

Measurements of hadron yields from the T2K replica target in the NA61/SHINE experiment for neutrino flux prediction in T2K

Matej Pavin

27.09.2017.

Motivation

- Standard model → very successful but not complete theory of nature
- Neutrinos do not behave as expected from the Standard model
- Precise measurements of the neutrino behaviour good control of the neutrino source is necessary
- Thesis topic: measurements of the hadron yields coming from a 90 cm long
 T2K replica target Improvement of the T2K neutrino flux coming from hadron decays

Hadron yields $(\pi^{\pm}, K^{\pm} \text{ and } p)$ as a function of momentum (**p**), polar angle (θ) and longitudinal position (**z**)

Neutrinos

- Weakly interacting particles
- Proposed by Pauli to solve beta decay puzzle
- 3 flavors states: $v_e^{}, v_{\mu}^{}, v_{\tau}^{}$
- In Standard model only left neutrino chiral states are necessary → no Dirac mass term
- Sources → wide energy range (eV → TeV)
- Natural
 - Solar (nuclear reactions in the Solar core)
 - Atmospheric (cosmic ray showers → pion decays)
 - Earth (radioactive decays in the Earth's interior)
 - Cosmic (supernovae, ...)

- Artificial
 - Reactor
 - Accelerator neutrinos

Neutrinos oscillations

2015. T. Kajita and A.B. McDonald

- Solar neutrino puzzle and atmospheric neutrino problem (solved by SK and SNO)
- Flavor states are not mass eigenstates→ neutrinos have non-zero mass → oscillations (proposed by B. Pontecorvo)

Neutrino oscillations
• For 2 neutrinos

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^{2} 2\theta \sin^{2} \left(1.27 \cdot \Delta m_{21}^{2} [eV^{2}] \frac{L[km]}{E[GeV]}\right)$$
Needs to be tuned in each experiment \rightarrow maximize oscillation probability

● For 3 neutrinos → Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
"Solar neutrinos"

● 3 non zero mixing angles → possible CP violation in the lepton sector

 $!CP \rightarrow Neutrinos behave differently than anti-neutrinos! For example: <math>P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$

Neutrino oscillation parameters

- Open questions
 - CP violation in the lepton sector (FIRST INDICATION)
 - Neutrino mass hierarchy
 - $\circ \quad \theta^{}_{_{23}} \, octant$

T2K (Tokai to Kamioka)

accelerator long-baseline neutrino experiment

Neutrino flux uncertainty limits the precision of measurements

Science goals:

- world-leading measurements of v. disappearance
- discovery of $v_{\mu} \rightarrow v_{e} (\theta_{13} > 0)$ search for the CP violation in the lepton sector
- neutrino-nucleus cross section measurements

 Reverse horn current (RHC, negative focusing) → muon antineutrino beam

T2K results (first indication of CP violation)

- $22.54 \times 10^{20} \text{ POT}$ (protons on target) = $14.93 \times 10^{20} \text{ (FHC)} + 7.62 \times 10^{20} \text{ (RHC)}$
- Beam power: 470 kW

J-PARC neutrino beam simulation

- FLUKA 2011 (target, baffle) + GEANT3 GCALOR (horns, decay volume, beam tunnel)
 - proton beam is sampled from the measured distributions
 - Hadrons are propagated to the target surface by FLUKA
 - Hadrons are propagated to the beam dump and muon monitor by GEANT3 and forced to decay in the direction of the ND280
 - Neutrino histories are saved
- Multiplicative weights are applied to each neutrino based on its history

T2K neutrino flux

- Pions (95%)
- Kaons (5%)

T2K neutrino flux uncertainties

North Area 61 / SPS Heavy Ion and Neutrino Experiment

- Precise hadron production measurements for neutrino flux re-weighting in T2K and Fermilab neutrino experiments
 - Setup used in 2010 (now is improved) \rightarrow FTPCs

Thin target measurements for T2K

- 2 cm thick graphite target and 30.92 GeV/c proton beam
- Inelastic and production cross section + double differential hadron (π[±], K[±], K⁰_s,
 p, Λ) yields

Thin target measurements for T2K

Hadron production uncertainties

T2K replica target measurements

p + T2K RT measurements in NA61/SHINE

PhD thesis (K[±], p measured for the first time)

N. Abgrall et al., Nucl. Instrum. Meth., A701:99, 2013.
 N. Abgrall et al. Eur. Phys. J., C76(11):617, 2016.

Analysis of 2010 replica target data

- Data: 10.2×10^6 triggers
 - \circ 9.0 × 10⁶ collected with standard magnetic field
 - \circ 1.2 × 10⁶ collected with full magnetic field (used for calibration purposes and further analysis)
- MC: FLUKA 2011.2c.5 (generator) + GEANT3 GCALOR (simulation of the detector)
 - \circ 38.0 × 10⁶ events
- Strategy:
 - Event and track selection
 - Backward extrapolation to the target surface
 - Particle identification (dE/dx + m_{tof}^2)
 - Correction factors
 - Systematics
 - Check for the beam profile dependence

Beam and triggers (2010)

- Secondary beam at 31 GeV/c (12% of protons)
- CEDAR + THC → > 99.9% beam purity

Event selection

 $T1 = S_1 \cdot S_2 \qquad \cdot \overline{V}_0 \cdot \overline{V'}_1 \cdot CEDAR \cdot \overline{THC}$ $T2 = S_1 \cdot S_2 \cdot S_3 \qquad \cdot \overline{V'}_1 \cdot CEDAR \cdot \overline{THC}$ $T3 = S_1 \cdot S_2 \cdot S_3 \cdot \overline{V}_0 \cdot \overline{V'}_1 \cdot CEDAR \cdot \overline{THC}$

Glued to the target surface (r = 1.3 cm)/

Counter with hole (r = 0.5 cm)

Beam PID

T2 trigger: T2 beam profile, wider than T3 and T2K beam profiles but higher statistics **BPD cut**: there are 3 good BPD clusters in x and y (removes multihits, edge clusters, etc ...)

Radius cut: removes beam particles close to the edge of the target

Total	T2 trigger		T3 trigger		BPD cut		Radius cut	
[10 ⁶]	[10 ⁶]	[%]	[10 ⁶]	10 ⁶] [%]		[%]	[10 ⁶]	[%]
8.970	8.239	91.85	-	-	6.762	75.39	6.726	74.98
	-	-	4.982	55.53	4.110	45.81	4.106	45.77

TPC track topologies

- different momentum and position resolution
- different extrapolation length
- the worst topology: GTPC + MTPC (σ_p/p : 2.5% 7%), $I_{ext} \cong 4 \text{ m}$
- the best topology: VTPC1 + VTPC2 + (GTPC) + MTPC ($\sigma_p/p < 1\%$)

RST

Track selection

- p fit → track has fitted momentum larger than
 0.2 GeV/c
- dE/dx tof → good measurement of energy loss and time of flight

Clusters

- GTPC + MTPC = 5 + 30
- VTPC1(2) + MTPC = 30 + 0
- VTPC1+2 + MTPC = 20 + 0
- **φ** angle → azimuthal acceptance of the detector
- d_{targ}/σ_R → track distance from the target surface is less than 3σ_R from the target_____ surface

Software and calibrations

Analysis tools

• Several modules in the SHINE framework - selection, extrapolation, fitting, MC corrections

Track extrapolation in MF

- Extrapolation of tracks with full covariance matrix propagation
 - Developed for high level trigger in CBM [1]
 - Multiple Coulomb scattering → updated covariance matrix [2]
 - Kalman filter [3]

$$\sigma(\theta_s) = \frac{13.6}{\beta c p} z \sqrt{\frac{X}{X_0}} \left[1 + 0.038 \cdot \log\left(\frac{X}{X_0}\right) \right]$$

Nucl. Instrum. Meth., A559:148–152, 2006.
 Nucl. Instrum. Meth., A329:493–500, 1993
 Nucl. Instrum. Meth., A262:444–450, 1987

Software and calibrations

Calibration task done:

• TOF-F calibration, TPC alignment, residual corrections in TPC, beam-TPC alignment, target position

TOF-F calibration

$$tof = \frac{1}{2} \left(tof^{top} + tof^{bottom} \right)$$

- 80 scintillator bars (2 PMTs per bar)
- Correction of measured tof for delays (cables), beam time, start signal jitter
- Extrapolation tools used for the calibration

v

TOF-F performance

- Large contribution from the start signal jitter
- Intrinsic TOF-F resolution → 115 ps
- 4 scintillators with one PMT working \rightarrow sqrt(2).115 ps
- Efficiency 95% 98% (track density and quality cut)

Phase space

- 5+1 longitudinal bins (z)
- Polar angle (**0**) and momentum bins (**p**)
 - Number of (θ , p) bins for each z bin may be different
 - $\circ \quad \textbf{880 for pions}$
 - 576 for protons
 - 141 for kaons

Particle identification

Energy loss - crossing of the energy loss distributions for low momenta

Particle identification

- Joint dE/dx- m_{tof}^2 fit
- 4 × 2D Gaussians
- Initial parameter values taken from the dE/dx and tof calibrations

TOF correction factor

- TOF signals are not simulated in MC
- Efficiency based on the data → percentage of tracks hitting the downstream end of MTPCs with reconstructed TOF hits
- Depends on TOF slat (95% 98%, lower for slats closer to the beamline)

Systematics

- Systematic uncertainties are estimated for each contribution to the total correction factor
 - \circ Exception \rightarrow geometrical acceptance
- 1. Repeat analysis with changed cut(s) or parameter(s)
- 2. Calculate ratio: yields(changed) / yields(standard)
- 3. Systematics → |ratio 1|

Hadron loss systematics (π^+)

Uncerta	ainties		Max. range	Majority of bins			
Uncertainty	π*	π.	κ⁺	К [.]	р		
Statistical	1% - 25% (< 4%)	1.5% - 25% (< 4%)	3% - 25% (5% - 10%)	5% - 25% (7% - 12%)	1%-25% (< 5%)		
Bin migration	< 8% (< 1%)	< 10% (< 1%)	< 3% (< 1%)	< 3% (< 1%)	< 8% (< 1%)		
TOF efficiency	< 1.5% (< 0.8%)	< 3% (< 0.8%)	< 0.8%	< 0.8%	< 1.5% (< 0.8%)		
Hadron loss	< 35% <mark>(< 1%)</mark>	< 35% (< 1%)	< 10% (< 1%)	< 10% (< 1%)	< 25% (< 1%)		
Feed-down	< 1.5%	< 2.5%	-	-	< 3.5%		
PID	< 2% (<mark>0%</mark>)	< 2% (0%)	< 30% (< 8%)	< 14% (< 8%)	< 2% (0%)		
Reconstruction	2%	2%	2%	2%	2%		
Total	< 5%	< 6%	< 11%	< 15%	< 6 %		
Total (2009)	~7%	~9%			34		

Double differential yields

- $\alpha \rightarrow$ particle species: π^{\pm} , K[±], p
- $i \rightarrow z$ bin number
- $\mathbf{j} \rightarrow \mathbf{\theta}$ bin number
- $\mathbf{k} \rightarrow \mathbf{p}$ bin number
- N_{pot} → number of protons on target (number of selected events)

- n^{α}_{iik} + number of extracted particles from PID fit in a given phase space bin
- $\Delta p_{iik} \rightarrow$ momentum bin size
- $\Delta \theta_{ii} \rightarrow$ polar angle bin size
- $C^{MC}_{ijk} \rightarrow Monte Carlo correction factor$ $C^{tof}_{ijk} \rightarrow time of flight correction factor$

Beam profile re-weighting

- hadron yields on the target surface depend on the beam profile
- narrower beam profile → suppression of hadron yields for low θ and upstream z bins
- Only important parameter is radial position on the upstream target face
- T2K beam profile ≠ NA61 beam profile

$$r_b = 0.65$$
 cm, θ = 20 mrad → Δz = 32.5 cm
θ = 250 mrad → Δz = 2.5 cm

$$r_b = 1.00 \text{ cm}, \theta = 20 \text{ mrad} \rightarrow \Delta z = 15.0 \text{ cm}$$

 $\theta = 250 \text{ mrad} \rightarrow \Delta z = 1.2 \text{ cm}$

T2K Flux re-weighting with replica target yields

$$W_{ijk} = \left(\frac{1}{N_{pot}} \frac{n_{ijk}}{\Delta \theta \Delta p}\right)_{data} / \left(\frac{1}{N_{pot}} \frac{n_{ijk}}{\Delta \theta \Delta p}\right)_{MC}$$

- Weights are applied to pions, kaons and protons on the target surface
- Are weights invariant (or close to being invariant) under the beam profile change?

Proton yields

 T2 beam width > T2K beam width > T3 beam width → when using this data in T2K any bias would be smaller

T2K Flux re-weighting with the replica target yields

- 1. Simulate hadron yields with the NA61 T2 beam profile
- 2. Calculate weights based on the simulation with T2 beam profile
- 3. Apply weights to the hadron yields simulated with the T2K beam profile

• Beam width T3 < width T2K < width T2

T2K neutrino flux re-weighting with RT measurements

• Pion yields measured with 2009 data

Kaons not measured in 2009

T2K II sensitivity to CP violation

- 20 × 10²¹ POT
- Only possible if systematics are reduced
 - Largest contributions: SK detector, cross section & flux

v_CCπ⁺-like v_CCQE-like Source V_u 3.9% SK detectors 2.4% 9.3% Flux and cross 4.2% 2.9% 5.0% sections FSI+SI+PN 2.5% 1.5% 10.5% Total 5.5% 5.1% 14.8%

MH not known

Conclusions

- π^{\pm} , K^{\pm} and p double differential yields coming from the surface of the T2K replica target
 - \circ π^{\pm} statistical uncertainty 1.5 2x smaller than in 2009
 - \circ K[±] and p yields measured for the first time
 - Comparison with MC models
- T2K re-weighting factors are invariant under the beam profile change
- Paper in progress
- T2K flux uncertainty is expected to go down below 5% \Rightarrow necessary for future measurements of δ_{CP}
- NA61/SHINE → only experiment on the market capable of providing hadron production measurements for neutrino experiments (new measurements ongoing for the Fermilab neutrino beams)

BACKUP

T2K data-taking periods

T2K neutrino flux re-weighting

Track selection

- EM processes below < 0.1 GeV cut out in MC
- TOF-F not simulated →
 - \circ in the data, pions below 0.2 GeV/c do not hit TOF-F inside the time acquisition window
 - \circ ~ it is same for the protons below 0.5 GeV/c and kaons below 0.3 GeV/c
 - TOF-F inefficiency

After all effects are taken into account

$$\left(\frac{N_{tr}^{sel}}{N_{pot}}\right)_{MC} / \left(\frac{N_{tr}^{sel}}{N_{pot}}\right)_{data} = 1.02$$

	Total	p fit		dE/dx - tof		Clusters		φ angle		$d_{targ}^{\prime}/\sigma_{R}^{\prime}$	
	[10 ⁶]	[10 ⁶]	[%]	[10 ⁶]	[%]	[10 ⁶]	[%]	[10 ⁶]	[%]	[10 ⁶]	[%]
Data	83.081	38.188	100	6.353	16.64	6.166	16.15	4.677	12.25	4.118	10.78
MC	253.751	166.237	100	36.876	22.18	36.200	21.77	26.484	15.93	25.187	15.15

Momentum resolution

Track selection (II)

Backward track extrapolation systematics (π^+)

TOF-F efficiency systematics (π^+)

Feed-down systematics (π^{-})

PID systematics (K⁺)

Measurement of beam survival probability

- 10% of events taken with max. mag. field P_s configuration (1.5 T)
- Beam particles bent to TPCs
- proton peak: $\sigma_p/p = 0.7$

$$Surv = \frac{N_{tpc}}{N_{beam}} \cdot C_{MC} \cdot C_{tof} = e^{-Ln\sigma_{prod}}$$

- P_{surv} → survival probability
- N_{tpc} → number of high momentum tracks measured in TPCs with time of flight hit
- N_{beam} → number of selected events
- C_{MC} → Monte Carlo correction factor
- C_{tof} → tof efficiency correction factor
- L → length of the proton trajectory through the target
- n → number of carbon atoms per unit volume
- σ_{prod} → production cross section → at least one
 new hadron (pion) produced

Measurement of survival probability

- Proton peak at 30.52 GeV/c → selected tracks are 2σ around peak
- tof hits → remove off-time beam particles
- Results WITHOUT MC corrections (sel. and rec. efficiency, ...):

 $\mathbf{P}_{\text{surv}}(\text{data, rec})$ = 0.1353 \pm 0.0005 (stat)

 P_{surv} (FLUKA, rec) = 0.1196 ± 0.0002 (stat)

$$\sigma_{prod}^{MC} - \sigma_{prod}^{data} = -\frac{1}{nL} \ln \left(\frac{P_{surv}^{MC}}{P_{surv}^{data}} \right)$$

 \rightarrow ~ 15 mb higher $\sigma_{_{prod}}$ in FLUKA 2011.2c.5

Possible systematics:

- time of flight
- target density
- target length
- momentum resolution in MC
- Elastic, quasi-el. or production events?

WORK IN PROGRESS! JUST FOR ILLUSTRATION!

Hadron production experiments

HARP

- CERN PS
- 1.5 15 GeV/c, different targets
- Phys.Rev., C80:035208, 2009.

MIPP

- CERN PS
- 5 120 GeV/c, different beams and targets
- arXiv:1311.2258

NA56/SPY

• 450 GeV/c proton beam and different Be targets

Unfolding vs Standard correction (2009)

