Analytical study of Yang-Mills theory from first principles by a massive expansion

Fabio Siringo

Department of Physics and Astronomy University of Catania, Italy

Infrared QCD APC, Paris Diderot University, 8-10 November 2017

イロト イポト イヨト イヨト

Fabio Siringo

What is "perturbative" and what is not?

It depends on the Expansion Point

What is "perturbative" and what is not?

It depends on the Expansion Point

$$\Delta_0(p) = rac{1}{p^2} \quad \Longrightarrow$$
 The limit $p^2 o 0$ is N.P.

What is "perturbative" and what is not?

It depends on the Expansion Point

$$\Delta_0(p) = \frac{1}{p^2} \implies$$
 The limit $p^2 \to 0$ is N.P.

While if we take

$$\Delta_0(p) = \frac{1}{p^2 + m^2} \implies$$
 P.T. works well in the IR

(日)

(Tissier and Wschebor, 2010, 2011)

What is "perturbative" and what is not?

It depends on the Expansion Point

$$\Delta_0(p) = \frac{1}{p^2} \implies$$
 The limit $p^2 \to 0$ is N.P.

While if we take

$$\Delta_0(p) = \frac{1}{p^2 + m^2} \implies$$
 P.T. works well in the IR

イロト イヨト イヨト イ

(Tissier and Wschebor, 2010, 2011)

Lattice $\rightarrow m \neq 0$ in the IR: \implies The exact YM theory must predict a mass

What is "perturbative" and what is not?

It depends on the Expansion Point

$$\Delta_0(p) = \frac{1}{p^2} \implies$$
 The limit $p^2 \to 0$ is N.P.

While if we take

$$\Delta_0(p) = \frac{1}{p^2 + m^2} \implies$$
 P.T. works well in the IR

(Tissier and Wschebor, 2010, 2011)

Lattice $\rightarrow m \neq 0$ in the IR:

 \implies The exact YM theory must predict a mass

Any variational ansatz for $\Delta_0(p)$ works well provided it is *massive* (F.S., 2014,2015): two-step approach

- Gaussian Effective Potential and mass generation
- Massive expansion around the best vacuum

- Gaussian Effective Potential and mass generation
- Massive expansion around the best vacuum

Thermal effects as a check of physical consistency:

- Analytic properties at finite T
- Gaussian Free Energy and deconfinement at finite T

A toy model for mass generation

$$\mathcal{L} = \left[rac{1}{2}\phi\left(-\partial^2-m^2
ight)\phi
ight] - \left[rac{\lambda}{4!}\phi^4-m^2\phi^2
ight]$$

1st Order Effect. Potential = Vac. Energy by a Gaussian Funct.

[J. M. Cornwall, R. Jackiw and E. Tomboulis (1974); P.M. Stevenson (1985); J.M. Cornwall (1982)]

Gap equation and renormalization

$$\frac{\delta V}{\delta m^2} = 0 \implies \begin{cases} m^2 = 8\pi^2 \alpha J(m) \\ \Sigma^{(1)} = 0 \rightarrow \end{cases} \text{Self consist. pole}$$

where $\alpha = \lambda/(16\pi^2)$ and

$$J(m) = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \,\Delta_0(p) = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \,\frac{1}{p^2 + m^2} = \ \mathbf{?}$$

Gap equation and renormalization

$$\frac{\delta V}{\delta m^2} = 0 \implies \begin{cases} m^2 = 8\pi^2 \alpha J(m) \\ \Sigma^{(1)} = 0 & \rightarrow \end{cases} \text{Self consist. pole} \\ \text{where } \alpha = \lambda/(16\pi^2) \text{ and} \\ J(m) = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \, \Delta_0(p) = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \, \frac{1}{p^2 + m^2} = ? \\ \begin{cases} \frac{m^2}{16\pi^2} \log \frac{m^2}{\Lambda^2} + C & (\text{derivate and integrate back}) \\ -\frac{m^2}{16\pi^2} \left[\frac{2}{\epsilon} + \log \frac{\mu^2}{m^2}\right] = \frac{m^2}{16\pi^2} \log \frac{m^2}{\Lambda^2_{\epsilon}} \end{cases}$$

 $\frac{m^2}{16\pi^2} \log \frac{m^2}{\Lambda_{IR}^2} \qquad (\text{ UV finite by subtraction of DR zeros})$

・ 同 ト ・ ヨ ト ・ ヨ ト

Gap equation and renormalization

J

$$\frac{\delta V}{\delta m^2} = 0 \implies \begin{cases} m^2 = 8\pi^2 \alpha J(m) \\ \Sigma^{(1)} = 0 \rightarrow \text{Self consist. pole} \end{cases}$$
where $\alpha = \lambda/(16\pi^2)$ and
$$J(m) = \int \frac{d^4 p}{(2\pi)^4} \Delta_0(p) = \int \frac{d^4 p}{(2\pi)^4} \frac{1}{p^2 + m^2} = ?$$

$$J(m) = \begin{cases} \frac{m^2}{16\pi^2} \log \frac{m^2}{\Lambda^2} + C & (\text{derivate and integrate back}) \\ -\frac{m^2}{16\pi^2} \left[\frac{2}{\epsilon} + \log \frac{\mu^2}{m^2}\right] = \frac{m^2}{16\pi^2} \log \frac{m^2}{\Lambda^2_{\epsilon}} \\ \frac{m^2}{16\pi^2} \log \frac{m^2}{\Lambda^2_{IR}} & (\text{UV finite by subtraction of DR zeros}) \\ \frac{1}{p^2 + m^2} \rightarrow \frac{1}{p^2 + m^2} - \frac{1}{p^2} + \frac{m^2}{p^4} & (\text{leading and sub-leading}) \end{cases}$$

Fabio Siringo

Renormalized Effective Potential in units of the best mass m_0

イロト イポト イヨト イヨト

Renormalized Effective Potential in units of the best mass m_0

Gluon mass generation: the same identical result for SU(N) Yang-Mills Theory in any covariant ξ -gauge if $\alpha = 9N\alpha_s/(8\pi)$

SU(N) Yang-Mills Expanding around the best vacuum of the GEP

Add and subtract a transverse mass term in the exact Faddev-Popov Lagrangian in ξ -gauge:

$$\begin{cases} \Delta_0^{\mu\nu}(p) = \frac{1}{p^2 + m^2} t^{\mu\nu}(p) + \frac{\xi}{p^2} \ell^{\mu\nu}(p) & \text{(free propagator)} \\ & & \\ \delta\Gamma^{\mu\nu} = -m^2 t^{\mu\nu}(p) & \text{(2-point vertex)} \end{cases}$$

 \implies Gauge invariant GEP and mass generation

SU(N) Yang-Mills Expanding around the best vacuum of the GEP

Add and subtract a transverse mass term in the exact Faddev-Popov Lagrangian in ξ -gauge:

$$\begin{cases} \Delta_0^{\mu\nu}(p) = \frac{1}{p^2 + m^2} t^{\mu\nu}(p) + \frac{\xi}{p^2} \ell^{\mu\nu}(p) & \text{(free propagator)} \\ & \swarrow \text{Exact since } \Pi^L = 0 \\ \delta \Gamma^{\mu\nu} = -m^2 t^{\mu\nu}(p) & \text{(2-point vertex)} \end{cases}$$

 \Longrightarrow Gauge invariant GEP and mass generation

- The pole shift cancels at tree level
- All spurious diverging mass terms cancel without counterterms and/or parameters
- Standard UV behavior

UNIVERSAL SCALING

RS Optimized Perturbation Theory

Ignoring RG effects, setting $\alpha \sim N\alpha_s$

$$\Sigma(p) = \alpha \Sigma^{(1)}(p) + \alpha^2 \Sigma^{(2)}(p, N) + \cdots$$

$$\Sigma^{(1)} = -p^2 F(p^2/m^2); \qquad \frac{\Sigma(p)}{\alpha p^2} = -F(p^2/m^2) + \mathcal{O}(\alpha)$$

$$\Delta(p) = \frac{Z}{p^2 - \Sigma(p)} = \frac{J(p)}{p^2}$$
Setting $Z = z (1 + \alpha \delta Z)$ (one-loop):
 $z J(p)^{-1} = 1 + \alpha \left[F(p^2/m^2) - \delta Z\right] + \mathcal{O}(\alpha^2)$
 $z J(p)^{-1} = 1 + \alpha \left[F(p^2/m^2) - F(\mu^2/m^2)\right] + \mathcal{O}(\alpha^2)$

Must exist *x*, *y*, *z*:

$$z J(p/x)^{-1} + y = F(p^2/m^2) + F_0 + O(\alpha)$$

UNIVERSAL SCALING GHOST INVERSE DRESSING FUNCTION (Landau gauge $\xi = 0$)

Denoting by G(s) the ghost universal function $(F(s) \rightarrow G(s))$

Fabio Siringo

UNIVERSAL SCALING GHOST INVERSE DRESSING FUNCTION (Landau gauge $\xi = 0$) The ghost universal function is just

UNIVERSAL SCALING GHOST INVERSE DRESSING FUNCTION (Landau gauge $\xi = 0$) The ghost universal function is just

TABLE of OPTIMIZED RENORMALIZATIONCONSTANTS: $z J(p/x)^{-1} + y = F(p^2/m^2) + F_0$

arXiv:1607.02040

Data set	Ν	N_f	x	У	Z.	<i>y</i> ′	<i>z</i> .′
Bogolubsky et al.	3	0	1	0	3.33	0	1.57
Duarte et al.	3	0	1.1	-0.146	2.65	0.097	1.08
Cucchieri-Mendes	2	0	0.858	-0.254	1.69	0.196	1.09
Ayala et al.	3	0	0.933	-	-	0.045	1.17
Ayala et al.	3	2	1.04	-	-	0.045	1.28
Ayala et al.	3	4	1.04	-	-	0.045	1.28

Table: Scaling constants *x*, *y*, *z* (gluon) and *y'*, *z'* (ghost). The constant shifts $F_0 = -1.05$, $G_0 = 0.24$ and the mass m = 0.73 GeV are optimized by requiring that x = 1 and y = y' = 0 for the lattice data of Bogolubsky et al. (2009)

ANALYTIC CONTINUATION arXiv:1605.07357

э

ANALYTIC CONTINUATION arXiv:1605.07357

ANALYTIC CONTINUATION

Imaginary part of the dressed gluon propagator Δ

No violation of unitarity and casuality (Stingl, 1996)

$$\Delta(\omega) \approx \sum_{\pm} R_{\pm} \left[\frac{1}{\omega - (m \pm i\gamma)} - \frac{1}{\omega + (m \pm i\gamma)} \right]$$

$$\Delta(t) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \Delta(\omega) e^{i\omega t} \approx -2e^{-\gamma|t|} |\mathbf{R}| \sin\left(m|t| + \phi\right)$$

where $R_{\pm} = |R|e^{\pm i\phi}$

- Short-lived quasigluons with lifetime $\tau = 1/\gamma$ (canceled from asymptotic states)
- During its short life the quasigluon \approx eigenstate with energy m
- Mass and damping rate are physical or artefacts of the expansion?

イロン 不得 とくほ とくほ とう

- The extension to finite T is straightforward (but tedious!)
- Lucky enough: many explicit details by Reinosa, Serreau, Tissier and Wschebor (2014)
- New crossed graphs by a simple derivative
- Set $m_0 = 0.73$ GeV as for T = 0

Finite T Gluon propagator in the Landau gauge

- The extension to finite T is straightforward (but tedious!)
- Lucky enough: many explicit details by Reinosa, Serreau, Tissier and Wschebor (2014)
- New crossed graphs by a simple derivative
- Set $m_0 = 0.73$ GeV as for T = 0

Fabio Siringo

Finite T Trajectory of poles in the complex plane

In the limit $\mathbf{k} \to 0$ the pole $\omega = \pm (m \pm i\gamma)$ is the same for Δ_L , Δ_T . Using $m_0 = 0.73$ GeV and $F_0 = -1.05$ (optimal at T = 0):

Gaussian Free Energy

At finite temperature the GEP becomes predicitive!

G.Comitini and F.S., arXiv:1707.06935

G.Comitini and F.S., arXiv:1707.06935

Compares well with the lattice value $T_c = 270 \text{ MeV}$ found by P.J. Silva et al. (2014).

Gaussian Free Energy Equation of State (G.Comitini and F.S., arXiv:1707.06935)

Fabio Siringo

An incomplete wish list:

- A consistent criterion for optimization?
- Are the poles gauge invariant?
- What about higher loops? (A general criterion for truncation?)
- RG matching with UV limit
- Gribov copies (expected to be relevant deep in the IR)

イロト イ理ト イヨト イヨト

Bound states (BS equation)

A simple variational argument for mass generation by the GEP

- A simple variational argument for mass generation by the GEP
- A perturbative expansion around the optimal vacuum yields analytical results at one-loop

- A simple variational argument for mass generation by the GEP
- A perturbative expansion around the optimal vacuum yields analytical results at one-loop
- Analytic continuation in the complex plane: prediction of dynamical properties

イロト イポト イヨト イヨト

- A simple variational argument for mass generation by the GEP
- A perturbative expansion around the optimal vacuum yields analytical results at one-loop
- Analytic continuation in the complex plane: prediction of dynamical properties
- Thermal effects as a check of physical consistency for the poles

Fabio Siringo

- A simple variational argument for mass generation by the GEP
- A perturbative expansion around the optimal vacuum yields analytical results at one-loop
- Analytic continuation in the complex plane: prediction of dynamical properties
- Thermal effects as a check of physical consistency for the poles

イロト イポト イヨト イヨト

• At finite *T* the GEP becomes predictive: first order transition and EoS

- A simple variational argument for mass generation by the GEP
- A perturbative expansion around the optimal vacuum yields analytical results at one-loop
- Analytic continuation in the complex plane: prediction of dynamical properties
- Thermal effects as a check of physical consistency for the poles
- At finite *T* the GEP becomes predictive: first order transition and EoS
- Overall: good physical picture without free parameters (from first principles)

ヘロト ヘ戸ト ヘヨト ・ヨト

- A simple variational argument for mass generation by the GEP
- A perturbative expansion around the optimal vacuum yields analytical results at one-loop
- Analytic continuation in the complex plane: prediction of dynamical properties
- Thermal effects as a check of physical consistency for the poles
- At finite *T* the GEP becomes predictive: first order transition and EoS
- Overall: good physical picture without free parameters (from first principles)

BACKUP SLIDES

Fabio Siringo

Jensen inequality with ghost fields

Averaging over free-boson fields and using Jensen inequality

$$\mathcal{F}_{exact} = \mathcal{F}_0^A - T \log \left\langle e^{\sum_{int}^A} \operatorname{Det} \mathcal{M}_{FP}(A) \right\rangle_0 \leq \mathcal{F}_1^A + \mathcal{F}^{gh}$$

where $\mathcal{F}^{gh} = -T \langle \log \operatorname{Det} \mathcal{M}_{FP}(A) \rangle_0 \neq \mathcal{F}^{gh}_{1Loop}$. In any linear covariant gauge $\mathcal{M}_{FP}(A) = \mathcal{G}_0^{-1} + \delta \mathcal{M}(A)$

$$\mathcal{F}^{gh} = T \left[\operatorname{Tr} \log \mathcal{G}_0 \right] + \frac{T}{2} \langle \operatorname{Tr} \left[\mathcal{G}_0 \delta \mathcal{M}(A) \mathcal{G}_0 \delta \mathcal{M}(A) \right] \rangle_0 + \dots = \mathcal{F}^{gh}_{1Loop} + \mathcal{F}^{gh}_{2Loop} + \mathcal$$

where $\mathcal{F}_{2Loop}^{gh} \sim \alpha \int \mathcal{G}_0 \Delta_m \mathcal{G}_0$, etc., so that

 $|\mathcal{F}_G = \mathcal{F}_1^A + \mathcal{F}_{1Loop}^{gh} \ge \mathcal{F}_{exact} - \delta \mathcal{F}$ where $\delta \mathcal{F} = \mathcal{F}^{gh} - \mathcal{F}_{1Loop}^{gh}$

and by Jensen inequality again:

$$\mathcal{F}^{gh} \geq -T \left[\operatorname{Tr} \log \left\langle \mathcal{M}_{FP}(A) \right\rangle_0 \right] = T \left[\operatorname{Tr} \log \mathcal{G}_0 \right] = \mathcal{F}^{gh}_{1Loop}$$

(日)

so that $\delta \mathcal{F} \geq 0$

Gaussian Free Energy Equation of State (G.Comitini and F.S., arXiv:1707.06935)

Fabio Siringo

Running Coupling Pure Yang-Mills SU(3)

RG invariant product (Landau Gauge - MOM-Taylor scheme):

 $\alpha_s(\mu) = \alpha_s(\mu_0) \frac{J(\mu)\chi(\mu)^2}{J(\mu_0)\chi(\mu_0)^2}$

What if
$$\delta F_0 = \delta G_0 = \pm 25\%$$
 ?

ANALYTIC CONTINUATION Ghost dressing function: $\mathcal{G}(p^2) = \frac{\chi(p^2)}{p^2}$

э

э

- The counterterm $\delta \Gamma = -M$ cancels the mass at tree-level
- A massive propagator from *loops* $\rightarrow S(p) = \frac{Z(p)}{p-M(p)}$
- A new parameter x = M/m

but

イロト イポト イヨト イヨト

- The counterterm $\delta \Gamma = -M$ cancels the mass at tree-level
- A massive propagator from *loops* $\rightarrow S(p) = \frac{Z(p)}{p-M(p)}$
- A new parameter x = M/m

but

- Agreement not as good as for pure YM theory (*Z*(*p*) is decreasing)
- M(p) depends on α_s
- Optimization is not easy without RG corrections!

One-Loop third-order double expansion (Landau Gauge)

Yang-Mills \rightarrow F.S., Nucl. Phys. B **907** 572 (2016) QCD \rightarrow F.S., arXiv:1607.02040

Optimized by the Lattice $N_f = 2$, m = 0.8 GeV M = ?

Lattice data are for two light quarks, from Ayala et al. (2012)

CHIRAL QCD Gluon sector

Optimized by the Lattice:

$$\begin{split} m &= 0.8 \; \text{GeV}, \, M = 0.65 \; \text{GeV} \\ m_1^2 &= (0.54 \pm 0.52i) \; \text{GeV}^2, \quad m_2^2 = (1.69 \pm 0.1i) \; \text{GeV}^2 \end{split}$$

CHIRAL QCD Quark sector: ANALYTIC CONTINUATION TO MINKOWSKY SPACE

Quark propagator:

$$S(p) = S_p(p^2)\not p + S_M(p^2)$$

NO COMPLEX POLES \implies Standard Dispersion Relations

$$\rho_M(p^2) = -\frac{1}{\pi} \operatorname{Im} S_M(p^2)$$
$$\rho_p(p^2) = -\frac{1}{\pi} \operatorname{Im} S_p(p^2)$$

$$S(p) = \int_0^\infty \mathrm{d}q^2 \frac{\rho_p(q^2)\not p + \rho_M(q^2)}{p^2 - q^2 + i\varepsilon}.$$

CHIRAL QCD Quark sector: $N_f = 2$, M = 0.65 GeV, m = 0.7 GeV

Positivity Conditions: $\rho_p(p^2) \ge 0, \qquad p \ \rho_p(p^2) - \rho_M(p^2) \ge 0$

CHIRAL QCD Quark sector: $N_f = 2, M = 0.65$ GeV, m = 0.7 GeV

Positivity Conditions:

 ρ_p

$$(p^2) \ge 0,$$
 $p \rho_p(p^2) - \rho_M(p^2) \ge 0$

æ

<ロト <回 > < 注 > < 注 > 、