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In01960,0GellGMann0and0Levy0introduced0the0nonlinear0sigma0model0

(nlsm)0as0a0“toy0model”0for0pionGnucleon0interac3ons0



Nowadays0we0understand0the0original0nlsm0as0describing0spontaneously0

broken0SU(2)L0x0SU(2)R0chiral0symmetry.0The0pions0are0the0(pseudo)0

NambuGGoldstone0bosons.0

0

0

0



Nowadays0we0understand0the0original0nlsm0as0describing0spontaneously0

broken0SU(2)L0x0SU(2)R0chiral0symmetry.0The0pions0are0the0(pseudo)0

NambuGGoldstone0bosons.0

0

0

The0symmetry0perspec3ve0is0very0powerful,0and0has0led0to0important0

insights0in0many0areas0of0theore3cal0physics,0including0condensed0maXer,0

sta3s3cal,0par3cle,0and0mathema3cal0physics.0

0

0

0

0



Nowadays0we0understand0the0original0nlsm0as0describing0spontaneously0

broken0SU(2)L0x0SU(2)R0chiral0symmetry.0The0pions0are0the0(pseudo)0

NambuGGoldstone0bosons.0

0

0

The0symmetry0perspec3ve0is0very0powerful,0and0has0led0to0important0

insights0in0many0areas0of0theore3cal0physics,0including0condensed0maXer,0

sta3s3cal,0par3cle,0and0mathema3cal0physics.0

0

0

This0viewpoint0also0makes0it0clear0that0nlsm0is0about0the0infrared0structure0
of0the0theory0in0the0presence0of0nonlinearly0realized0symmetries,0in0

par3cular0the0nontrivial0space0of0degenerate0vacua!0
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More0generally,0the0Infrared0structure0of0QFT’s0is0an0even0older0subject0in0

physics.0

0

•  In0both0QED0and0Gravity,0scaXering0amplitudes0with0one0soa0gauge0

boson0factorize0universally:0

0

0

Mn+1(k1, · · · , kn; q) = (S(0) + S(1) + · · · )Mn(k1, · · · , kn)
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The0universality0of0these0expressions0implies0they0must0follow0from0some0

general0prime0principles.0

0

Indeed,0the0leading0soa0factors0of0both0QED0and0Gravity0follow0from0the0

“onGshell0gauge0invariance”:0
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general0prime0principles.0
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“onGshell0gauge0invariance”:0

qµM
µ
n (k1, · · · , kn�1; q) = 0

qµM
µ⌫
n (k1, · · · , kn�1; q) = 0

"µq ! "µq + qµ nX
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ei = 0

nX
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kµi = 0

"µ⌫ ! "µ⌫ + qµ⇤⌫



•  For0scalar0theories0with0a0global0symmetry,0degenerate0vacua0lead0to0

nonlinear0sigma0models0and0NambuGGoldstone0bosons,00

00000In0this0case,0the0“single0soa”0limit0of0Goldstone0scaXering00

00000amplitudes0famously0exhibits0the0“Adler’s0zero”:0
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00000In0this0case,0the0“single0soa”0limit0of0Goldstone0scaXering00

00000amplitudes0famously0exhibits0the0“Adler’s0zero”:0
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0

These0are0statements0we0knew0from0half0a0century0ago:0

0

Bloch0and0Nordsieck0(1937),0F.E.0Low0(1954+…),0GellGMann0and0

Goldberger0(1954),0Weinberg0(1965+…),0Adler0(1965+…)0and0etc.0
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The/Adler’s/zero/is/a/direct/consequence/of/the/presence/of/nontrivial/
vacua./
0

Recall0the0different0vacua0are0related0by00

a0rota3on0in0the0broken0direc3on:0
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Recall0the0different0vacua0are0related0by00

a0rota3on0in0the0broken0direc3on:0
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0

0

0

Excita3ons0along0the0broken0direc3on0gives0the0Goldstone0boson,0

0

0

0

But0the0physics0is0invariant0whether0one0chooses000000000or000

NLSM0possesses0a0constant0“shia0symmetry”!0

0
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ei✓|✓0i = |✓0 + ✓i

ei(⇢(x)+✓)|✓0i = ei⇢(x)|✓0 + ✓i
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I0will0report0on0recent0progresses0in0understanding0the0infrared0structure0

of0the0NambuGGoldstone0bosons.0

0

These0progresses0are0driven0by0two0unrelated0areas:0

0

•  Composite0Higgs0models0where0the0Higgs0arises0as0a0pseudoGNambuG

Goldstone0boson.0

•  CachazoGHeGYuan0(CHY)0representa3ons0of0scaXering0equa3ons0for0
treeGlevel0onGshell0amplitudes.0



0

The0naturalness0problem0has0been0driving0BSM0physics0for0decades.00

Two0ways0to0stabilize0the0Higgs0mass0using0symmetry:0

0

1)0bosonic0global0symmetry0GGGG>0higgs0as0a0pseudo0NambuG00

0000000000000000000000000000000000000000000000000000000000Goldstone0boson0(PNGB)!0

0

2)0fermionic0global0symmetry0GGGGG>0supersymmetry0

0

0

0

0



 
•  supersymmetric0theories0are0all0built0upon0a0minimal0lagrangian0

00000GG0the0MSSM:0

0

0

0

0

0

0

0

0

0

This0is0the0minimal0lagrangian0the0makes0standard0model0
supersymmetric.0



On0the0other0hand,0the0theory0space0of0a0PNGB0Higgs0looks0huge:0

Bellazzni,0Csaki0and0Serre:1401.24570



Construc3on0of0effec3ve0Lagrangians0for0composite0Higgs0bosons0relies0

on0the0CCWZ0formalism:0



•  CCWZ0is0a0very0geometrical0approach:0

•  To0crank0the0machinery,0one0decides0on0a0nonlinearly0realized0group0
G,0and0a0subgroup0H0of0G0that0is0linearly0realized.0

00000We0say0G0is0the0broken0group0and0H0the0unbroken0group:0

0

0

0

0

•  The0“pions”0are0the0coordinates0on0the0coset0manifold0G/H,0and0the0

ac3on0of0the0full0group0G0on0pions0is0complicated0and0nonlinear!0

0

0



CCWZ0thus0looked0for0objects0that0have0“simple”0transforma3on0

proper3es0under0the0ac3on0of0G.0

0

These0are0contained0in0the0CartanGMaurer0oneGform:0

0

0

0

They0are0the0“Goldstone0covariant0deriva3ve”0and0the0“associated0gauge0
field”,0

0

0

upon0which0the0complete0effec3ve0lagrangian0can0be0built0(apart0from0

the0topological0terms)0



In0this0fashion,0CCWZ0circumvents0the0problem0of0working0out0how0the0

pions0transform0under0the0broken0G:0

⇧0 = ⇧0(⇧, g)

No0one0dared0asking/working0out0what0this0mess0is.0
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0

0

0

0

0

0

CCWZ0is0extremely0powerful,0but0it0adopts0a0“topGdown”0perspec3ve,0

which0requires0knowing0ahead0of03me0what0the0broken0group0“G”0is0in0

the0UV.00

0

⇧0 = ⇧0(⇧, g)

No0one0dared0asking/working0out0what0this0mess0is.0



•  In0composite0Higgs0models,0CCWZ0is0oaen0matched00to0the0SILH0

lagrangian:0



nlsm0contribu3on0to0SILH0coefficients0for0some0of0the0composite0Higgs0

models:0

0

•  SU(5)/SO(5)0LiXlest0Higgs:0

•  SO(5)/SO(4)0minimal0composite0Higgs0(MCHM):0

•  SO(9)/SO(5)xSO(4)0liXlest0Higgs:0

•  0000000000000000000000000000000000000000000000000000�new00TGparity:0

cT/is/dictated/by/the/custodial/symmetry./However,/cH/is/different/for/
different/coset./



So0in0CCWZ0each0symmetry0breaking0paXern0gives0a0seemingly0different0

effec3ve0Lagrangian!0

0

Each03me0a0young0hot0shot0comes0up0with0a0new0composite0Higgs0

model,0we0need0to0work0out0the0experimental0consequences0all0over0

again.0

0



So0in0CCWZ0each0symmetry0breaking0paXern0gives0a0seemingly0different0

effec3ve0Lagrangian!0

0

Each03me0a0young0hot0shot0comes0up0with0a0new0composite0Higgs0

model,0we0need0to0work0out0the0experimental0consequences0all0over0

again.0

0

This0begs0the0ques3on:0

0

Are0there0universal0predic3ons0of0a0composite0Higgs0boson0that0are0
independent0of0the0symmetryGbreaking0paXern?0



To0this0end,0let’s0recall0that0nlsm0is0all0about0the0presence0of0nonGtrivial0

vacua:0

0

Goldstone0bosons0are0longGrange0degrees0of0freedom0that0connect0

different0vacua!0

0

0

It/then/seems/a/liFle/odd/that/their/interacGons/would/care/about/the/
broken/group/G/in/the/UV!/
0

0



The0IR0perspec3ve0was0pursued0vigorously0in0the0context0of0pions0in0the0

�60s0by0Adler,0Nambu,0Goldstone,0Weinberg,0etc.0

0

0

This0body0of0work0was0collec3vely0known0as0�soa0pion0theorems,��
although0a0significant0part0of0them0does0not0depend0on0the0par3cular0

symmetry0breaking0paXern!0

0



•  one0par3cularly0important0“soaGpion”0theorem0is0the0Adler�s0zero0
condi3on:0

00000onGshell0scaXering0amplitudes0of0Goldstone0bosons0must0vanish0in0the0

limit0the0momentum0of0one0Goldstone0boson0is0taken0offGshell0and0

soa.0

0

0

•  oaen0this0is0overGsimplified0as0saying0�the0Goldstone0boson0is0
deriva3vely0coupled.�00

00000it0is0an0overGsimplifica3on0because0it0doesn’t0do0jus3ce0to0the0full0

power0of0the0Adler�s0zero0condi3on.0



0

I0would0advocate0promo3ng0Adler’s0zero0condi3on0to0be0the0defining/
property0of0Goldstone0bosons:0
0

NambuGGoldstone0bosons0are0defined0by0the0Adler’s0zeros0and0their0

transforma3on0property0under0the0unbroken0group0in0the0IR.0

000000



for0now0assume0only0one0flavor0of0Goldstone0boson0and0consider04Gpt0

scaXering0amplitudes,0wriXen0in0terms0of0the0Mandelstam0variables.0

0

•  Adler�s0zero0condi3on0forbids0a0constant0term!0

•  Bose0symmetry0implies0c1#=0c2#=0c3#!0

0

the0argument0can0be0generalized0to0nGpt0amplitudes0to0show0that0O(p2)0

term0always0vanishes!0



•  the0simplest0lagrangian0sa3sfying0these0proper3es0is0the0familiar0one:0

0

0

•  as0is0well0known,0L00can0be0obtained0by0requiring0that0there0is0a0

constant0�shia0symmetry�0ac3ng0on0pion:0

•  the0deriva3ve0of0pion0has0simpler0transforma3on0under0the0broken0

symmetry:0

0000000000000000is0the0building0block0of0the0effec3ve0lagrangian!0

000000



0

0

we0have0learned0a0simple0yet0powerful0statement0that0is0universal0in0

nlsm:0

0

#####For#any#coset#G/H,#self5interac7ons#among#Goldstones#of#the#same#
flavor#are#fixed#by#Adler’s#zero#condi7on#and#Bose#symmetry,#and#
must#have#the#form:#

0

0

0

0

0

0

0



The0goal0GG0

0

Construct0an0effec3ve0Lagrangian0sa3sfying0the0following0two0proper3es:0

0

•  The0Lagrangian0for0Goldstone0bosons0of0the0same0flavor0reduces0to0

0000000when0all0other0flavors0are0turned0off.0

0
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Construct0an0effec3ve0Lagrangian0sa3sfying0the0following0two0proper3es:0

0

•  The0Lagrangian0for0Goldstone0bosons0of0the0same0flavor0reduces0to0

0000000when0all0other0flavors0are0turned0off.0

0

•  Invariance0under0the0unbroken0group0H0in0the0IR0is0preserved.0

When0there0are0mul3ple0flavors0of0Goldstones,0higher0order0terms0

appear0in0the0shia0symmetry.0

0



0

•  let’s0consider0two0flavors0of0goldstones0transforming0as0a0complex0
scalar0under0an0unbroken0U(1):0

•  nonlinear0shia0symmetry0at0NLO0can0be0wriXen0as0

•  when0we0turn0off0one0of0the0two0flavors0,0we0must0return0to0the0single0

flavor0case,0πi#5>#πi#+#εi0,##



This0is0the0generaliza3on0of0constant0shia0symmetry:0

0

0

0

0

0

The0ques3on:0

0

What0is0the0Lagrangian0that0is0invariant0under0the0generalized0shia0

symmetry?0
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We0can0do0it0by0brute0force,0or0we0can0try0to0be0a0liXle0more0clever…0



We0can0do0it0by0brute0force,0or0we0can0try0to0be0a0liXle0more0clever…0

0

Let’s0look0for0objects0that0have0simple0transforma3on0proper3es0under0

the0general0shia0symmetry:0

0

0

0

Then0the0effec3ve0Lagrangian0can0be0built0straighvorwardly.0



•  By0demanding0the0Adler’s0zero0and0invariant0under0the0unbroken0

U(1),0we0can0write0down0

0

•  the0form0is0again0fixed0by0reducing0to0the0single0flavor0case:0



When0all0is0said0and0done,0the0leading0twoGderiva3ve0Lagrangian0can0be0

obtained:00

0

0

0

0

which0is0invariant0under0



The0surprise0is0this0procedure0can0be0con3nued0orderGbyGorder0in01/f:0

0

Low:01412.214500
Low:01412.21460



The0surprise0is0this0procedure0can0be0con3nued0orderGbyGorder0in01/f:0

•  We0managed0to0derive0the0effec3ve0Lagrangian0without0referring0to0

any0UV0coset!0

•  There0is0only0one0undetermined0parameter0in0the0end,0which0
corresponds0to0the0overall0normaliza3on0of0f:0

0

Low:01412.214500
Low:01412.21460



0

•  the0sign0of0c10is0not0fixed:0
000000a0posi3ve0sign0implies0a0compact0G/H0(suppression),0while0a0nega3ve0

sign0implies0a0nonGcompact0G/H0(enhancement).0

0

•  if0UV0comple3on0is0a0concern,0c10>000and0the0sign0of0the0dimG60

operator0is0nega3ve.0

0



•  one0could0introduce0another0object0that0transforms0nonG

homogeneously0like0a0gauge0field:0

0

0

0

0

0

0

0



•  the0nonGhomogeneous0term0also0allows0us0to0couple0MaXers0to0the0

Goldstone,0much0like0the0nucleon0coupling0to0pions:0



Let’s0pause0for0a0moment0and0reflect0on0what’s0happened…0

0

We0derived0the0twoGderiva3ve0lagrangian0for0a0complex0Goldstone0

boson0charged0under0an0unbroken0U(1):0

0

0

0

0

The0only0assump3ons0are0

0

1. The0Adler’s0zero0condi3on.0
2. There0exists0an0unbroken0U(1).0

As0such,0this0is0the0universal0lagrangian0among0all0nlsm’s0containing0a0

complex0Goldstone!0



We0can0check0against0the0universality0using0explicit0examples:0

0

0

0

0

0

0

0

0

At0the0first0glance0the0two0Lagrangians0do0not0look0the0same…0

0

0

0

0

0

in which case the Closure condition in Eq. (3.14) is equivalent to the Jacobi identity, thereby

allowing f iab to be interpreted as structure constants (living in the subspace spanned by

G/H).2 For a symmetric coset where fabc vanished, the knowledge of f ijk and f iab is su�cient

to reproduce the entire CCWZ Lagrangian.

In the end, the universal Lagrangian for nl�m, at the two-derivative order and all orders

in 1/f , is

L =
1

2
h@

µ

⇡|sin
2

pT
T |@µ⇡i, (3.17)

The Lagrangian is dictated by the infrared behavior of the Goldstone scattering amplitudes:

1) the Adler’s zero condition and 2) theH-invariance, without ever specifying what the broken

group G is in the UV. The only undetermined parameter is the overall normalization of the

decay constant.

To dispel any remaining doubts on the universality of Eq. (3.38), let’s consider two explicit

examples: SU(2)/U(1) and SU(5)/SO(5). The former is the minimal coset containing a

complex Nambu-Goldstone boson � charged under the unbroken U(1). For the latter, one

can obviously identify several SU(2) subgroups in SU(5) and several U(1) subgroups in

SO(5), resulting in many complex Nambu-Goldstone bosons. Denote one of them to be �.

The universality of Goldstone interactions imply interactions of � and � must be identical

with each other, which are dictated only by the unbroken U(1) and the Adler’s zero condition,

up to the normalization of the decay constant f . Using the CCWZ formalism to write down

the two-derivative interactions for � and � we obtain [3]3

SU(2)/U(1) ! |@
µ

�|2 � 1

3f2

|�⇤@
µ

�� �@
µ

�⇤|2 + 8

45f4

|�⇤@
µ

�� �@
µ

�⇤|2 |�|2

� 16

315f6

|�⇤@
µ

�� �@
µ

�⇤|2 |�|4 + · · · , (3.18)

SU(5)/SO(5) ! |@
µ

�|2 � 1

48f2

|�⇤@
µ

�� �@
µ

�⇤|2 + 1

1440f4

|�⇤@
µ

�� �@
µ

�⇤|2 |�|2

� 1

80640f6

|�⇤@
µ

�� �@
µ

�⇤|2 |�|4 + · · · , (3.19)

The interactions of � become identical to those of � after the rescaling of f ! 4f in Eq. (3.18),

as expected from the universality.

3.2 The Shift Symmetry to All Orders in 1/f

Although the closed-form expressions for F
i

, i = 2, 3, 4 have been derived previously, the

general nonlinear shift F
1

was presented without derivation only recently in Ref. [5]. The

simplest way to derive F
1

is to make use of the universality of Eq. (3.38) and perform a

”matching” calculation into the simplest nontrivial unbroken group of H = SO(2) ⇡ U(1),

which we demonstrate below.
2
The identification in Eq. (3.16) is possible only because we choose a basis such that (T i

) = �(T i
)

T
in

Eq. (3.3).

3
There is a typo in Eq. (14) of Ref. [3]. The expression in Eq. (3.19) is the correct one.

– 7 –



We0can0check0against0the0universality0using0explicit0examples:0
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0

0

0

At0the0first0glance0the0two0Lagrangians0do0not0look0the0same…0

0

0

But0upon0f0G>04f0in0SU(2)/U(1)0case,0the0two0become0iden3cal!0
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in which case the Closure condition in Eq. (3.14) is equivalent to the Jacobi identity, thereby

allowing f iab to be interpreted as structure constants (living in the subspace spanned by

G/H).2 For a symmetric coset where fabc vanished, the knowledge of f ijk and f iab is su�cient

to reproduce the entire CCWZ Lagrangian.

In the end, the universal Lagrangian for nl�m, at the two-derivative order and all orders

in 1/f , is

L =
1

2
h@

µ

⇡|sin
2

pT
T |@µ⇡i, (3.17)

The Lagrangian is dictated by the infrared behavior of the Goldstone scattering amplitudes:

1) the Adler’s zero condition and 2) theH-invariance, without ever specifying what the broken

group G is in the UV. The only undetermined parameter is the overall normalization of the

decay constant.

To dispel any remaining doubts on the universality of Eq. (3.38), let’s consider two explicit

examples: SU(2)/U(1) and SU(5)/SO(5). The former is the minimal coset containing a

complex Nambu-Goldstone boson � charged under the unbroken U(1). For the latter, one

can obviously identify several SU(2) subgroups in SU(5) and several U(1) subgroups in

SO(5), resulting in many complex Nambu-Goldstone bosons. Denote one of them to be �.

The universality of Goldstone interactions imply interactions of � and � must be identical

with each other, which are dictated only by the unbroken U(1) and the Adler’s zero condition,

up to the normalization of the decay constant f . Using the CCWZ formalism to write down

the two-derivative interactions for � and � we obtain [3]3

SU(2)/U(1) ! |@
µ

�|2 � 1

3f2

|�⇤@
µ

�� �@
µ

�⇤|2 + 8

45f4

|�⇤@
µ

�� �@
µ

�⇤|2 |�|2

� 16

315f6

|�⇤@
µ

�� �@
µ

�⇤|2 |�|4 + · · · , (3.18)

SU(5)/SO(5) ! |@
µ

�|2 � 1

48f2

|�⇤@
µ

�� �@
µ

�⇤|2 + 1

1440f4

|�⇤@
µ

�� �@
µ

�⇤|2 |�|2

� 1

80640f6

|�⇤@
µ

�� �@
µ

�⇤|2 |�|4 + · · · , (3.19)

The interactions of � become identical to those of � after the rescaling of f ! 4f in Eq. (3.18),

as expected from the universality.

3.2 The Shift Symmetry to All Orders in 1/f

Although the closed-form expressions for F
i

, i = 2, 3, 4 have been derived previously, the

general nonlinear shift F
1

was presented without derivation only recently in Ref. [5]. The

simplest way to derive F
1

is to make use of the universality of Eq. (3.38) and perform a

”matching” calculation into the simplest nontrivial unbroken group of H = SO(2) ⇡ U(1),

which we demonstrate below.
2
The identification in Eq. (3.16) is possible only because we choose a basis such that (T i

) = �(T i
)

T
in

Eq. (3.3).

3
There is a typo in Eq. (14) of Ref. [3]. The expression in Eq. (3.19) is the correct one.

– 7 –



This0approach0can0be0generalized0to0a0general0unbroken0group0H0in0the0

IR.0

0

We0assume0a0set0of0scalars0furnishing0a0linear0representa3on0under0a0

simple0Lie0group0H:0

0

0

0

It0is0convenient0to0choose0a0basis0where0all0generators0are0purely0
imaginary0(and0hence0an3Gsymmetric!)0

0

0

0

This0choice0will0simplify0the0analysis0and0makes0the0correspondence0with0
CCWZ0more0transparent.0

0

0

0

0

0

0



Requiring0that00

0

•  Adler’s0zero0is0preserved.0

•  Unbroken0HGinvariance0is0respected.0

We0can0derive0the0most0general0shia0symmetry0to0all0orders0in01/f,0
without0ever0referring0to0a0coset0G/H:0

Tab = (T i)ar(T
i)sb⇡

r⇡s

Plugging back into Eq. (3.32) allows one to solve for

F
1

(r) = �c
1

p
r tan(c

1

p
r + c

2

) . (3.34)

The boundary condition that F
1

(0) = 1 gives c
2

= ⇡/2 while c
1

can be absorbed into the

normalization of f . So all three functions can be solved for

F
1

(r) =
p
r cot

p
r , F

2

(r) =
sin

p
rp

r
, F

3

(r) =
ip
r
tan

p
r

2
. (3.35)

The closed-form expression for F
1

is the main result of this subsection.

So in the end, we obtain closed-form expressions, valid to all orders in 1/f , for the

nonlinear shift, the Goldstone covariant derivative and the leading two-derivative Lagranigan

⇡a 0 = ⇡a + [F
1

(T )]
ab

"b , (3.36)

D
µ

⇡a = [F
2

(T )]
ab

@
µ

⇡b, (3.37)

L =
1

2
[F

2

(T )2]
ab

@
µ

⇡a@µ⇡b . (3.38)

The Lagrangian in Eq. (3.38) is invariant under the general nonlinear shift in Eq. (3.36). This

information enables us to derive the Ward identity under the shift symmetry, to all orders in

1/f , without the precise knowledge of coset space G/H.

3.3 The ”Vector” and ”Axial” Ward Identities to All Orders in 1/f

In this subsection we discuss the conserved currents corresponding to the unbroken and the

shift symmetries, respectively. Following the terminology from QCD Chiral Lagrangians,

we call the currents for the unbroken symmetry the ”vector currents”, while those for the

nonlinear shift symmetry the ”axial currents.” We also derive the corresponding vector and

axial Ward identities. While these objects have been discussed extensively in the context of

current algebra in low-energy QCD [10], explicit and closed-form expressions of the vector

and axial currents to all orders in 1/f have never been discussed in the literature, to the best

of our knowledge.

Under the linearly realized, unbroken H symmetry, the Nambu-Goldstones transform as

⇡a ! ⇡a + i↵
r

(T r)
ab

⇡b , (3.39)

from which it is straightforward to derive the corresponding vector current and the Ward

identity using the path integral approach. In particular, we need compute the variation of

the L in Eq. (3.38) under Eq. (3.39), by promoting ↵
r

! ↵
r

(x). However, the pieces that

are proportional to ↵r(x) must vanish identically since the Lagrangian is invariant under

H-rotation. Thus we only need to focus on terms that are proportional @
µ

↵r(x), which can

only come from the variation of @
µ

⇡a, but not the F 2

2

(T ) term, under Eq. (3.39):

Jr

µ

= @
µ

⇡a[F
2

(T )2]
ab

(T r)
bc

⇡c , (3.40)

– 9 –

F1(T ) =

p
T cot T

Low0and0Yin:01709.086390



The0Lagrangian0invariant0under0the0shia0symmetry0is0

0

0

0

0

0

This0is0the0universal0Lagrangian0for0all0NambuGGoldstone0bosons0(arising0
from0a0symmetric0coset.)0

0

Just/like/the/MSSM,/the/symmetry&preserving/part/of/the/lagrangian/for/
composite/Higgs/models/is/universal/among/all/symmetric/coset/G/H!/
0

Plugging back into Eq. (3.32) allows one to solve for

F
1

(r) = �c
1

p
r tan(c

1

p
r + c

2

) . (3.34)

The boundary condition that F
1

(0) = 1 gives c
2

= ⇡/2 while c
1

can be absorbed into the

normalization of f . So all three functions can be solved for

F
1

(r) =
p
r cot

p
r , F

2

(r) =
sin

p
rp

r
, F

3

(r) =
ip
r
tan

p
r

2
. (3.35)

The closed-form expression for F
1

is the main result of this subsection.

So in the end, we obtain closed-form expressions, valid to all orders in 1/f , for the

nonlinear shift, the Goldstone covariant derivative and the leading two-derivative Lagranigan

⇡a 0 = ⇡a + [F
1

(T )]
ab

"b , (3.36)

D
µ

⇡a = [F
2

(T )]
ab

@
µ

⇡b, (3.37)

L =
1

2
[F

2

(T )2]
ab

@
µ

⇡a@µ⇡b . (3.38)

The Lagrangian in Eq. (3.38) is invariant under the general nonlinear shift in Eq. (3.36). This

information enables us to derive the Ward identity under the shift symmetry, to all orders in

1/f , without the precise knowledge of coset space G/H.

3.3 The ”Vector” and ”Axial” Ward Identities to All Orders in 1/f

In this subsection we discuss the conserved currents corresponding to the unbroken and the

shift symmetries, respectively. Following the terminology from QCD Chiral Lagrangians,

we call the currents for the unbroken symmetry the ”vector currents”, while those for the

nonlinear shift symmetry the ”axial currents.” We also derive the corresponding vector and

axial Ward identities. While these objects have been discussed extensively in the context of

current algebra in low-energy QCD [10], explicit and closed-form expressions of the vector

and axial currents to all orders in 1/f have never been discussed in the literature, to the best

of our knowledge.

Under the linearly realized, unbroken H symmetry, the Nambu-Goldstones transform as

⇡a ! ⇡a + i↵
r

(T r)
ab

⇡b , (3.39)

from which it is straightforward to derive the corresponding vector current and the Ward

identity using the path integral approach. In particular, we need compute the variation of

the L in Eq. (3.38) under Eq. (3.39), by promoting ↵
r

! ↵
r

(x). However, the pieces that

are proportional to ↵r(x) must vanish identically since the Lagrangian is invariant under

H-rotation. Thus we only need to focus on terms that are proportional @
µ

↵r(x), which can

only come from the variation of @
µ

⇡a, but not the F 2

2

(T ) term, under Eq. (3.39):

Jr

µ

= @
µ

⇡a[F
2

(T )2]
ab

(T r)
bc

⇡c , (3.40)

– 9 –

condition that when all but ⇡1 and "1 are set to zero, the case of a single flavor Goldstone in

Eq. (3.4) can be recovered, so that Adler’s zero condition is preserved.

The entire CCWZ Lagrangian can be reconstructed in the present approach by focusing

on two objects that have well-defined (and simpler!) transformation properties under the shift

symmetry, which are the Goldstone covariant derivative and the associated gauge connection

|D
µ

⇡i ! |D
µ

⇡0i = U |D
µ

⇡i , (3.8)

E i

µ

T i ! U(E i

µ

T i)U�1 � (@
µ

U)U�1 , (3.9)

where

U = eiu
i
(✏,⇡)T

i
/f (3.10)

is a nonlinear function of |⇡i and |"i. Expanding in power series in 1/f , we write

|D
µ

⇡i = F
2

(T )|@
µ

⇡i , F
2

(T ) = 1 +
1
X

n=1

B
n

T n (3.11)

ui(⇡, ") =
1

f
h⇡T i|F

3

(T )|"i, F
3

(T ) =
1
X

n=1

C
n

T n�1 (3.12)

E i

µ

=
1

f2

h@
µ

⇡|F
4

(T )|T i⇡i , F
4

(T ) =
1
X

n=0

D
n

T n (3.13)

By demanding that, under the shift in Eq. (3.6), |D
µ

⇡i and E i

µ

transform according to the pre-

scribed fashion in Eqs. (3.8) and (3.9) allows one to solve for all but one numerical coe�cient,

order by order in 1/f , as long as the following ”Closure condition” is met:

�

T i

�

ab

�

T i

�

cd

+
�

T i

�

ac

�

T i

�

db

+
�

T i

�

ad

�

T i

�

bc

= 0. (3.14)

The only undetermined coe�cient corresponds to an overall rescaling in the normalization of

the decay constant f .

The surprising result is that these numerical coe�cients can be solved without specifying

the broken group G. All that is necessary is the Adler’s zero condition and invariance under

the unbroken group H. As such, the resulting e↵ective Lagrangian is universal for all G/H 0,

where H 0 contains H as a subgroup, up to an overall normalization of the decay constant f .

In Refs. [3, 4] closed-form expressions for F
2

, F
3

and F
4

are given (check F
4

please!)

F
2

(T ) =
sin

pTpT , F
3

=
ipT tan

 pT
2

!

, F
4

(T ) =
2

T sin2
pT
2

, (3.15)

which are su�cient for building up the e↵ective Lagrangian. The equivalence to the CCWZ

formalism can be established with the identification

�

T i

�

ab

= �if iab , (3.16)

– 6 –
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0

0

Using/this/approach,/we/are/working/out/universal/predicGons/of/a/
composite/Higgs/boson/in/the/couplings/of/the/125/GeV/Higgs!/
/
0
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0 Da Liu, IL and Zhewei Yin: in progress 



The0shia0symmetry0approach0turned0out0to0be0useful0in0understanding0a0

mystery0in0the0soa0limit0of0Goldstone0scaXering0amplitudes.0

0

0

0



The0shia0symmetry0approach0turned0out0to0be0useful0in0understanding0a0

mystery0in0the0soa0limit0of0Goldstone0scaXering0amplitudes.0

0

0

In0the0amplitude0community,0many0soa0limits0involving0massless0par3cles0

have0been0computed0in0recent0years:0

•  the0single0and0double0soa0limits0for0massless0par3cles,0
•  the0leading,0subleading,0subsubleading0orders,0

•  in0dimensionality0≠04,0

•  YangGMills,0Gravity,0NLSM,0supersymmetric0theories,0string0theories00

and0other0more0exo3c0theories.0

0



Schema3cally,0they0all0look0something0like0

0

0

0

0

0

0

But0here0lies0a0puzzle:0

Mn+1(k1, · · · , kn; q) = (S(0) + S(1) + · · · )Mn(k1, · · · , kn)

Mn+2(k1, · · · , kn; q1, q2) = (S(0)
d + S(1)

d + · · · )Mn(k1, · · · , kn)



Schema3cally,0they0all0look0something0like0

0

0

0

0

0

0

But0here0lies0a0puzzle:0

0

For0NLSM0it0is0wellGknown0that0only0evenGpoint0amplitudes0exist—0

0

0

0

Is0S(1)0also0zero?0And0if0not,0what0is0M2n510??0

(For0half0a0century,0these0ques3ons0were0never0studied!)00

Mn+1(k1, · · · , kn; q) = (S(0) + S(1) + · · · )Mn(k1, · · · , kn)

Mn+2(k1, · · · , kn; q1, q2) = (S(0)
d + S(1)

d + · · · )Mn(k1, · · · , kn)

M2n(k1, · · · , k2n�1; q) = (S(0) + S(1) + · · · )M2n�1(k1, · · · , k2n�1)
? ? 



Surprisingly,0this0ques3on0was0answered0only0two0years0ago0in0a0very0

elegant0yet0obscure0fashion,0by0using0the0soGcalled0CHY0formula3on0of0

scaXering0equa3ons.0

0

0



Surprisingly,0this0ques3on0was0answered0only0two0years0ago0in0a0very0

elegant0yet0obscure0fashion,0by0using0the0soGcalled0CHY0formula3on0of0

scaXering0equa3ons.0

0

Cachazo,0He,0and0Yuan00proposed0a0compact0and0elegant0formula0for0

treeGlevel0nGpoint0scaXering0amplitudes0of0massless0par3cles0(spinG0,0

spinG1,0spinG2).0

0

The0proposal0contains0two0parts:00

0

•  the0kinema3cs0

•  the0dynamics0

(Cachazo,0He,0Yuan:1306.6575,01306.2962,1307.2199,1309.0885)0

0



Kinema3cs0–0

0

ScaXering0of0n0massless0par3cles0in0an0arbitrary0dimension0involves0n0null0
vectors0sa3sfying0total0momentum0conserva3on:0

0

0

0

CHY0proposed0a0map0from0the0null0lightGcone0to0the0Riemann0sphere0with0
nGpunctures:0

0

0

0

0

0000000000000000000000000000is0the0loca3on0of0the0punctures.00

.0



It0turned0out0the0mapping0from0CP10to0the0light0cone0of0(complexified)0

momentum0can0be0achieved0by0imposing0

0

0

0

0

This0constraint0is0embodied0in0a0set0of0equa3ons0called0the0scaXering0

equa3on:0

0

0

0

0

0

p(�n) · p0(�n) /
X

a 6=n

2kn · ka
�n � �a

= 0



The0full0CHY0proposal0looks0like:0



The0full0CHY0proposal0looks0like:0

Encode0the0dynamics0



The0full0CHY0proposal0looks0like:0

0

0

0

0

0

0

0

Encode0the0dynamics0

Enforce0the0scaXering0equa3ons0



The0full0CHY0proposal0looks0like:0

• =

Cachazo,0Cha,0Mizera:01604.038930



0

The0CHY0proposal0embodies0the0ColorGKinema3c0duality:0

Cheung:01708.038720



CHY0proposal0has0been0checked0extensively.0In0the0case0of0YM0it0is0verified0

to0all0orders0using0BCFW0recursion.0In0the0case0of0NLSM,0it’s0been0checked0

explicitly0up0to08Gpt0analy3cally0and010Gpt0numerically.0



Using0CHY,0it’s0simple0and0straighvorward0to0derive0the0subleading0single0

soa0limit0for0NLSM:0

Cachazo,0Cha,0Mizera:01604.038930



Using0CHY,0it’s0simple0and0straighvorward0to0derive0the0subleading0single0

soa0limit0for0NLSM:0

Cachazo,0Cha,0Mizera:01604.038930

The color factor 
of the original SU(N) 
flavor structure 

The color factor of  
an alternative SU(N) 
flavor structure 

: the amplitudes of a mysterious theory  
  containing biadjoint cubic scalar interacting with NLSM 



The0statement0from0CHY:0

0

There0is0an0“extended0theory”0residing0in0the0subleading0single0soa0limit0

of0Goldstone0scaXering0amplitudes.0

0

The0mysterious0theory0contains0cubic0biadjoint0scalars0interac3ng0with0

the0NambuGGoldstone0bosons.0



The0statement0from0CHY:0

0

There0is0an0“extended0theory”0residing0in0the0subleading0single0soa0limit0

of0Goldstone0scaXering0amplitudes.0

0

The0mysterious0theory0contains0cubic0biadjoint0scalars0interac3ng0with0

the0NambuGGoldstone0bosons.0

0

0

Ques3on:00

0

What0the0heck0is0going0on?0

Why0didn’t0people0discover0it0during0all0these0years?0



Recall0how0Weinberg0derives0the0Adler’s0zero,0star3ng0from:0

0

0

0

0

which0implies0there’s0a0oneGpar3cle0pole0in0the0matrix0element00

h0|Ja

µ

|⇡b(x)i ⇠ �

ab

f

⇡

p

µ

e

ip·x

hf |Ja
µ |ii ⇠

Figure0from0Weinberg,0QFT0Vol0II0

! i
f⇡qµ

q2
Mfi +Nµ

fi



Current0conserva3on0then0implies0

0

0

0

0

Mfi =
i

f⇡
qµN

µ
fi ! 0 for q ! 0



Current0conserva3on0then0implies0

0

0

0

0

One0caveat0is0if0Nfi0has0a0pole0in0q0itself,0but0this0can0only0happens0if0the0
current0is0aXached0to0an0external0leg:0

0

0

0

0

0

0

0

0

For0pure0pion0scaXering0amplitudes,0no0such0inser3on0exists.0

0

0

0

0

Mfi =
i

f⇡
qµN

µ
fi ! 0 for q ! 0



It0is0not0clear0how0to0generalize0this0argument0beyond0the0leading0order0

in0the0soa0limit.0

0

(Perhaps0this0is0why0the0subleading0soa0factor0was0never0computed0

previously!)0

0

0

0



It0is0not0clear0how0to0generalize0this0argument0beyond0the0leading0order0

in0the0soa0limit.0

0

(Perhaps0this0is0why0the0subleading0soa0factor0was0never0computed0

previously!)0

0

It0turned0out0the0shia0symmetry0approach0is0ideal0for0studying0the0soa0

limits!0

0

0

0



Recall0the0general0effec3ve0Lagrangian0

0

0

0

0

And0it0is0invariant0under0the0shia0symmetry00

Plugging back into Eq. (3.32) allows one to solve for

F
1

(r) = �c
1

p
r tan(c

1

p
r + c

2

) . (3.34)

The boundary condition that F
1

(0) = 1 gives c
2

= ⇡/2 while c
1

can be absorbed into the

normalization of f . So all three functions can be solved for

F
1

(r) =
p
r cot

p
r , F

2

(r) =
sin

p
rp

r
, F

3

(r) =
ip
r
tan

p
r

2
. (3.35)

The closed-form expression for F
1

is the main result of this subsection.

So in the end, we obtain closed-form expressions, valid to all orders in 1/f , for the

nonlinear shift, the Goldstone covariant derivative and the leading two-derivative Lagranigan

⇡a 0 = ⇡a + [F
1

(T )]
ab

"b , (3.36)

D
µ

⇡a = [F
2

(T )]
ab

@
µ

⇡b, (3.37)

L =
1

2
[F

2

(T )2]
ab

@
µ

⇡a@µ⇡b . (3.38)

The Lagrangian in Eq. (3.38) is invariant under the general nonlinear shift in Eq. (3.36). This

information enables us to derive the Ward identity under the shift symmetry, to all orders in

1/f , without the precise knowledge of coset space G/H.

3.3 The ”Vector” and ”Axial” Ward Identities to All Orders in 1/f

In this subsection we discuss the conserved currents corresponding to the unbroken and the

shift symmetries, respectively. Following the terminology from QCD Chiral Lagrangians,

we call the currents for the unbroken symmetry the ”vector currents”, while those for the

nonlinear shift symmetry the ”axial currents.” We also derive the corresponding vector and

axial Ward identities. While these objects have been discussed extensively in the context of

current algebra in low-energy QCD [10], explicit and closed-form expressions of the vector

and axial currents to all orders in 1/f have never been discussed in the literature, to the best

of our knowledge.

Under the linearly realized, unbroken H symmetry, the Nambu-Goldstones transform as

⇡a ! ⇡a + i↵
r

(T r)
ab

⇡b , (3.39)

from which it is straightforward to derive the corresponding vector current and the Ward

identity using the path integral approach. In particular, we need compute the variation of

the L in Eq. (3.38) under Eq. (3.39), by promoting ↵
r

! ↵
r

(x). However, the pieces that

are proportional to ↵r(x) must vanish identically since the Lagrangian is invariant under

H-rotation. Thus we only need to focus on terms that are proportional @
µ

↵r(x), which can

only come from the variation of @
µ

⇡a, but not the F 2

2

(T ) term, under Eq. (3.39):

Jr

µ

= @
µ

⇡a[F
2

(T )2]
ab

(T r)
bc

⇡c , (3.40)
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condition that when all but ⇡1 and "1 are set to zero, the case of a single flavor Goldstone in

Eq. (3.4) can be recovered, so that Adler’s zero condition is preserved.

The entire CCWZ Lagrangian can be reconstructed in the present approach by focusing

on two objects that have well-defined (and simpler!) transformation properties under the shift

symmetry, which are the Goldstone covariant derivative and the associated gauge connection

|D
µ

⇡i ! |D
µ

⇡0i = U |D
µ

⇡i , (3.8)

E i

µ

T i ! U(E i

µ

T i)U�1 � (@
µ

U)U�1 , (3.9)

where

U = eiu
i
(✏,⇡)T

i
/f (3.10)

is a nonlinear function of |⇡i and |"i. Expanding in power series in 1/f , we write

|D
µ

⇡i = F
2

(T )|@
µ

⇡i , F
2

(T ) = 1 +
1
X

n=1

B
n

T n (3.11)

ui(⇡, ") =
1

f
h⇡T i|F

3

(T )|"i, F
3

(T ) =
1
X

n=1

C
n

T n�1 (3.12)

E i

µ

=
1

f2

h@
µ

⇡|F
4

(T )|T i⇡i , F
4

(T ) =
1
X

n=0

D
n

T n (3.13)

By demanding that, under the shift in Eq. (3.6), |D
µ

⇡i and E i

µ

transform according to the pre-

scribed fashion in Eqs. (3.8) and (3.9) allows one to solve for all but one numerical coe�cient,

order by order in 1/f , as long as the following ”Closure condition” is met:

�

T i

�

ab

�

T i

�

cd

+
�

T i

�

ac

�

T i

�

db

+
�

T i

�

ad

�

T i

�

bc

= 0. (3.14)

The only undetermined coe�cient corresponds to an overall rescaling in the normalization of

the decay constant f .

The surprising result is that these numerical coe�cients can be solved without specifying

the broken group G. All that is necessary is the Adler’s zero condition and invariance under

the unbroken group H. As such, the resulting e↵ective Lagrangian is universal for all G/H 0,

where H 0 contains H as a subgroup, up to an overall normalization of the decay constant f .

In Refs. [3, 4] closed-form expressions for F
2

, F
3

and F
4

are given (check F
4

please!)

F
2

(T ) =
sin

pTpT , F
3

=
ipT tan

 pT
2

!

, F
4

(T ) =
2

T sin2
pT
2

, (3.15)

which are su�cient for building up the e↵ective Lagrangian. The equivalence to the CCWZ

formalism can be established with the identification

�

T i

�

ab

= �if iab , (3.16)

– 6 –

Plugging back into Eq. (3.32) allows one to solve for

F
1

(r) = �c
1

p
r tan(c

1

p
r + c

2

) . (3.34)

The boundary condition that F
1

(0) = 1 gives c
2

= ⇡/2 while c
1

can be absorbed into the

normalization of f . So all three functions can be solved for

F
1

(r) =
p
r cot

p
r , F

2

(r) =
sin

p
rp

r
, F

3

(r) =
ip
r
tan

p
r

2
. (3.35)

The closed-form expression for F
1

is the main result of this subsection.

So in the end, we obtain closed-form expressions, valid to all orders in 1/f , for the

nonlinear shift, the Goldstone covariant derivative and the leading two-derivative Lagranigan

⇡a 0 = ⇡a + [F
1

(T )]
ab

"b , (3.36)

D
µ

⇡a = [F
2

(T )]
ab

@
µ

⇡b, (3.37)

L =
1

2
[F

2

(T )2]
ab

@
µ

⇡a@µ⇡b . (3.38)

The Lagrangian in Eq. (3.38) is invariant under the general nonlinear shift in Eq. (3.36). This

information enables us to derive the Ward identity under the shift symmetry, to all orders in

1/f , without the precise knowledge of coset space G/H.

3.3 The ”Vector” and ”Axial” Ward Identities to All Orders in 1/f

In this subsection we discuss the conserved currents corresponding to the unbroken and the

shift symmetries, respectively. Following the terminology from QCD Chiral Lagrangians,

we call the currents for the unbroken symmetry the ”vector currents”, while those for the

nonlinear shift symmetry the ”axial currents.” We also derive the corresponding vector and

axial Ward identities. While these objects have been discussed extensively in the context of

current algebra in low-energy QCD [10], explicit and closed-form expressions of the vector

and axial currents to all orders in 1/f have never been discussed in the literature, to the best

of our knowledge.

Under the linearly realized, unbroken H symmetry, the Nambu-Goldstones transform as

⇡a ! ⇡a + i↵
r

(T r)
ab

⇡b , (3.39)

from which it is straightforward to derive the corresponding vector current and the Ward

identity using the path integral approach. In particular, we need compute the variation of

the L in Eq. (3.38) under Eq. (3.39), by promoting ↵
r

! ↵
r

(x). However, the pieces that

are proportional to ↵r(x) must vanish identically since the Lagrangian is invariant under

H-rotation. Thus we only need to focus on terms that are proportional @
µ

↵r(x), which can

only come from the variation of @
µ

⇡a, but not the F 2

2

(T ) term, under Eq. (3.39):

Jr

µ

= @
µ

⇡a[F
2

(T )2]
ab

(T r)
bc

⇡c , (3.40)
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F1(T ) =

p
T cot T
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The boundary condition that F
1

(0) = 1 gives c
2

= ⇡/2 while c
1

can be absorbed into the

normalization of f . So all three functions can be solved for

F
1

(r) =
p
r cot
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r , F

2

(r) =
sin

p
rp

r
, F

3

(r) =
ip
r
tan

p
r

2
. (3.35)

The closed-form expression for F
1

is the main result of this subsection.

So in the end, we obtain closed-form expressions, valid to all orders in 1/f , for the

nonlinear shift, the Goldstone covariant derivative and the leading two-derivative Lagranigan

⇡a 0 = ⇡a + [F
1

(T )]
ab

"b , (3.36)

D
µ

⇡a = [F
2

(T )]
ab

@
µ

⇡b, (3.37)

L =
1

2
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2

(T )2]
ab

@
µ

⇡a@µ⇡b . (3.38)

The Lagrangian in Eq. (3.38) is invariant under the general nonlinear shift in Eq. (3.36). This

information enables us to derive the Ward identity under the shift symmetry, to all orders in

1/f , without the precise knowledge of coset space G/H.

3.3 The ”Vector” and ”Axial” Ward Identities to All Orders in 1/f

In this subsection we discuss the conserved currents corresponding to the unbroken and the

shift symmetries, respectively. Following the terminology from QCD Chiral Lagrangians,

we call the currents for the unbroken symmetry the ”vector currents”, while those for the

nonlinear shift symmetry the ”axial currents.” We also derive the corresponding vector and

axial Ward identities. While these objects have been discussed extensively in the context of

current algebra in low-energy QCD [10], explicit and closed-form expressions of the vector

and axial currents to all orders in 1/f have never been discussed in the literature, to the best

of our knowledge.

Under the linearly realized, unbroken H symmetry, the Nambu-Goldstones transform as

⇡a ! ⇡a + i↵
r

(T r)
ab

⇡b , (3.39)

from which it is straightforward to derive the corresponding vector current and the Ward

identity using the path integral approach. In particular, we need compute the variation of

the L in Eq. (3.38) under Eq. (3.39), by promoting ↵
r

! ↵
r

(x). However, the pieces that

are proportional to ↵r(x) must vanish identically since the Lagrangian is invariant under

H-rotation. Thus we only need to focus on terms that are proportional @
µ

↵r(x), which can

only come from the variation of @
µ

⇡a, but not the F 2

2

(T ) term, under Eq. (3.39):

Jr

µ

= @
µ

⇡a[F
2

(T )2]
ab

(T r)
bc

⇡c , (3.40)
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condition that when all but ⇡1 and "1 are set to zero, the case of a single flavor Goldstone in

Eq. (3.4) can be recovered, so that Adler’s zero condition is preserved.

The entire CCWZ Lagrangian can be reconstructed in the present approach by focusing

on two objects that have well-defined (and simpler!) transformation properties under the shift

symmetry, which are the Goldstone covariant derivative and the associated gauge connection

|D
µ

⇡i ! |D
µ

⇡0i = U |D
µ

⇡i , (3.8)

E i

µ

T i ! U(E i

µ

T i)U�1 � (@
µ

U)U�1 , (3.9)

where

U = eiu
i
(✏,⇡)T

i
/f (3.10)

is a nonlinear function of |⇡i and |"i. Expanding in power series in 1/f , we write

|D
µ

⇡i = F
2

(T )|@
µ

⇡i , F
2

(T ) = 1 +
1
X

n=1

B
n

T n (3.11)

ui(⇡, ") =
1

f
h⇡T i|F

3

(T )|"i, F
3

(T ) =
1
X

n=1

C
n

T n�1 (3.12)

E i

µ

=
1

f2

h@
µ

⇡|F
4

(T )|T i⇡i , F
4

(T ) =
1
X

n=0

D
n

T n (3.13)

By demanding that, under the shift in Eq. (3.6), |D
µ

⇡i and E i

µ

transform according to the pre-

scribed fashion in Eqs. (3.8) and (3.9) allows one to solve for all but one numerical coe�cient,

order by order in 1/f , as long as the following ”Closure condition” is met:

�

T i

�

ab

�

T i

�

cd

+
�

T i

�

ac

�

T i

�

db

+
�

T i

�

ad

�

T i

�

bc

= 0. (3.14)

The only undetermined coe�cient corresponds to an overall rescaling in the normalization of

the decay constant f .

The surprising result is that these numerical coe�cients can be solved without specifying

the broken group G. All that is necessary is the Adler’s zero condition and invariance under

the unbroken group H. As such, the resulting e↵ective Lagrangian is universal for all G/H 0,

where H 0 contains H as a subgroup, up to an overall normalization of the decay constant f .

In Refs. [3, 4] closed-form expressions for F
2

, F
3

and F
4

are given (check F
4

please!)

F
2

(T ) =
sin

pTpT , F
3

=
ipT tan

 pT
2

!

, F
4

(T ) =
2

T sin2
pT
2

, (3.15)

which are su�cient for building up the e↵ective Lagrangian. The equivalence to the CCWZ

formalism can be established with the identification

�

T i

�

ab

= �if iab , (3.16)
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Plugging back into Eq. (3.32) allows one to solve for

F
1

(r) = �c
1

p
r tan(c

1

p
r + c

2

) . (3.34)

The boundary condition that F
1

(0) = 1 gives c
2

= ⇡/2 while c
1

can be absorbed into the

normalization of f . So all three functions can be solved for

F
1

(r) =
p
r cot

p
r , F

2

(r) =
sin

p
rp

r
, F

3

(r) =
ip
r
tan

p
r

2
. (3.35)

The closed-form expression for F
1

is the main result of this subsection.

So in the end, we obtain closed-form expressions, valid to all orders in 1/f , for the

nonlinear shift, the Goldstone covariant derivative and the leading two-derivative Lagranigan

⇡a 0 = ⇡a + [F
1

(T )]
ab

"b , (3.36)

D
µ

⇡a = [F
2

(T )]
ab

@
µ

⇡b, (3.37)

L =
1

2
[F

2

(T )2]
ab

@
µ

⇡a@µ⇡b . (3.38)

The Lagrangian in Eq. (3.38) is invariant under the general nonlinear shift in Eq. (3.36). This

information enables us to derive the Ward identity under the shift symmetry, to all orders in

1/f , without the precise knowledge of coset space G/H.

3.3 The ”Vector” and ”Axial” Ward Identities to All Orders in 1/f

In this subsection we discuss the conserved currents corresponding to the unbroken and the

shift symmetries, respectively. Following the terminology from QCD Chiral Lagrangians,

we call the currents for the unbroken symmetry the ”vector currents”, while those for the

nonlinear shift symmetry the ”axial currents.” We also derive the corresponding vector and

axial Ward identities. While these objects have been discussed extensively in the context of

current algebra in low-energy QCD [10], explicit and closed-form expressions of the vector

and axial currents to all orders in 1/f have never been discussed in the literature, to the best

of our knowledge.

Under the linearly realized, unbroken H symmetry, the Nambu-Goldstones transform as

⇡a ! ⇡a + i↵
r

(T r)
ab

⇡b , (3.39)

from which it is straightforward to derive the corresponding vector current and the Ward

identity using the path integral approach. In particular, we need compute the variation of

the L in Eq. (3.38) under Eq. (3.39), by promoting ↵
r

! ↵
r

(x). However, the pieces that

are proportional to ↵r(x) must vanish identically since the Lagrangian is invariant under

H-rotation. Thus we only need to focus on terms that are proportional @
µ

↵r(x), which can

only come from the variation of @
µ

⇡a, but not the F 2

2

(T ) term, under Eq. (3.39):

Jr

µ

= @
µ

⇡a[F
2

(T )2]
ab

(T r)
bc

⇡c , (3.40)
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p
T cot T
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ordered0amplitudes:0
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What0have0we0learned0here?0

0

The0“extended0theory”0in0CHY0arises0from0the0matrix0elements0of0

0

0

0

0

In0this0case,0the0matrix0elements0can0be0interpreted0as0“amplitudes”:0

0

0

0

0

In0terms0of0Feynman0diagrams,0NLSM0has0only0evenGpoint0ver3ces.00

In0terms0of0general0nonlinear0shia,0NLSM0has0only0oddGpoint0ver3ces0in0

the0current0corresponding0to0the0shia0symmetry.00

with q ! 0
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Concluding0Remarks:0

0

•  The0Adler’s0zero0should0be0taken0as0the0defining0property0of0NambuG

Goldstone0bosons.0

•  Goldstone0interac3ons0are0universal0among0a0common0unbroken0

group0H0in0the0IR.0

•  All0composite0Higgs0models0contain0a0common0universal0Lagrangian0
(the0symmetryGpreserving0part.)0

•  The0soa0limits0of0Goldstone0amplitudes,0and0the0infrared0structure0of0

NLSM,0is0much0richer0than0we0knew.0

0

We0have0just0begun0our0explora3on!0


