamic expansion and initial conditions (geometry).

Light meson flow

-Low p_{τ} : Mass ordering expected in a collective expansion scenario.

-Low- p_{τ} : v_{2} sensitive to hydrodynamic expansion and initial conditions (geometry).

-Similar results observed in a high multiplicity p-Pb environment.

-Effect in these systems may be due to initial state (saturation?) or final state effects (expansion and/or thermal equilibrium ?) SQM 2017 presentation Astrid Morreale CPPM 2017 34

Light meson flow

 V_{A} more sensitive to interactions and less to initial state

- hydrodynamic models work at low p T (pT<1 GeV/c)
- only describes trend at intermediate pT (1<pT <2 GeV/c)

Charm flows

arXiv:1707.01005

Run 2

Non zero v_2^{2} for D-meson Non zero v_2^{2} for J/ ψ 's

Strong coupling of c-quark with the medium Participation of low p_{T} charm to collective motion in the QGP Additionally for the J/ ψ this is interpreted as proof of recombination. SQM 2017 presentation

3. Hard Processes

Nuclear modification factor

Measure spectra of probe and compare to those in pp collisions or A-A collisions

$$R_{\rm AA} = \frac{\rm AA}{\rm scaled \ pp} = \frac{\rm d^2 N_{\rm AA}/\rm dp_T \rm dy}{\langle N_{\rm coll} \rangle \rm d^2 N_{pp}/\rm dp_T \rm dy}$$

Energy loss in the medium

Run 2

-High momentum partons lose energy while propagating through the QGP -Energy loss depends on parton type and properties of the medium.

$$R_{\rm AA} = \frac{\rm AA}{\rm scaled \ pp} = \frac{\rm d^2 N_{AA}/\rm dp_T \rm dy}{\langle N_{\rm coll} \rangle \rm d^2 N_{pp}/\rm dp_T \rm dy}$$

Expectation:

- Jet fragmentation is modified by the medium
- suppression of jet yield
- broadening of jet shape
- di-jet imbalance

Findings:

Strong suppression of jet yields in most central Pb-Pb collisions

Energy loss in the medium

Run 2

-High momentum partons lose energy while propagating through the QGP

- -Energy loss depends on parton type properties of the medium.
- -It can modify color flow

Pb-Pb suppression:

- Increases with centrality
- Not initial state
- Final state effect; due to hot and dense QCD matter
- Similar to that of pions (at high enough p₋)

Time →

-QGP screens the $c\overline{c}$ interaction and quarkonia can be suppressed

-If many $c\overline{c}$ are created in the collision quarkonia on the other hand can form via quark recombination.

Stronger suppresion at RHIC than at LHC despite larger energy densities at LHC: regeneration?

In central collisions, larger suppression for higher p_{τ}

42

Stronger suppresion at RHIC despite larger LHC densities: regeneration?

Larger suppression for higher p_{τ} , similar to that of pions

Smaller suppression at mid-rapidity (recombination?)

EPS 2017 Presentation

43

 $\psi(2S)$ indicates larger suppression than J/ ψ (BE)

EPS 2017 Presentation

Summary

- Interesting new emerging phenomena for high multiplicity events in pp and pPb \rightarrow Lack of a consistent picture yet.
- Collective flow is observed also for massive particles (charm).
- \rightarrow This requires strong interaction with the QGP.
- → High $p_{\tau} v_{2}$ is a challenge to models.
- Charm meson R_{AA} (high p_{T}) similar to that of light mesons.
- → Precise measurements of J/ ψ R_{AA} now available.
- $\rightarrow \psi(2S)$ will need more statistics and detector upgrades.

Extras

Run 2 Publications

1. Search for collectivity with azimuthal J/\$\psi\$-hadron correlations in high-multiplicity p-Pb collisions at \$\sqrt{s}\$ = 5.02 and 8.16 TeV PLB https://arxiv.org/abs/1709.06807

2. J/\$\psi\$ elliptic flow in Pb-Pb Collisions at 5.02 TeV PRL https://arxiv.org/abs/1709.05260

3. \$\Dzero\$, \$\Dplus\$, \$\Dstar\$ and \$\Ds\$ azimuthal anisotropy in mid-central Pb-Pb collisions at \$\mathbf{\sqrtsNN=5.02}\$ TeV PRL https://arxiv.org/abs/1707.01005

4. Energy dependence of forward-rapidity j/psi and psi (2S) production in pp collisions at the LHC EPJC https://arxiv.org/abs/1702.00557

5. Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\operatorname{s_{\rm NN}}=5.0$ PLB http://arxiv.org/abs/1612.08966

6.J/ψ suppression at forward rapidity in Pb-Pb collisions at sqrt(sNN) = 5.02 TeV PLB https://arxiv.org/abs/1606.08197

7. Anisotropic flow of charged particles in Pb-Pb collisions at $\sqrt{sNN} = 5.02$ TeV PRL http://arxiv.org/abs/1602.01119

8. Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\operatorname{S}_{\rm N} = 5.021$ PRL http://arxiv.org/abs/1512.06104

9. Pseudorapidity and transverse-momentum distribution of charged particles in proton-proton collisions at \sqrt{s} = 13 TeV PLB http://arxiv.org/abs/1512.06104

Centrality determination in ALICE

 Correlate the multiplicity of produced particles with the geometry of the system i.e. impact parameter (not directly accessible), volume and (roughly) the shape...

NIKHEF Colloquium | Amsterdam | Friday

Slide from B Hyppolyte

University of Strasbourg stitute for Advanced Study

Courtesy of B. Hyppolyte

In vacuum production of meson via string break-up

Probability to produce $(q_i \overline{q}_i)$

Probability to form $(q_{i-1}\overline{q}_i)$

Factorization: production of $(\mathbf{q}_i \overline{\mathbf{q}}_i)$ independent of

q_{i-1} but the pair mass quark (flavour) is relevant.

 \Rightarrow Fragmentation in $(q_{i-1}\overline{q}_i) \equiv meson$

Production of $(\mathbf{q}_i \overline{\mathbf{q}}_i)$ via quantum mechanical tunneling:

Classically, the pair is pulled apart by the field (no annihilation);

 Quantum mechanically, the pair is created at one point then tunnels out with a non zero probability (mass and flavor dependence).

In vacuum production of baryon with the diquark model

Relative probability to produce a <u>di</u>quark <u>pair</u> wrt quark pair Extra suppression associated to s content Spin suppression (spin 1 diquarks wrt spin 0 diquarks) Weighted probability relative to 3-q state symmetry \Rightarrow Fragmentation in $(q_{i-1}q_iq_i) \equiv$ baryon

- 2) compute V0M = sum (V0A+V0C signals)
- 3) for each V0M percentile interval, extract the $\langle dN_{ch}/d\eta \rangle$ corresponding to a corrected distribution of charged tracks in the central region $|\eta| < 0.5$

Courtesy of B. Hyppolyte

- Global event class... several possibilities to select events
 - relevant for consistency checks between experiment and model comparisons non single diffractive ? inelastic ? (with one charged track in a selected n interval ?)

Thermal model:

Run 2

- Ratio is fixed by the temperature of the source \rightarrow constant with the charged particle multiplicity

Coalescence model: -Ratio should increase with the multiplicity of nucleons produced in the collision

ALI-PREL-130492

- Smooth transition from pp to Pb-Pb is observed, peripheral Pb-Pb at 5 TeV is consistent with p-Pb

- The increase of the d/p ratio with charged particle multiplicity from pp to Pb-Pb is consistent with the coalescence picture at low multiplicity
- low multiplicity: corona effects can lead to a depletion of the d/p ratio going to the pp values
- high multiplicity: possible different rescattering of protons and deuterons after chemical freezeout leads to a depletion

NB: Trend at high multiplicities currently under investigation (determination of the uncorrelated systematics)

Nuclei and hyper nuclei measurements

Production mechanism of compound objects

PRC21,1301 (1980)

Thermal Model:

-Hadrons emitted from the interaction region in statistical equilibrium once the chemical freeze-out temperature is reached.

-Abundance of a species proportional to e^{-m/Tchem}

-The large mass of Hyper nuclei gives a strong dependence on T_{chem}

Coalescence Model:

-Anti-baryons close in phase space at the kinetic

NB: Hyper nuclei, nuclei in which one offreezeral tp:/tagis captacedaby-aysterangedabaryon

EPS Presentation

- These newly formed nuclei can **break** or **regenerate** in the time interval between chemical and kinetic freeze-out
Astrid Morreale Etretat 2017
54 What can we learn from measuring hard processes

"Simplest way" to establish the properties of a system calibrated probe and calibrated interaction suppression pattern tells about density profile

Hard processes serve as calibrated probe (pQCD)

•pp: understand production mechanisms, probe PDFs, (particularly gluon's PDF's down to low x: gluon saturation) , provide a reference to p-Pb and Pb-Pb measurements

In Heavy-ion collisions:

- p-Pb: probe cold nuclear matter effects (i.e. modification of the PDFs, saturation, Cronin enhancement...)
- Pb-Pb: probe the formation and properties of the QGP
 - Traverse through the medium and interact strongly
 - Suppression pattern provides density measurement
 - General picture: parton energy loss through medium-induced gluon radiation and collisions with medium constituents

Radiative energy loss

...depends on S. Wicks et al., Nucl. Phys. A 784 (2007) 426 1.0 - Medium properties (e.g. density, temperature, mean free path) 0.8 \rightarrow transport coefficients (\hat{q}) - Path length in the medium (L) 0.6 - Parton properties (colour charge and mass) R_Q(p_↑) traversing the medium \rightarrow Casimir coupling factor $(C_{\rm R})$: 0.4 $C_{\rm R}$ = 4/3 for quarks and 3 for gluons u.d quarks R. Baier et al., Nucl. Phys. B483 (1997) 291 (BDMPS) 0.2 $\langle \Delta E_{medium} \rangle \propto \alpha_s C_R \hat{q} L^2$ 0.0 8 18 20 Dead-cone effect: gluon radiation 10 р_т (GeV) suppressed at small angles ($\theta < m_{O}/E_{O}$) Y. Dokshitzer, D. Kharzeev, PLB 519 (2001) 199, hep-ph/0106202 hot and dense QCD matter parton Expectation: $\Delta E_{q} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$ $R_{\Delta\Delta}(\pi) < R_{\Delta\Delta}(D) < R_{\Delta\Delta}(B)$

Collider Physics and the Cosmos 2017

Inclusive results compared to NRQCD

All models properly account for higher mass resonance decays

NRQCD models differ in the set of LRME that is used, the $p_{_{T}}$ at which fits are

performed and the datasets considered.

At low p_{τ} (right), NRQCD is coupled to a CGC description of the proton

Predictions are quite different at high p_{τ} , but in both cases, non-prompt J/ ψ constitute a sizable contribution to the inclusive cross section

Astrid Morreale Etretat 2017 57

Inclusive results compared to NRQCD

Summed NRQCD and FONLL calculations assuming fully uncorrelated uncertainties.

Agreement to the data is much improved, already at intermediate p_{τ} and especially for the calculation from Ma *et al.*

Note that the calculations are completely independent, and that there was no data at this energy, this rapidity and at such high $p_{_{\rm T}}$ before

Evolution if the heavy ion collision

Evolution if the heavy ion collision

Coalescence

- If baryons at freeze-out are close enough in phase space (i.e. geometrically and in momentum) and match spin state a (anti-)nucleus can be formed
- Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the momentum space
- The yield of any nucleus can be determined as:

$$\gamma_{A} \frac{d^{3} N_{A}}{d p_{A}^{3}} = \left(\frac{2s_{A}+1}{2^{A}}\right) \left(\frac{4\pi}{3} p_{0}^{3}\right)^{A-1} \left(\gamma_{p} \frac{d^{3} N_{p}}{(d p_{A}^{3}/A)}\right)^{Z} \left(\gamma_{n} \frac{d^{3} N_{n}}{(d p_{A}^{3}/A)}\right)^{N}$$

- Assuming that p an n have the same mass and have the same $p_{\rm T}$ spectra

$$E_{A} \frac{d^{3}N_{A}}{dp_{A}^{3}} = B_{A} \left(E_{p} \frac{d^{3}N_{p}}{dp_{p}^{3}} \right)^{A}$$
$$d \propto p^{2}$$
$$^{3}\text{He} \propto p^{3}$$

Statistical thermal model

- Thermodynamic approach to particle production in heavy-ion collision: all the particles are produced at chemical freeze-out
- Starting point: Grand Canonical partition function (Z) for an relativistic ideal quantum gas of hadrons of particle type i (i = pion, proton,... \rightarrow full PDG)
- For each hadron i:Z depends on the temperature T, the volume V and the chemical potentials $\mu_{B'}\mu_{S'}\mu_Q: Z(T,V,\mu_B,\mu_S,\mu_Q) = \sum_i Z_i$

٠

Statistical thermal model

- Particle density n_i can then be calculated as:
- If ratios are considered (n_i/n_j) Volume (V) cancels -> ratio
- Thermal model can predict also the yields of (anti-)nuclei ei is not taken into account: nuclei are considered as not compound objects

→ The thermal model predicts an exponential decrease of particle yields with increasing mass at a given temperature

o depends only on
$$T$$
, μ and m
 $ightarrow$ The binding energy of light nucle
d objects

→ Exponential dependence of the yield: $\frac{dN}{dy} \propto e^{\left(-\frac{m}{T_{chem}}\right)}$ Nuclei can be use as a precise thermometer of the chemical freeze-out temperature

$$\frac{n_i}{n_{i+1}} \approx \exp\left(-\frac{\Delta m}{T}\right)$$

$$n_i = \frac{\langle N_i \rangle}{V} = \frac{Tg_i}{2\pi^2} \lambda_1 K_2 \left(\frac{m_i}{T}\right)$$

Mean p₋energy dependence

 $<p_{-}>$ is measured using fits to the p_{-} distributions.

A steady increase of $< p_{\tau} >$ with increasing \sqrt{s} .

Consistent with the expected hardening of the of the J/ ψ and ψ (2S) p₊ distributions.

Values at mid- are systematically larger than at forward-rapidity.

Could be attributed to an increase in the longitudinal momentum at forward-rapidity leaving less energy available in the transverse plane. 64

What about model comparisons?

Figure from KNIEHL B. Quarkonium 2016 VA, USA

Butenschön,

 $(O_8^{J/\psi}({}^1S_0)) = 0.0497 \text{ GeV}^3$

 $(O_{0}^{J/\psi}(^{3}S_{1})) = 0.0022 \text{ GeV}^{3}$

 $(O_8^{J/\psi}({}^{3}P_0)) = -0.0161 \text{ GeV}^5$

Gong, Wan,

J.-X. Wang,

H.-F. Zhang:

 $(Q_{1}^{f^{0}}(^{1}S_{n})) = 0.097 \text{ GeV}^{2}$ $(Q_{1}^{f^{0}}(^{1}S_{n})) = -0.0001 \text{ GeV}^{2}$

(0)³/³S/(i = 0.0022 GeV⁴

K. Wang,

Y.-J. Zhang:

 $(O_n^{J/\psi}({}^1S_0)) = 0.089 \text{ GeV}^3$

 $(O_8^{J/\psi}({}^3S_1)) = 0.003 \text{ GeV}^3$

 $(O_8^{J/\psi}({}^3P_0)) = 0.0126 \text{ GeV}^5$

Kniehl:

Nuclei and hyper nuclei measurements

Production mechanism of compound objects

PRC21,1301 (1980)

Thermal Model:

-Hadrons are emitted from the interaction region in statistical equilibrium once the chemical freeze-out temperature is reached.

-Abundance of a species proportional to $e^{\ensuremath{\text{-m/Tchem}}}$

-The large mass of Hyper nuclei gives a strong dependence on $\rm T_{\rm chem}$

NB: Hyper nuclei, nuclei in which one or several p/n is replaced by a strange baryon EPS Presentation

Hyper nuclei measurements

Run 2

ALI-PREL-130195

New ALICE result from Pb-Pb at 5.02 TeV is consistent to the free Λ prediction

This is one of the most precise measurements of hypertriton lifetime

EPS Presentation