Poincaré-covariant description of 2- and 3-body bound states from functional approaches to QFT

Mesons and Baryons in QCD from Dyson-Schwinger-Bethe-Salpeter equations and from Dynamical Hadronisation within the FRG

Reinhard Alkofer

Institute of Physics, University of Graz

Workshop on *Infrared QCD* Paris, France, November 8-10, 2017

Outline

- Basic Aspects of Bound States
- Bethe-Salpeter Reduction, Hubbard-Stratonovich Transformations, & Dynamical Hadronization
- Relativistic 2- & 3-Fermion Bound State Equations
- Structure of Hadronic Bound State Amplitudes
- Interaction Kernels
- 6 Coupling of E.M. Current and Quark-Photon Vertex
- Summary and Outlook

Disclaimer: Confinement seems to make things easy but it is the hard problem!

What are bound states?

A system of several or many constituents which stay together. ?

© Even if not disturbed from outside \exists dramatic changes, *e.g.*, fate of solar system ..., excited atoms ...

Bound states:
$$M_B = \sqrt{P_\mu^{tot}P^{tot\,\mu}} < \sum_i m_i$$
 . ?

- © Works well in classical, relativistically invariant mechanics.
- ⊕ For not-to-strong fields in QED. (▲In general no relativistically inv. QM!)

Does not work in

- © General Relativity.
- © Quantum Gauge Field Theory in confining and/or Higgs phase.

For the purpose of this talk all hadrons are bound states ...

... but the hard problem remains:

Confinement \Rightarrow **only** singularities from hadrons/glueballs in $S_{H(s \rightarrow H's)}$?

Bound states in Quantum Theory

In standard course on

QM: (i) Map 2-particle problem to potential problem, and

(ii) solve Schrödinger equation.

Fails for $N \ge 3$ constituents & thus for QFT!

QM potential problem:

Transmission amplitudes S(E) of scattering states: Poles @ iE_B .

(NB: Require for $E = iE_B$ non-vanishing wave function without incident wave,

see, e.g., F. Schwabl, QM, Sect. 3.7.1.)

Can be generalized to all Quantum Theories:

Search for **poles in** analytic continuation of suitable *S*-matrix elements, resp., **Green functions**.

Bound states in Quantum Theory

Bound state properties only from **non-perturbative** calculations:

- Finite polynomial in coupling × loop integrals:
 No change in analytic structure!
- A least resummation is needed.
 QM example: Born series → Lippmann-Schwinger integral eq.

Nevertheless,

fundamental difference between **barely and deeply bound states!** Main example:

Dichotomic nature of pion as $\bar{q}q$ bound state and Goldstone boson:

- Chiral limit: Goldstone theorem guarantees masslessness, i.e., quark self-energies = binding energy.
- Highly collective state with arbitrarily high $(\bar{q}q)^n$ components.

Bound states in QCD

Where to look for the nucleon in QCD?

Free propagation of lowest three-quark bound state:

Six-quark Green function!

Calculating it requires either

- to employ a lattice (i.e., give up Poincaré invariance)
- to use Monte-Carlo algorithms (i.e., use a statistical method)
- to run programs on supercomputers

or

- to fix a gauge (i.e., sacrifice gauge invariance)
- to truncate equations in a way which is verified á posteriori
- to perform a lot of (computer) algebra

Method 1: Numerical, partly excellent, results for hadron properties!

NB: Based on extrapolations $a \to 0, V \to \infty$ & $m_\pi \to 0$!

Method 2: Qualitative insight!

E.g. relation of observables to confinement, D χ SB, axial anomaly,

Bound states in QCD

Recent review: G. Eichmann, H. Sanchis Alepuz, R. Williams, C. S. Fischer, RA,
Prog. Part. Nucl. Phys. **91** (2016) 1 [arXiv:1606.09602].

QCD correlation functions contribute to the understanding of

- ★ confinement of gluons, quarks, and colored composites.
- ★ D_χSB, *i.e.*, generation of the quarks' **constituent masses** and **chirality-changing quark-gluon interactions.**
- \star U_A(1) anomaly and topological properties.

Functional Methods

(Exact Renorm. Group, Dyson-Schwinger eqs., *n*PI methods, ...): Input into hadron phenomenology via **QCD bound state eqs.**.

- Bethe-Salpeter equations for mesons form factors, decays, reactions, ...
- covariant Faddeev equations for baryons nucleon form factors, Compton scattering, meson production, ...

Bound states from functional approaches

Paris, Nov. 10, 2017

Bethe-Salpeter Reduction

Inhomogeneous DSE (or FRG eq. or ...)

to homogeneous BSE:

▶ Assume bound state s.t. on-shell momentum $P_{os} = -M_B^2$:

$$G^{(4)}\left(\textit{p},\textit{p}',\textit{P}_{\textit{os}}\right) = \frac{-\textit{i}}{\left(2\pi\right)^4} \frac{\chi\left(\textit{p},\textit{P}_{\textit{os}}\right)\bar{\chi}\left(\textit{p}',\textit{P}_{\textit{os}}\right)}{2\omega\left(\textit{P}_{\textit{os}}^0 - \omega + \textit{i}\epsilon\right)} + \text{reg. terms},$$

$$\omega := \sqrt{\mathbf{P}_{os}^2 + M_B^2}, \, \chi\left(x_1, x_2, P\right) = \left\langle 0 \left| T\Phi\left(x_1\right)\Phi\left(x_2\right) \right| P \right\rangle$$
 BS ampl.

▶ BS vertex fct. Γ s.t. $\chi(p, P) = G_1(p_1) G_2(p_2) \Gamma(p, P)$, order $(P^0 - \omega)^{-1}$ provides

$$\Gamma\left(p;P_{os}\right) = -\int \frac{d^4p'}{\left(2\pi\right)^4} K\left(p,p',P_{os}\right) G_1\left(p'_1\right) G_2\left(p'_2\right) \Gamma\left(p';P_{os}\right)$$

homog. lin. (eigenvalue) integral equation

 $\triangleright \mathcal{O}\left(\left(P^{0}-\omega\right)^{0}\right)$: normalization

Bethe-Salpeter Reduction

- ▶ drastic simplification: $\overline{\text{4-pt. fct.}} \rightarrow \text{product of 3-pt. fcts.}$, resp, 6-pt. fct. $\rightarrow \text{4-pt. fcts.}$
- ▶ symmetry preserving kernels: rainbow-ladder, 3PI-3-loop, . . .
- only on-shell quantities for bound states
- unphysical (so-called anomalous) solutions: negative norm, time-like distances between constitutents, etc.
- analytic continuation needed

Hubbard-Stratonovich Transformations

- ► (Multi-) gluon exchange: 4-quark (6-quark, etc.) interactions
- ▶ Fierz reorder according to meson (baryon) channel
- Introduce meson (baryon) fields via identity $\exp\left(\tfrac{1}{2}\int \bar{q}\Lambda_{\alpha}qQ^{\alpha\beta}\bar{q}\Lambda_{\beta}q\right) = \frac{1}{\sqrt{\mathrm{Det}2\pi Q}}\int \mathcal{D}\phi \exp\left(-\tfrac{1}{2}\int \phi_{\alpha}(Q^{-1})^{\alpha\beta}\phi_{\beta} \int \phi_{\alpha}\bar{q}\Lambda_{\alpha}q\right)$
- ► E.o.m. for composite fields = BS eqs.
- Above cited disadvantages apply . . .

Dynamical Hadronization

Combine FRG and bosonisation:

H. Gies and C. Wetterich, Phys. Rev. D 65 (2002) 065001 [hep-th/0107221].

- 4-quark (6-quark, etc.) interactions generated by RG step
 - apply HS transformation
 - Next RG step -> re-bosonise -> RG step -> rebosonise -> . . .
- Disadvantage: Analytic continuation in presence of regulator fct. required!
- ▶ Advantage: Higher flexibility in choosing truncations. (?)

QCD bound state equations

State-of-the-art for BS eqs.:

- rainbow-ladder truncation (= dressed gluon exchange) for mesons and baryons in an unified approach.
 - NB: Chirality-changing interactions of lesser importance in $0^-, 1^-, \dots, \frac{1}{2}^+, \frac{3}{2}^+, \dots$ ground states.

Results include:

Masses, form factors, decays, Compton scattering, meson prod., ...

- ... heuristic "beyond rainbow-ladder" calculations ...
- 3PI–3-loop recent results (masses, decay constants, σ term) see, e.g.,

H. Sanchis-Alepuz, R. Williams, Phys.Lett.B 749 (2015) 592 [arXiv:1504.07776];
J. Phys. Conf. Ser. 631 (2015) 012064 [arXiv:1503.05896];

R. Williams, C. Fischer, W. Heupel, Phys.Rev.D 93 (2016) 034026 [1512.00455]

QCD bound state equations

Example for needed input:

R.A., M. Vujinovic, to be published

• Gluon, ghost & quark propagators

• Quark-gluon vertex

ncated)

Tree Non-Abi

3-gluon vertex
 (partially self-cons., truncated)

Ghost triangle

Relativistic 2-Fermion Bound State Equations

Example:

R.A., M. Vujinovic, to be published

Structure of Mesonic Bound State Amplitudes

Mesonic BS amplitudes $\langle 0|q_{\alpha}\bar{q}_{\beta}|\textit{M}_{\mathcal{I}}\rangle \propto \Phi_{\alpha\beta\mathcal{I}}$:

- scalar and pseudoscalar mesons: 4 tensor structures each
- vector and axialvector mesons: 12 tensor struct. each, 8 transv.
- tensor and higher spin mesons: 8 transverse struct. each which are functions of two Lorentz-invariant variables.

C. H. Llewellyn-Smith, Annals Phys. 53 (1969) 521.

Facts about the decomposition:

- Independent of any truncation of the bound state equation.
- Only Poincaré covariance and parity invariance exploited.
- It includes all possible internal spin and orbital angular momenta.

Numerical results for meson masses

Light scalar meson in (unquenched) QCD from the 3PI effective action:

$$\frac{m_{1^{--}}/f_{\pi}}{3 \text{PI-3L}} = \frac{m_{1^{++}}/f_{\pi}}{7.0} = \frac{12.4 \pm 1.0}{12.4 \pm 1.0}$$

R. Williams, C.S. Fischer, W. Heupel, Phys.Rev. D93 (2016) 034026

Light scalar meson in SU(2) gauge theory with two light flavours:

$$\frac{1 \text{Pl}}{m_{0^{++}}/f_{PS}}$$
 $\frac{3 \text{Pl-type}}{5.0 \pm 0.1}$ $\frac{5.1 \pm 0.1}{5.1 \pm 0.1}$

$$m_{1^{--}}/f_{\pi} m_{1^{++}}/f_{\pi}$$
 3PI-type 8.1 \pm 0.2 10.9 \pm 0.2

R.A., M. Vujinovic, to be published

 † with non-Abelian diagram only: 5.7 \pm 0.1 and 5.4 \pm 0.1

Relativistic 3-Fermion Bound State Equations

Dyson-Schwinger eq. for 6-point fct. \Longrightarrow 3-body bound state eq.:

BOUND STATE:

Pole in $G^{(3)}$ for $P^2 = -M_R^2$ or (equiv.) Pole in $T^{(3)}$

bound state amplitudes:

covariant 3-body bound state eq. (cf., Bethe-Salpeter for 2-body BS):

$$\Psi = -\widetilde{\mathsf{K}^{(3)}} \Psi = + -\widetilde{\mathsf{K}^{(2)}} \Psi = + -\widetilde{$$

Relativistic three-fermion bound state equations

3-body bound state eq.:

$$\Psi = -\widetilde{\mathsf{K}^{(3)}} \Psi = + -\widetilde{\mathsf{K}^{(2)}} \Psi = + -\widetilde{$$

NB: With 3-particle-irreducible interactions $\tilde{K}^{(3)}$ neglected: Poincaré-covariant Faddeev equation.

Elements needed for bound state equation:

- Tensor structures (color, flavor, Lorentz / Dirac) of the BS ampl.
- Full quark propagators for complex arguments
- Interaction kernels K_{2,3}

Needed for coupling to e.m. current:

Full quark-photon vertex

Structure of Hadronic Bound State Amplitudes

Mesonic BS amplitudes $\langle 0|q_{\alpha}\bar{q}_{\beta}|\textit{M}_{\mathcal{I}}\rangle \propto \Phi_{\alpha\beta\mathcal{I}}$:

- scalar and pseudoscalar mesons: 4 tensor structures each
- vector and axialvector mesons: 12 tensor struct. each, 8 transv.
- tensor and higher spin mesons: 8 transverse struct. each

which are functions of two Lorentz-invariant variables.

C. H. Llewellyn-Smith, Annals Phys. 53 (1969) 521.

Baryonic BS amplitudes

$$\sim \langle 0|q_{\alpha}q_{\beta}q_{\gamma}|\mathcal{B}_{\mathcal{I}}\rangle \propto \Psi_{\alpha\beta\delta\mathcal{I}}$$
 (with multi-indices $\alpha=\{x,D,c,f,\ldots\}$)

and \mathcal{I} baryon (multi-)index \Longrightarrow baryon quantum numbers

C. Carimalo, J. Math. Phys. **34** (1993) 4930.

For a solution with all tensor components:

G. Eichmann, RA, A. Krassnigg, D. Nicmorus, PRL 104 (2010) 201601

Structure of Baryonic Bound State Amplitudes

Facts about the decomposition:

- Independent of any truncation of the bound state equation.
- Only Poincaré covariance and parity invariance exploited.
- It includes all possible internal spin and orbital angular momenta.
- For positive-parity, positive-energy (particle) baryons it consists of

spin- ¹ / ₂ particle: <u>64 elements</u>				
# elements				
s-wave	8			
p-wave	36			
d-wave	20			
G. Eichmann et a	I., PRL 104 (2010) 201601			

spin- $\frac{3}{2}$ particle: 128 elements

s-wave	4
p-wave	36
d-wave	60
f-wave	28

H. Sanchis Alepuz et al. PRD 84 (2011) 096003

Each tensor structure is multiplied by a function of five Lorentz-invariant variables!

NB: Quark angular momentum contribute \sim 40 - 50 % of proton spin! $_{\text{\tiny 3}}$

Bound state masses require time-like momenta!

All (non-perturbative) approaches to QFT employ Euclidean momenta: Connection to the world of real particles requires analytic continuation!

In bound state eqs.:

- Knowledge of the quark propagator inside parabolic region required.
- Parabola limited by nearest quark singularities: $M < 2m_q(3m_q)$ for mesons (baryons)
- ground states unaffected by singularities.
- Lattice: Values for real $p^2 \ge 0$ only.
- Dyson-Schwinger / ERG eqs.: complex p² accessible.

Quark Propagator and Rainbow Truncation

Dyson-Schwinger eq. for Quark Propagator:

$$\frac{p}{k=p-q}$$

$$S^{-1}(p) = Z_2 S_0^{-1} + g^2 Z_{1f} \int \frac{d^4k}{(2\pi)^4} \gamma^{\mu} S(k) \Gamma^{\nu}(k, p; q) D_{\mu\nu}(q)$$

Rainbow truncation

Projection onto tree-level tensor γ_{μ} , restrict momentum dependence

$$Z_{1f}rac{g^2}{4\pi}D_{\mu
u}(q)\Gamma_
u(k,p;q)
ightarrow \left\{egin{array}{l} Z_{1f}rac{g^2}{4\pi}T_{\mu
u}(q)rac{Z(q^2)}{q^2}\left(Z_{1f}+lackbla(q^2)
ight)\gamma_
u \ =: Z_2^2T_{\mu
u}(q)rac{lpha_{eff}(q^2)}{q^2}\gamma_
u \end{array}
ight.$$

- <u>Truncation</u> of the quark-gluon vertex in the quark DSE.
- The BSE interaction kernel must be truncated accordingly.
- Physical requirement: Chiral symmetry axial WT id. relates quark DSE and bound-state eq. kernel.

Ladder truncation

 $q \bar q$ kernel compatible with rainbow truncation and axial WT id.:

$$K^{qar{q}}=4\pi Z_2^2rac{lpha_{ ext{eff}}(q^2)}{q^2}T_{\mu
u}(q)\gamma^{\mu}\otimes\gamma^{
u}$$

Together constitute the DSE/BSE Rainbow-Ladder truncation.

Note: the truncation can and should be systematically improved!

H. Sanchis-Alepuz, C. S. Fischer and S. Kubrak, Phys. Lett. B 733 (2014) 151;

H. Sanchis-Alepuz and R. Williams, Phys. Lett. B 749 (2015),592.

Rainbow-Ladder truncated three-body BSE:

- Previous studies used successfully the quark-diquark ansatz (reduction to a two-body problem).
- ullet pNRQCD: 3-body contribution \sim 25 MeV for heavy baryons.
 - Supported by this, the three-body irreducible kernel $K^{(3)}$ is neglected (Faddeev approximation).
- Quark-quark interaction $K^{(2)}$: same as quark-antiquark truncated kernel. (!Different color factor!)

Rainbow-Ladder truncated covariant Faddeev equation

Models for effective interaction:

Maris-Tandy model (Maris & Tandy PRC60 1999)

$$\alpha(k^2) = \alpha_{IR}(k^2; \Lambda, \eta) + \alpha_{UV}(k^2)$$

- Purely phenomenological model.
- Λ fitted to f_{π} .
- Ground-state pseudoscalar properties almost insensitive to η around 1.8

Describes very succesfully hadron properties.

DSE motivated model (R.A., C.S. Fischer, R. Williams EPJ A38 2008)

$$\alpha(k^2; \Lambda_S, \Lambda_B, \Lambda_{IR}, \Lambda_{YM})$$

- DSE-based in the deep IR.
- Designed to give correct masses of π , ρ and η' ($U_A(1)$ anomaly!).
- 4 energy scales! Fitted to π , K and η' .

Note: The resulting qq-interaction is chirality-conserving, flavour-blind and current-quark mass independent.

Beyond Rainbow-Ladder

- "Corrections beyond-RL" refers to corrections to the effective coupling but also to additional structures beyond vector-vector interaction.
- They can induce a different momentum dependence of the interaction.
- They can also induce a quark-mass and quark-flavour dependence of the interaction
- Question: how important are beyond-RL effects?

Coupling of E.M. Current and Quark-Photon Vertex

Electromagnetic current in the three-body approach:

Impulse appr. + Coupling to spectator q

by "gauging of equations"
M. Oettel, M. Pichowsky and L. von
Smekal, Eur. Phys. J. A 8 (2000) 251;
A. N. Kvinikhidze and B. Blankleider,
Phys. Rev. C 60 (1999) 044003.

Coupling to 2-q kernel not present in RL appr. Coupling to 3-q kernel not present in Faddeev appr.

Additional Input: Quark-Photon Vertex

Coupling of E.M. Current and Quark-Photon Vertex

Quark-Photon Vertex:

- Vector WT id. determines vertex up to purely transverse parts: "Gauge" part (Ball-Chiu vertex) completely specified by dressed quark propagator.
- Can be straightforwardly calculated in Rainbow-Ladder appr.:
 - important for renormalizibility (Curtis-Pennington term),
 - anomalous magnetic moment,
 - contains ρ meson pole!

The latter property is important to obtain the correct physics!

All elements specified to calculate baryon amplitudes and properties: Use computer with sufficient RAM (\sim tens of GB) and run for a few hours . . .

PoS QNP2012 (2012) 112

- Both models designed to reproduce correctly DχSB and pion properties within RL.
 They capture beyond-RL effects at this quark-mass.
- This behaviour extends to other light states (ρ, N, Δ), one gets a good description.
- Both interactions similar at intermediate momentum region:

 0.5 1 GeV is the relevant momentum region for DχSB & ground-state hadron props.
- Slight differences at larger current masses, however, qualitative model indep.

Nucleon electromagnetic form factors

Nucleon em. FFs vs. momentum transfer Eichmann, PRD 84 (2011)

- Good agreement with recent **data** at large Q^2
- Good agreement with lattice at large quark masses
- Missing pion cloud below ~2 GeV², in chiral region
- ~ nucleon quark core without pion effects

Nucleon electromagnetic form factors

Nucleon charge radii:

isovector (p-n) Dirac (F1) radius

· Pion-cloud effects missing in chiral region (⇒ divergence!). agreement with lattice at larger quark masses.

Nucleon magnetic moments:

isovector (p-n), isoscalar (p+n)

• But: pion-cloud cancels in $\kappa^s \Leftrightarrow$ quark core

Exp: $\kappa^{s} = -0.12$ Calc: $\kappa^s = -0.12(1)$

△ electromagnetic form factors

H. Sanchis-Alepuz et al., Phys. Rev. D 87 (2013) 095015 [arXiv:1302.6048 [hep-ph]].

- G_{F2} and G_{M3} : Deviation from sphericity!
- Important: Difference to quark-diquark model in G_{F_2} and G_{M3} .
- Large G_{F2} for small Q^2 !
- "Small" G_{M3}?

$\Delta \rightarrow N\gamma$ Electromagnetic Transition Form Factors

Magnetic f.f.: Large Q^2 good, at small Q^2 missing pion cloud effects?!

$\Delta \rightarrow N\gamma$ Electromagnetic Transition Form Factors

$$R_{EM} = -rac{G_E^*}{G_M^*}$$

- Deformations of N and Δ !
- Non-rel. quark model: sub-lead. *d*-wave?
- Relativistically: 4-spinors with lower components!
 Leading order: p-wave!
- Inherent to the approach!

$$R_{SM} = -\frac{\mathit{M}_{N}^{2}}{\mathit{M}_{\Delta}^{2}}\sqrt{\lambda_{+}\lambda_{-}}\frac{\mathit{G}_{C}^{*}}{\mathit{G}_{M}^{*}}$$

$\Sigma^0 - \Lambda$ transition

- Only octet-octet transition
- PANDA (FAIR): also time-like transition f.f.
- Considerable theoretical interest
- Related to low-energy constants,

Our results:
$$\frac{dG_E}{dQ^2}\Big|_{Q^2=0} = 0.053..0.073$$
, $\frac{dG_M}{dQ^2}\Big|_{Q^2=0} = 1.93..1.75$.

Expt.:
$$|\mu_{\Sigma^0\Lambda}| = (1.61 \pm 0.08) \, \mu_N$$

Summary

Hadrons from QCD bound state equations:

- QCD bound state equations: Unified approach to mesons and baryons feasible!
- ➤ So far:
 In beyond rainbow-ladder appr. meson observables,
 in RL appr. octet / decuplet masses, (e.m., axial, ...) form factors.
 full octet/decuplet (i.e., incl. hyperons): H. Sanchis-Alepuz et al., in preparation
- Under consideration:
 In rainbow-ladder appr. 2-photon processes as,
 e.g., nucleon Compton scattering;
 G. Eichmann and C. S. Fischer, Phys. Rev. D 87 (2013) 036006
 - G. Elchmann and C. S. Fischer, Phys. Rev. D 87 (2013) 036006 [arXiv:1212.1761 [hep-ph]] .
 - and hadronic contribution to light-light scattering and thus $(g-2)_{\mu}$
 - T. Goecke, C. S. Fischer and R. Williams, Phys. Rev. D 87 (2013) 034013.

Outlook

- ► Even in ground state form factors beyond rainbow-ladder effects at small Q²!
 - There: Likely hadronic (pionic) effects!
- Chirality-violating BRL effects ("spin-flip interactions"):
 - scalar and axialvector mesons,
 - excited mesons and baryons (spectrum)
 - exotic mesons and baryons (tetraquarks, pentaquarks, . . .)
 - ...
- Systematic approach: Include knowledge on quark-gluon vertex!
- ► To be used:
 - Bethe-Salpeter /covariant Faddeev eq.
 - with kernels at consistent 3PI level.
 - Dynamical hadronization in the

Exact Renormalization Group approach.

W. Mian, M. Mitter, J. Paris-Lopez, N. Wink, et al., in preparation

- Quark-meson model (NB: 1st step towards QCD)
- ▶ Wetterich eq. + Dynamical Bosonisation
- ▶ Truncation: LPA' incl. momentum-dep. wave-fcts., masses and Yukawa interactions

Applying analytical continuation to obtain pole masses (PM) and comparing with curvature masses (CM) $\overline{m}_{k,i}(0)$:

Particle	CM (Input)	PM Padé	PM Schlessinger
Pion	138.22	136.2 ± 0.1	136.4 ± 1.0
Sigma meson	536.37	472 ± 7	479 ± 10

Table: Pole masses vs. curvature masses, all in MeV.

Structure of Baryonic Bound State Amplitudes

s	l	T_{ij}
1/2	0	1⊗1 s waves
1/2	0	$\gamma_T^{\mu} \otimes \gamma_T^{\mu}$ (8)
1/2	1	1 ⊗ ½ [p, ψ] p waves
1/2	1	1 ⊗ p (36)
1/2	1	1 ⊗ 4
1/2	1	$\gamma_T^{\mu} \otimes \gamma_T^{\mu} \frac{1}{2} \left[\not p, \not q \right]$
1/2	1	$\gamma_T^{\mu} \otimes \gamma_T^{\mu} \not p$
1/2	1	$\gamma_T^{\mu} \otimes \gamma_T^{\mu} \not q$
3/2	1	$3(\not p\otimes \not q-\not q\otimes \not p)-\gamma_T^\mu\otimes \gamma_T^\mu[\not p,\not q]$
3/2	1	$3 \not p \otimes \mathbb{1} - \gamma_T^{\mu} \otimes \gamma_T^{\mu} \not p$
3/2	1	$3 \not q \otimes \mathbb{1} - \gamma_T^\mu \otimes \gamma_T^\mu \not q$
3/2	2	$3 \not p \otimes \not p - \gamma_T^\mu \otimes \gamma_T^\mu$ d waves
3/2	2	$p \otimes p + 2 \not q \otimes \not q - \gamma_T^\mu \otimes \gamma_T^\mu $ (20)
3/2	2	$p \otimes q + q \otimes p$
3/2	2	$ \phi \otimes [\phi, p] - \frac{1}{2} \gamma_T^{\mu} \otimes [\gamma_T^{\mu}, p] $
3/2	2	$\not p \otimes [\not p, \not q] - \frac{1}{2} \gamma_T^{\mu} \otimes [\gamma_T^{\mu}, \not q]$

$$\chi(x_1, x_2, x_3) = \langle 0 | T \psi(x_1) \psi(x_2) \psi(x_3) | N \rangle$$

Momentum space:

Jacobi coordinates p, q, P \Rightarrow 5 Lorentz invariants \Rightarrow 64 Dirac basis elements

$$\chi(p,q,P) = \sum_k \boxed{ f_k(p^2,q^2,p\cdot q,p\cdot P,q\cdot P) \quad \text{Momentum} }$$

$$\boxed{ \tau_{\alpha\beta\gamma\delta}^k(p,q,P) \quad \text{Dirac} \quad \otimes \quad \text{Flavor} \quad \otimes \quad \text{Color} }$$

Complete, orthogonal **Dirac tensor basis** (partial-wave decomposition in nucleon rest frame): Fichmann Alkofer Krassniga Nirmorus, PRI 104 (2010)

Eichmann, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

$$T_{ij} (\Lambda_{\pm} \gamma_5 C \otimes \Lambda_{+})$$

$$(\gamma_5 \otimes \gamma_5) T_{ij} (\Lambda_{\pm} \gamma_5 C \otimes \Lambda_{+})$$

$$(A \otimes B)_{\alpha\beta\gamma\delta} = A_{\alpha\beta} B_{\gamma\delta}$$