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In 1960, Gell-Mann and Levy introduced the nonlinear sigma model
(nlsm) as a “toy model” for pion-nucleon interactions
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Nowadays we understand the original nlsm as describing spontaneously
broken SU(2), x SU(2); chiral symmetry. The pions are the (pseudo)
Nambu-Goldstone bosons.
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Nowadays we understand the original nlsm as describing spontaneously
broken SU(2), x SU(2); chiral symmetry. The pions are the (pseudo)
Nambu-Goldstone bosons.

The symmetry perspective is very powerful, and has led to important
insights in many areas of theoretical physics, including condensed matter,
statistical, particle, and mathematical physics.

This viewpoint also makes it clear that nlsm is about the infrared structure
of the theory in the presence of nonlinearly realized symmetries, in
particular the nontrivial space of degenerate vacua!



More generally, the Infrared structure of QFT’s is an even older subject in
physics.

e |n both QED and Gravity, scattering amplitudes with one soft gauge
boson factorize universally:
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The universality of these expressions implies they must follow from some
general prime principles.

Indeed, the leading soft factors of both QED and Gravity follow from the
“on-shell gauge invariance”:

Q,MMT’LLL(kla o 7k’n—1;Q) =0
QM (y, - ki) = 0
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e For scalar theories with a global symmetry, degenerate vacua lead to
nonlinear sigma models and Nambu-Goldstone bosons,

In this case, the “single soft” limit of Goldstone scattering
amplitudes famously exhibits the “Adler’s zero”:

lim Myy1 (K, -+ ks 7q) = 0

T—0



e For scalar theories with a global symmetry, degenerate vacua lead to
nonlinear sigma models and Nambu-Goldstone bosons,

In this case, the “single soft” limit of Goldstone scattering
amplitudes famously exhibits the “Adler’s zero”:

lim Myy1 (K, -+ ks 7q) = 0

T—0

These are statements we knew from half a century ago:

Bloch and Nordsieck (1937), F.E. Low (1954+...), Gell-Mann and
Goldberger (1954), Weinberg (1965+...), Adler (1965+...) and etc.



The Adler’s zero is a direct consequence of the presence of nontrivial
vacua.

Recall the different vacua are related by
a rotation in the broken direction:
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vacua.

Recall the different vacua are related by
a rotation in the broken direction:

e?16,) = 16 + 6)

Excitations along the broken direction gives the Goldstone boson,

ot (p(x)+0) 60) = otr() 0o + 0)

But the physics is invariant whether one chooses |6,) or |6, + )
NLSM possesses a constant “shift symmetry”!
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| will report on recent progresses in understanding the infrared structure
of the Nambu-Goldstone bosons.

These progresses are driven by two unrelated areas:

e Composite Higgs models where the Higgs arises as a pseudo-Nambu-
Goldstone boson.

e (Cachazo-He-Yuan (CHY) representations of scattering equations for
tree-level on-shell amplitudes.



The naturalness problem has been driving BSM physics for decades.
Two ways to stabilize the Higgs mass using symmetry:

1) bosonic global symmetry ----> higgs as a pseudo Nambu-
Goldstone boson (PNGB)!

2) fermionic global symmetry ----- > supersymmetry



e supersymmetric theories are all built upon a minimal lagrangian
-- the MISSM:

Wassm = ByuQ@H, — dyaQHy —eyeLH, + pH, Hy
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This is the minimal lagrangian the makes standard model
supersymmetric.



On the other hand, the theory space of a PNGB Higgs looks huge:

g H C Ng Iy = rsu@)xsu) (Tsu@)xu) Ref.
SO(5) SO(4) v 4 4=(2,2) 11
SU(3) x U(1)  SU(2) x U(1) 5 2.:1/2+ 1o 10,35
SU(4) Sp(4) v 5 5=(1,1)+(2,2) 129,/47/64
SU(4) SU@)2xUQ1) v* 8 (2,2)12 =2 (2,2) 65
SO(7) SO(6) v 6 6=2(1,1)+(2,2) -
SO(7) G, VAR ¢ 7=(1,3)+(2,2) 66
SO(7) SO(BG)x U(1) v* 10 100 = (3,1) + (1,3) + (2,2) —
SO(7) SU(2)J? V12 (2,2,3)=3-(2,2) —
Sp(6) Sp(4) xSU(2) v 8 (4,2)=2-(2,2) 165]
SU(5) SUM4)xU(1) v* 8 4 5+4,5=2-(2,2) 67
SU(5) SO(5) v 14 14 =(3,3) + (2,2) + (1,1) 19/47,49
SO(8) SO(7) v T 7=3-(1,1)+(2,2) =
SO(9) SO(8) v 8 8=2.(2,2) 67]
SO(9) SO(5) x SO(4) v* 20 (5,4) =(2,2) +(1+3,1+3) 134
[SU(3)]2 SU(3) 8 B=1p+21/2+30 8
[SO(5)]2 SO(5) v 10 10 = (1,3) +(3,1) + (2,2) 132
SU(4) x U(1)  SU(3) x U(1) 7 8 ys+3.3+10=31g+21 35,41
SU(6) Sp(6) v 14 14=2-(2,2)+(1,3)+3-(1,1) 30,47
[SO(6)]? SO(6) V' o15 15=(1,1)+2-(2,2)+(3,1) + (1,3) 36

Table 1: Symmetry breaking patterns G — H for Lie groups. The third column denotes whether the
breaking pattern incorporates custodial symmetry. The fourth column gives the dimension N of the coset,
while the fifth contains the representations of the GB’s under H and SO(4) = SU(2);, x SU(2)y (or simply
SU(2) . x U(1)y if there is no custodial symmetry). In case of more than two SU(2)’s in H and several different
possible decompositions we quote the one with largest number of bi-doublets.

Bellazzni, Csaki and Serre:1401.2457



Construction of effective Lagrangians for composite Higgs bosons relies
on the CCWZ formalism:
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e CCWZis avery geometrical approach:

standard forms, which are described in detail. The mathematical problem is equivalent to that of finding

all (nonlinear) realizations of a (compact, connected, semisimple) Lie group which become linear when

restricted to a given subgroup. The relation between linear representations and nonlinear realizations is

e To crank the machinery, one decides on a nonlinearly realized group
G, and a subgroup H of G that is linearly realized.

We say G is the broken group and H the unbroken group:
=", M=n"X"
9§=¢&U(9,6), Ulg,§) eH

e The “pions” are the coordinates on the coset manifold G/H, and the
action of the full group G on pions is complicated and nonlinear!



CCWZ thus looked for objects that have “simple” transformation
properties under the action of G.

These are contained in the Cartan-Maurer one-form:
9,6 = iDIX* +iET" =iD, + i,

They are the “Goldstone covariant derivative” and the “associated gauge
field”,
D,—UDU", & —UEU " —(0,U)U}

upon which the complete effective lagrangian can be built (apart from
the topological terms)

2
Loy = 5 ODDH + -



In this fashion, CCWZ circumvents the problem of working out how the
pions transform under the broken G:

¢=ef  g&=¢£U(g,¢)

1" = 1I'(11, g)

I

No one dared asking/working out what this mess is.



In this fashion, CCWZ circumvents the problem of working out how the
pions transform under the broken G:

¢=ef  g&=¢£U(g,¢)

1" = 1I'(11, g)

No one dared asking/working out what this mess is.

CCWZ is extremely powerful, but it adopts a “top-down” perspective,
which requires knowing ahead of time what the broken group “G” is in
the UV.



e In composite Higgs models, CCWZ is often matched to the SILH

lagrangian:
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nlsm contribution to SILH coefficients for some of the composite Higgs
models:

g 1 o ].
SU(5)/SO(5) Littlest Higgs: c\7) = 7 &) ==

SO(5)/SO(4) minimal composite Higgs (MCHM): cg) =1, Cp’ =

(o) 1 (o)

e S0O(9)/SO(5)xS0O(4) littlest Higgs: ¢y’ = 12 Cp’ =
SUE) , [SU0) x V(D x [SU2) x Ut L o) 1 (o) _
* S0~ SU2) x U(D)ly T-parity: ¢y’ = g cp’ =

c; is dictated by the custodial symmetry. However, c,, is different for
different coset.



So in CCWZ each symmetry breaking pattern gives a seemingly different
effective Lagrangian!

Each time a young hot shot comes up with a new composite Higgs

model, we need to work out the experimental consequences all over
again.



So in CCWZ each symmetry breaking pattern gives a seemingly different
effective Lagrangian!

Each time a young hot shot comes up with a new composite Higgs
model, we need to work out the experimental consequences all over
again.

This begs the question:

Are there universal predictions of a composite Higgs boson that are
independent of the symmetry-breaking pattern?



To this end, let’s recall that nlsm is all about the presence of non-trivial
vacua:

Goldstone bosons are long-range degrees of freedom that connect
different vacua!

It then seems a little odd that their interactions would care about the
broken group G in the UV!



The IR perspective was pursued vigorously in the context of pions in the
‘60s by Adler, Nambu, Goldstone, Weinberg, etc.

This body of work was collectively known as “soft pion theorems,”
although a significant part of them does not depend on the particular
symmetry breaking pattern!



e one particularly important “soft-pion” theorem is the Adler’ s zero
condition:

on-shell scattering amplitudes of Goldstone bosons must vanish in the

limit the momentum of one Goldstone boson is taken off-shell and
soft.

e often this is over-simplified as saying “the Goldstone boson is
derivatively coupled.”

it is an over-simplification because it doesn’t do justice to the full
power of the Adler’ s zero condition.



| would advocate promoting Adler’s zero condition to be the defining
property of Goldstone bosons:

Nambu-Goldstone bosons are defined by the Adler’s zeros and their
transformation property under the unbroken group in the IR.



for now assume only one flavor of Goldstone boson and consider 4-pt
scattering amplitudes, written in terms of the Mandelstam variables.

e Adler s zero condition forbids a constant term!

A(rm — 1) = ¢15 + ot + cgu + O(p*)

e Bose symmetry impliesc,=c,=c,!

A(rm — ) = O(p*)

the argument can be generalized to n-pt amplitudes to show that O(p?)
term always vanishes!

A(rm--- = am--) = clpi+p2+-- +pu)* +O(p?)
= O(p*)



the simplest lagrangian satisfying these properties is the familiar one:

1
Ly = 5 O + O(0%)

as is well known, L, can be obtained by requiring that there is a
constant “shift symmetry” acting on pion:

T — T+ €

the derivative of pion has simpler transformation under the broken
symmetry:

o,m — O,

@Lﬂ' is the building block of the effective lagrangian!



we have learned a simple yet powerful statement that is universal in
nlsm:

For any coset G/H, self-interactions among Goldstones of the same
flavor are fixed by Adler’s zero condition and Bose symmetry, and
must have the form:

1

£() — 5 Mﬂ'aMﬂ' -+ 0(84)



The goal --
Construct an effective Lagrangian satisfying the following two properties:

e The Lagrangian for Goldstone bosons of the same flavor reduces to

1
£() — 5 Mﬂ'aMﬂ' -+ 0(84)

when all other flavors are turned off.



The goal --
Construct an effective Lagrangian satisfying the following two properties:

e The Lagrangian for Goldstone bosons of the same flavor reduces to

1
'C’O = 5 Hﬂ'auﬂ' + 0(84)

when all other flavors are turned off.
e |nvariance under the unbroken group H in the IR is preserved.

When there are multiple flavors of Goldstones, higher order terms
appear in the shift symmetry.



let’s consider two flavors of goldstones transforming as a complex
scalar under an unbroken U(1):

¢=(m +im)/V2 — €% ¢
nonlinear shift symmetry at NLO can be written as

b ¢ =d+e— —2(¢T)p— = ()¢

e - f?

when we turn off one of the two flavors , we must return to the single
flavor case, . -> 7 + ¢,

¢ ¢ = ¢+€_F(¢*€_€*¢)¢



This is the generalization of constant shift symmetry:

C1
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The question:

What is the Lagrangian that is invariant under the generalized shift
symmetry?



This is the generalization of constant shift symmetry:

C1

¢'—>¢'=¢+€—F(¢*€—€*¢)¢

The question:

What is the Lagrangian that is invariant under the generalized shift
symmetry?



We can do it by brute force, or we can try to be a little more clever...



We can do it by brute force, or we can try to be a little more clever...

Let’s look for objects that have simple transformation properties under
the general shift symmetry:

D,u¢ s /Dugb' _ eioz u(p,e)/ f D’UJ¢

Then the effective Lagrangian can be built straightforwardly.



e By demanding the Adler’s zero and invariant under the unbroken
U(1), we can write down

dy

I),u,q5 — 8/1,¢ - F((f)@u(b* - (9“@5 (b*)(b

e the form is again fixed by reducing to the single flavor case:

Dﬁt¢|m,2:0 = Op9



When all is said and done, the leading two-derivative Lagrangian can be
obtained:

L? = D,p*D'¢
— 9,07 0" — %k’)‘uaﬁ* ¢ —0up &>+ O(1/f*)

which is invariant under

¢~>¢’=¢+e—%<¢*e—e*¢>¢



The surprise is this procedure can be continued order-by-order in 1/f:

a * _a *
D,p=0,0+ ¢ 1 é‘¢’2ﬂ¢¢ (1— " sin ¢>

a * _a *|2
r2 _ DN¢DM¢:(9,UJ¢*8N¢_ | Mo ¢4|¢|2u¢¢‘ (1—¢—|281n ¢>

Low: 1412.2145
Low: 1412.2146



The surprise is this procedure can be continued order-by-order in 1/f:

Do = 0,61 o8 9= 0ub & (1 I ¢>

2|o|? ol

a * _a *|2
r2 _ DN¢DM¢:(’9’U¢*8M¢_ | Mo ¢4|¢|2u¢¢‘ (1—¢—|281n ¢>

e We managed to derive the effective Lagrangian without referring to
any UV coset!

e There is only one undetermined parameter in the end, which
corresponds to the overall normalization of f:

f=f/Voer

Low: 1412.2145
Low: 1412.2146



e the sign of ¢, is not fixed:

a positive sign implies a compact G/H (suppression), while a negative
sign implies a non-compact G/H (enhancement).

e if UV completion is a concern, ¢, >0 and the sign of the dim-6
operator is negative.

f=f/Voer



e one could introduce another object that transforms non-
homogeneously like a gauge field:

E, e MEEM —ie M, = E, + Ou(o,e)

a,u¢* ¢ o 8u¢ ¢* SiIl2 ‘¢’

~

7
E = _
"o 0|2 2f



e the non-homogeneous term also allows us to couple Matters to the
Goldstone, much like the nucleon coupling to pions:

(0, " — iE,®") ("D + iE D)

WP + g



Let’s pause for a moment and reflect on what’s happened...

We derived the two-derivative lagrangian for a complex Goldstone
boson charged under an unbroken U(1):

L0 _ D gpig = o, grang 10878 = Dbl ( 2o |¢>

1 — ——sin? =
nEE R

The only assumptions are

1.The Adler’s zero condition.
2.There exists an unbroken U(1).

As such, this is the universal lagrangian among all nlsm’s containing a
complex Goldstone!



We can check against the universality using explicit examples:

SU(2)/U(1) = 0,0> — == |0"0u¢ — ¢0,6™|° + b — 09,0% % |6

8 |
3f2 rzi

~31F fﬁ 60 — B0u " |6l* + -, (3.18)

SU(5)/SO(5) — |0,®]* — f2 %0, — $I,*|* +

1
- 9%, — $9,0*|" |®|* + - -- 1
80640 f6 @70y O ‘ |®[" + ; (3.19)

1
®*0,® — ©9,0*|° |®|?
1440f4‘ ||

At the first glance the two Lagrangians do not look the same...
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At the first glance the two Lagrangians do not look the same...

But upon f -> 4f in SU(2)/U(1) case, the two become identical!



This approach can be generalized to a general unbroken group H in the
IR.

We assume a set of scalars furnishing a linear representation under a
simple Lie group H:

(x) = 1(x) + i (T ()

It is convenient to choose a basis where all generators are purely
imaginary (and hence anti-symmetric!)

(THT = —T% and (T%)* = —T"

This choice will simplify the analysis and makes the correspondence with
CCWZ more transparent.



Requiring that
e Adler’s zero is preserved.
e Unbroken H-invariance is respected.

We can derive the most general shift symmetry to all orders in 1/f,
without ever referring to a coset G/H:

7;6 — (Ti)ar (Ti)sbﬂ-rﬂ-s Fl (T) = ﬁCOtT

1 = 7% 4+ [FL(T)]ap €°

Low and Yin: 1709.08639



The Lagrangian invariant under the shift symmetry is

1 |
L= S[Fo(T) ap Opr0n” Fy(T) =

This is the universal Lagrangian for all Nambu-Goldstone bosons (arising
from a symmetric coset.)

Just like the MSSM, the symmetry-preserving part of the lagrangian for
composite Higgs models is universal among all symmetric coset G/H!



Using this approach, we are working out universal predictions of a
composite Higgs boson in the couplings of the 125 GeV Higgs!

Da Liu, IL and Zhewei Yin: in progress



The shift symmetry approach turned out to be useful in understanding a
mystery in the soft limit of Goldstone scattering amplitudes.



The shift symmetry approach turned out to be useful in understanding a
mystery in the soft limit of Goldstone scattering amplitudes.

In the amplitude community, many soft limits involving massless particles
have been computed in recent years:

e the single and double soft limits for massless particles,
e the leading, subleading, subsubleading orders,
e indimensionality # 4,

e Yang-Mills, Gravity, NLSM, supersymmetric theories, string theories
and other more exotic theories.



Schematically, they all look something like

M’n—l-l(kl? o 7kn7Q) — (S(O) + S(l) + - )Mn<]€1, S

Mook, ki@, go) = (S5 + S 4 )My (k-

But here lies a puzzle:



Schematically, they all look something like

Myir(kr, - ks q) = (S(O) + s + )Mk, k)

Mn—l—Q(kla e 7kn7 q1, QQ) — (So(iO) + S((jl) + - )Mn(kla e 7kn)
But here lies a puzzle:

For NLSM it is well-known that only even-point amplitudes exist—
? ?
Moy (K1, -+ kon—15q) = (y'@ +SW oYMy g (K1, ko 1)

Is S also zero? And if not, what is M, , ??

(For half a century, these questions were never studied!)



Surprisingly, this question was answered only two years ago in a very
elegant yet obscure fashion, by using the so-called CHY formulation of
scattering equations.



Surprisingly, this question was answered only two years ago in a very
elegant yet obscure fashion, by using the so-called CHY formulation of
scattering equations.

Cachazo, He, and Yuan proposed a compact and elegant formula for
tree-level n-point scattering amplitudes of massless particles (spin-0,
spin-1, spin-2).

The proposal contains two parts:

e the kinematics

e the dynamics

(Cachazo, He, Yuan:1306.6575, 1306.2962,1307.2199,1309.0885)



Kinematics —

Scattering of n massless particles in an arbitrary dimension involves n null
vectors satisfying total momentum conservation:

(kiKY k=0, k=... =k} =0}
a=1

CHY proposed a map from the null light-cone to the Riemann sphere with
n-punctures:

kb — 1 p*(2)

: dz
271 |z—0q|=¢€ H?:l(z - Ub)

{o1,--- ,0,} isthe location of the punctures.



It turned out the mapping from CP? to the light cone of (complexified)
momentum can be achieved by imposing

p*(z) =0

This constraint is embodied in a set of equations called the scattering
equation:

Ui ko

Op — Ogq

p(on) -p/(an) X Z 0

a#n



The full CHY proposal looks like:

ko - kp
M /VOISLQCH5<Z Uab>.



The full CHY proposal looks like:
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Encode the dynamics

U




The full CHY proposal looks like:

Encode the dynamics

d"o / ko - kb @
Mn:/vol SL(Z,C)E[d (Z Tab > *

ba
i)

Enforce the scattering equations




The full CHY proposal looks like:

d"o / ko -
Mn_/vol SL(Q,C)E[(S 2 P B

b#a
®@ — T;({k,e,0}) Ir({k,€ 0})

I Ir
bi-adjoint scalar Cn(w) Cn(@)
Yang-Mills Cn(w) Pi'y,
Einstein gravity Pf'w,, P,
Born-Infeld (PF/A,)2 D,
Non-linear sigma model Cn(w) (Pf'A,)?
Yang-Mills-scalar Cn(w) Pf X,, Pf'A,,
Einstein-Maxwell-scalar PfX,, Pf'A,, | Pf X, Pf'A,
Dirac-Born-Infeld (scalar) | (Pf'A,)? | PfX,Pf'A,
special Galileon (Pf'A,,)? (Pf'A,)?

Cachazo, Cha, Mizera: 1604.03893



The CHY proposal embodies the Color-Kinematic duality:

BS | NLSM | YM

BS BS | NLSM | YM
NLSM || NLSM | SG BI
YM YM BI G

Fig. 1: Multiplication table of QFTs, including bi-adjoint scalar (BS) theory,
the nonlinear sigma model (NLSM), Yang-Mills (YM) theory, the
special Galileon (SG), Born-Infeld (BI) theory, and gravity (G).

Cheung: 1708.03872



CHY proposal has been checked extensively. In the case of YM it is verified
to all orders using BCFW recursion. In the case of NLSM, it’s been checked
explicitly up to 8-pt analytically and 10-pt numerically.



Using CHY, it’s simple and straightforward to derive the subleading single
soft limit for NLSM:

ANESM(T Y = 7 Z sanANLSM@¢ I,—1|n—1,a,1)+ O(7?),

AN (a]8) = § dp (Cale) (C(5) (PEAZ)?).

Cachazo, Cha, Mizera: 1604.03893



Using CHY, it’s simple and straightforward to derive the subleading single
soft limit for NLSM:

ANESM(T Y = 7 Z sanAl\HJSM@q5 (Ih—1|m —1,a,1) + O(T%),

AN (a]8) = § dp (Cale) (C(5) (PEAZ)?).

g 1

The color factor The color factor of
of the original SU(N) an alternative SU(N)
flavor structure flavor structure

ANLSM®®® - the amplitudes of a mysterious theory
containing biadjoint cubic scalar interacting with NLSM

Cachazo, Cha, Mizera: 1604.03893



The statement from CHY:

There is an “extended theory” residing in the subleading single soft limit
of Goldstone scattering amplitudes.

The mysterious theory contains cubic biadjoint scalars interacting with
the Nambu-Goldstone bosons.



The statement from CHY:

There is an “extended theory” residing in the subleading single soft limit
of Goldstone scattering amplitudes.

The mysterious theory contains cubic biadjoint scalars interacting with
the Nambu-Goldstone bosons.

Question:

What the heck is going on?
Why didn’t people discover it during all these years?



Recall how Weinberg derives the Adler’s zero, starting from:
b b D
OJglm"(x)) ~ 0% fr pp ™™

which implies there’s a one-particle pole in the matrix element

Sfragt
>
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~
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Figure from Weinberg, QFT Vol Il



Current conservation then implies

qMN“ — 0

My = 7

for

q— 0



Current conservation then implies

One caveat is if Ni; has a pole in g itself, but this can only happens if the
current is attached to an external leg:

For pure pion scattering amplitudes, no such insertion exists.



It is not clear how to generalize this argument beyond the leading order
in the soft limit.

(Perhaps this is why the subleading soft factor was never computed
previously!)



It is not clear how to generalize this argument beyond the leading order
in the soft limit.

(Perhaps this is why the subleading soft factor was never computed
previously!)

It turned out the shift symmetry approach is ideal for studying the soft
limits!



Recall the general effective Lagrangian

r— %[FQ(T)Z]ab 0, O Fy(T) =

And it is invariant under the shift symmetry

7Ta, = 7Ta—|—[F1(T)]ab <€b Fl(T>:ﬁCOtT



Recall the general effective Lagrangian

1 | a sin v T
L= 5[FQ(T)Q]M 0, m oM r? Fy(T) = 77
And it is invariant under the shift symmetry
n =7+ [Fi(T)]ab € Fi(T)=VTcot T

It is natural to ask:
What is the quantum Ward identity resulting from this shift symmetry?



It is not too difficult to work it out

i0,(0] {[F4( Ny O } Hw x;)]0)

= (0l (@1) -+~ [F1(T]g,q (2)6W (@ — 27) - - 7% (24)[0)

() = 0 ﬁﬁsﬁ Fy(T) = VT cot VT

Zhewei Yin and IL: 1709.08639
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Why is this Ward identity interesting?
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It is not too difficult to work it out

i0,,(0| {[F4( Ny O } HW‘“ z;)|0)

= > {0 (@1) - [FL(T ] q (@) P (@ = 27) - 7" (22)]0)

Fy(T) = sin VT cos VT Fy(T) = VT cot VT

\/7_-

Why is this Ward identity interesting?

This is a new representation of on-shell amplitudes of Goldstone bosons,
different from the Feynman diagrams.

(Recall the current can be used as an interpolating field of Goldstones.)

Zhewei Yin and IL: 1709.08639



In essence, this is “boostrapping” the NLSM amplitudes from Adler’s
Zeros:

Starting from a lower point amplitudes, construct the higher point
amplitudes such that the Adler’s zero is satisfied, by introducing the
necessary higher point vertices.



In essence, this is “boostrapping” the NLSM amplitudes from Adler’s
Zeros:

Starting from a lower point amplitudes, construct the higher point
amplitudes such that the Adler’s zero is satisfied, by introducing the
necessary higher point vertices.

In fact, Susskind and Frye constructed the 6-pt and 8-pt NLSM amplitudes
this way:

Algebraic Aspects of Pionic Duality Diagrams

LEONARD SUSSKIND* AND GRAHAM FRYE
Belfer Graduate School of Science, Yeshiva University, New York, New York 10033
(Received 9 May 1969)

Certain algebraic aspects are abstracted from the duality principle and are incorporated in a simple
model of pion #-point functions. An algorithm for constructing the z-point function in the tree-graph
approximation is based on the duality assumption and the Adler condition which states that the amplitudes
vanishes if any pion four-momentum vanishes, all others remaining on shell. The resulting amplitudes
satisly the constraints of current algebra and partial conservation of axial-vector current for n=4, 6, and
8, and (we conjecture) for all #. In addition, duality specifies a definite form for chiral symmetry breaking.




In the amplitude community, before BCFW recursion, it was customary to
look at recursion relations of amplitudes with one leg off-shell.

Semi-on-shell amplitudes:

Ja1---an,a(p1’ e 7pn) = <O|’/Ta(0)|7ra1 (pl) T ’/Tan( n)>



In the amplitude community, before BCFW recursion, it was customary to
look at recursion relations of amplitudes with one leg off-shell.

Semi-on-shell amplitudes:

JOr A (py eee pp) = (0|7 (0) |7 (p1) - - - T (pn))

The Ward identity now turns into:

q2Ja1"'a"’a(p1, L ’pn)

=3 A 00 (1) 7o (o)
(k1) "

~

Or(q) = /d4w e 179, { [Tk(a;)}ab oFr®(z)}

At tree-level, this gives a new recursion relation for semi-on-shell
amplitudes.



More importantly, the Ward identity gives the subleading single soft limit
without additional work:

Mal'"a”“—)Li —(—4)F
VZ ~ (2k + 1)

« (0 / B [T*(@)p ipns - O (2)| 7% -« 7o)

This is valid at the quantum level, and to all orders in 1/f.



More importantly, the Ward identity gives the subleading single soft limit
without additional work:

Afaranss _y L i —(—4)*
N P (2k + 1)!
- (0] / B [T*(@)]ap Py - O 70 (@) 7% -+ 7o)
This is valid at the quantum level, and to all orders in 1/f.

To compare with CHY, we only need to go to the tree-level and flavor-
ordered amplitudes:

[n/2] 2k—1
M) = 3 g 0 [( ) _ —1] .
{lm} 7=1

2k+1

X H J(lm—l+17"'7lm)7

m=1



Recall the CHY proposal

n—1
3 .
Mfrrzlflm(]lm—l) =T Z Sn+1,i Mvglam@(b (In|1,m,4) + 0(7'2)
1=2

So comparison with our result would give

o | 1 [n/2] 2k—1 ok ;
M, (I[n|17n77') — 5 Z 2k—|— 1 'fzk Z Z : (_1) —1

j=1 {lm} J
l; <’L<lj_+_1
2k+1
x I Jlm-1+1,+ )
m=1

We checked that lower point amplitudes agree on both sides.



What have we learned here?
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The “extended theory” in CHY arises from the matrix elements of

~

Ot(a) = [ dtoe 170, {[TH@), 'n @)} a0

In this case, the matrix elements can be interpreted as “amplitudes”:

2
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What have we learned here?

The “extended theory” in CHY arises from the matrix elements of

~

Ot(a) = [ dtoe 170, {[TH@), 'n @)} a0
In this case, the matrix elements can be interpreted as “amplitudes”:

2

Apl234 2
T 372

(T) 47 (T") 55{0 / d*z "t iq - On°|1234)

In terms of Feynman diagrams, NLSM has only even-point vertices.

In terms of general nonlinear shift, NLSM has only odd-point vertices in
the current corresponding to the shift symmetry.



CHY only provided “amplitudes” for the extended theory,
Ay(1%,2%3%,4%) = A4(1%,2%,3%,4%) = —s94

A5(1¢, 2(15’ 3(]5’427 52) _ S34 + S45 4 S45 + S15 _1
512 523

A5(1¢, 2¢7 327 4¢, 52) _ S34 + S45 1
512




CHY only provided “amplitudes” for the extended theory,

Ay(1%,2%3%,4%) = A4(1%,2%,3%,4%) = —s94

A5(1¢, 2(15’ 3(]5’427 52) _ S34 + S45 4 S45 + S15 _1
512 523

A5(1¢, 2¢7 327 4¢, 52) _ S34 + S45 1
512

while we get a little bit more information,

. k
nlom®¢3 g t _(_4) 2k 11 _

But a concrete formulation remains somewhat elusive.



One thing is clear: the “second flavor index” in the extended theory

n—1

3 .

M;Lllli‘lm(]ln+1) =T Z Sn+1, nglam@(b (HH‘L n, Z)
1=2

is “counting” the derivative!

Is there any further connection with the Color-kinematic duality?



Concluding Remarks:

e The Adler’s zero should be taken as the defining property of Nambu-
Goldstone bosons.

e Goldstone interactions are universal among a common unbroken
group H in the IR.

e All composite Higgs models contain a common universal Lagrangian
(the symmetry-preserving part.)

e The soft limits of Goldstone amplitudes, and the infrared structure of
NLSM, is much richer than we knew.

We have just begun our exploration!



