Small parameters in infrared Quantum Chromodynamics

$\label{eq:main_state} \frac{M. \ Peláez}{M. \ Tissier^4} \ \text{and} \ N. \ Wschebor^1$

 ¹Instituto de Física, Facultad de Ingeniería, Udelar, Montevideo, Uruguay,
 ²Centre de Physique Théorique, Ecole Polytechnique, Palaiseau, France,
 ³APC, Université Paris Diderot, France,
 ⁴LPTMC, Université de Paris VI, France.

Workshop QCD, November 2017, Paris

- Motivation
- 2 Fist order of this double expansion.
 - Gluon propagator
 - Quark-Gluon vertex
 - Quark propagator

3 Rainbow equation

- 4 Numerical results
 - Ultraviolet running of the coupling constant
 - Running of the quark-gluon coupling
- 5 Conclusions and perspectives

Motivation

- Motivation
- 2 Fist order of this double expansion.
 - Gluon propagator
 - Quark-Gluon vertex
 - Quark propagator
- 3 Rainbow equation
- 4 Numerical results
 - Ultraviolet running of the coupling constant
 - Running of the quark-gluon coupling
- 5 Conclusions and perspectives

Motivation

Landau gauge Euclidean QCD Lagrangian

• Landau gauge Euclidean QCD Lagrangian

$$\mathcal{L} = \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu} + \sum_{i=1}^{N_{f}} \bar{\psi}_{i} (\gamma_{\mu} D_{\mu} + M_{i}) \psi_{i} + \underbrace{ih^{a} \partial_{\mu} A^{a}_{\mu}}_{\text{Landau gauge}} + \underbrace{\partial_{\mu} \bar{c}^{a} (D_{\mu} c)^{a}}_{\text{Ghosts}}$$

$$F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + gf^{abc}A^{b}_{\mu}A^{c}_{\nu},$$
$$D_{\mu}\psi = \partial_{\mu}\psi - igA^{a}_{\mu}t^{a}\psi$$

 $(D_\mu c)^a = \partial_\mu c^a + g f^{abc} A^b_\mu c^c.$

・ロ > ・ (同 > ・ (回 > ・ (回 > ・

Motivation

Perturbation theory

• Standard perturbation theory:

- Assymptotic freedom
- Landau pole in the infrared
- Lattice simulations in the infrared:
 - moderate coupling constant e.g. [Blossier et al., Phys.Rev. D85, 2012]
 - massive gluon propagator e.g. [A. Cucchieri, A. Maas and T. Mendes, Phys.Lett. D77, 2008]
- Massive deformation of Landau gauge QCD Lagrangian

$$\mathcal{L} = \mathcal{L}_{inv} + i h^a \partial_\mu A^a_\mu + \partial_\mu \bar{c}^a (D_\mu c)^a + rac{\mathbf{m}^2}{2} \mathbf{A}^a_\mu \mathbf{A}^a_\mu$$

[Curci-Ferrari (1975)]

Motivation

Perturbation theory within massive Landau gauge Lagrangian

- Yang-Mills one loop calculation gives very accurate results for two and three correlation funcions. see M. Tissiers talk
- However, in the **quark sector** results are not as good as Yang-Mills ones.

The points are lattice data of [Bowman et al, Phys.Rev. D70 (2004)] [M. Peláez, M. Tissier, N. Wschebor, Phys. Rev D90 (2014)].

Motivation

Quark-Gluon coupling VS Ghost-Gluon coupling

• Quark-gluon coupling constant not too small.

Data from [Skullerud et al. JHEP 0304, 047 (2003)]

Motivation

Quark-Gluon coupling VS Ghost-Gluon coupling

• As the quark-gluon g_q and YM g_g running coupling constants are different in the infrared, we treat them separetly,

- g_g is considered as small parameter. Yang-Mills sector can be studied perturbately in the infrared.
- g_q is not a small parameter.

Motivation

Large N_c limit

• Large N_c limit shows the same general features of QCD.

[G. 't Hooft, Nucl. Phys. B 75, 461 (1974). Witten, Nucl. Phys. B 160, 57 (1979)]

In the large N_c limit, gluon propagators can be replaced by double color lines and

 $\frac{1}{g_q} \sim 1/\sqrt{N_c}$

Small parameters in infrared Quantum Chromodynamics

.

Motivation

Organizing the systematic expansion:

- How to implement the systematic expansion, *l*-order improved expansion:
 - We write all diagrams until *l*-loops
 - We count the powers of g_g and $1/N_c$
 - We also add higher loop order diagrams with the same powers of g_g and $1/N_c$.

.

Gluon propagator Quark-Gluon vertex Quark propagator

2 Fist order of this double expansion.

- Gluon propagator
- Quark-Gluon vertex
- Quark propagator
- 3 Rainbow equation
- 4 Numerical results
 - Ultraviolet running of the coupling constant
 - Running of the quark-gluon coupling
- 5 Conclusions and perspectives

Gluon propagator Quark-Gluon vertex Quark propagator

Gluon propagator

 At first order in this double expansion, the gluon propagator is dominated by its tree level form.

Gluon propagator Quark-Gluon vertex Quark propagator

Gluon propagator

 At first order in this double expansion, the gluon propagator is dominated by its tree level form.

Gluon propagator Quark-Gluon vertex Quark propagator

Quark-Gluon vertex

• At first order in this double expansion, the quark-gluon vertex is also dominated by its tree level form.

Gluon propagator Quark-Gluon vertex Quark propagator

Quark-Gluon vertex

• At first order in this double expansion, the quark-gluon vertex is also dominated by its tree level form.

Gluon propagator Quark-Gluon vertex Quark propagator

Quark propagator

Gluon propagator Quark-Gluon vertex Quark propagator

Quark propagator

Gluon propagator Quark-Gluon vertex Quark propagator

Quark propagator

Gluon propagator Quark-Gluon vertex Quark propagator

Rainbow equation

Only Rainbow diagrams survive

• They can be resummed in:

which is the well-known Rainbow approximation for the quark propagator.

see e.g. [Johnson et al, PRB (1964). Maskawa, PTP (1975). Atkinson et al, PRD (1988). Miransky et al, PRC (2004).]

[Maris et al, IJMP (2003). Roberts et al, EPJST (2007). Eichman et al, PRC (2008).]

- Motivation
- 2 Fist order of this double expansion.
 - Gluon propagator
 - Quark-Gluon vertex
 - Quark propagator

3 Rainbow equation

4 Numerical results

- Ultraviolet running of the coupling constant
- Running of the quark-gluon coupling
- 5 Conclusions and perspectives

Rainbow equation

 Rainbow equation represents a system of two coupled integral equations for the two scalar functions of the quark propagator.

$$S(p) = \left[-iA(p)\not p + B(p)\right]^{-1} = i\widetilde{A}(p)\not p + \widetilde{B}(p),$$

where

$$egin{aligned} & ilde{A}(p) = rac{A(p)}{A^2(p)p^2 + B^2(p)}\,, \ & ilde{B}(p) = rac{B(p)}{A^2(p)p^2 + B^2(p)}\,, \end{aligned}$$

- It is well-known that Rainbow resummation reproduces correctly the phenomenology of Spontaneous Chiral Symmetry Breaking.
- Let us stress that the main point here is that the Rainbow approximation is justified when considering g_g and $1/N_c$ as small parameters.

Renormalization

- We introduce the renormalization factors: $A^a_{\mu,\Lambda} = \sqrt{Z_A} A^a_{\mu}$, $\psi_{\Lambda} = \sqrt{Z_{\psi}} \psi$, $m^2_{\Lambda} = Z_{m^2} m^2$, $M_{\Lambda} = Z_M M$ and $g_{q,\Lambda} = Z_{g_q} g_q$.
- Renormalization condition: $S^{-1}(p = \mu_0, \mu_0) = -i\mu_0 + M(\mu_0)$
- The renormalized equations take the form:

$$\begin{split} \mathcal{A}(p,\mu_0) &= Z_{\psi} - Z_{g_q}^2 Z_{\psi}^2 Z_A g_q^2(\mu_0) C_F \int_{|q| < \Lambda} \frac{f(q,p) \tilde{\mathcal{A}}(q,\mu_0)}{Z_A[(p+q)^2 + Z_{m^2} m^2(\mu_0)]}, \\ \mathcal{B}(p,\mu_0) &= Z_{\psi} Z_M \mathcal{M}(\mu_0) + Z_{g_q}^2 Z_{\psi}^2 Z_A g_q^2(\mu_0) C_F \int_{|q| < \Lambda} \frac{(d-1) \tilde{\mathcal{B}}(q,\mu_0)}{Z_A[(p+q)^2 + Z_{m^2} m^2(\mu_0)]}, \\ f(q,p) &\equiv \frac{2p^2 q^2 + 3(p^2 + q^2)(p \cdot q) + 4(p \cdot q)^2}{p^2(q+p)^2} \end{split}$$

伺 と く ヨ と く ヨ と

Renormalization

- At the order g_g^0 and $1/N_c^0$:
 - No corrections for the gluon propagator: $Z_A \sim 1$ and $Z_{m^2} \sim 1$.
 - No corrections for the quark-gluon vertex: $Z_{g_q} Z_\psi \sqrt{Z_A} \sim 1$
- The equations can be simplified as

$$\begin{split} A(p,\mu_0) &= Z_{\psi}(\mu_0) - g_q^2(\mu_0) C_F \int_q \tilde{A}(q,\mu_0) \frac{f(q,p)}{(p+q)^2 + m^2(\mu_0)}, \\ B(p,\mu_0) &= M(\mu_0) + g_q^2(\mu_0) C_F(d-1) \int_q \tilde{B}(q,\mu_0) \left(\frac{1}{(p+q)^2 + m^2(\mu_0)} - \frac{1}{(\mu_0+q)^2 + m^2(\mu_0)}\right) \end{split}$$

Small parameters in infrared Quantum Chromodynamics

.

Renormalization Group

- Renormalization Group equation for the quark propagator: $(\mu \partial_{\mu} - \gamma_{\psi} + \beta_{X_i} \partial_{X_i})S^{-1} = 0$
- The solution at different renormalization scales:

$$S^{-1}(p,\mu,X_i(\mu)) = z_{\psi}(\mu,\mu_0)S^{-1}(p,\mu_0,X_i(\mu_0)),$$

with log $z_{\psi}(\mu,\mu_0) = \int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_{\psi}(\mu')$

$$\begin{array}{l} \mathsf{A}(\mathsf{p},\!\mu_0) = z_\psi^{-1}(\rho,\mu_0) \\ \mathsf{B}(\mathsf{p},\!\mu_0) = z_\psi^{-1}(\rho,\mu_0) M(\rho) \\ \mathsf{z}_\psi(\rho,\mu_0) = Z_\psi(p)/Z_\psi(\mu_0) \end{array}$$

• In order to avoid large logarithms we take the p-derivative at fixed bare quantities. Defining $u = \cos \theta$ we obtain

$$\begin{split} Z_{\psi}(p) = & 1 + \frac{g_q^2(p)C_F\Omega_{d-1}}{p^2 Z_{\psi}(p)(2\pi)^d} \int_0^\infty dq \ q^{d-1} \frac{Z_{\psi}(q)}{q^2 + M^2(q)} \times \\ & \int_{-1}^1 du(1-u^2) \frac{d-3}{2} \frac{2p^2 q^2 + 3(p^2 + q^2)pqu + 4p^2 u^2 q^2}{(p^2 + 2pqu + q^2) \ (p^2 + 2pqu + q^2 + m_0^2)} \ , \\ & -\gamma_{\psi}(p) \mathcal{M}(p) + p\mathcal{M}'(p) = -(d-1) \frac{g_q^2(p)C_F\Omega_{d-1}}{Z_{\psi}(p)(2\pi)^d} \int_0^\infty dq \ q^{d-1} \frac{Z_{\psi}(q)\mathcal{M}(q)}{q^2 + \mathcal{M}^2(q)} \times \\ & \int_{-1}^1 du(1-u^2) \frac{d-3}{2} \frac{2p^2 + 2puq}{(p^2 + 2qup + q^2 + m_0^2)^2} \ , \end{split}$$

where $\Omega_d = 2\pi^{d/2}/\Gamma(d/2)$

Small parameters in infrared Quantum Chromodynamics

A I > A I > A

Ultraviolet behaviour $(p \gg m_0)$:

•
$$Z_\psi(\mu)
ightarrow 1$$

• Two possible solutions for the running mass $M(\mu)$:

• Massive solution:
$$M(\mu) = M_0 \left[1 + 2\beta_0 g_0^2 \ln \left(\frac{\mu}{\mu_0} \right) \right]^{-\frac{3C_f}{16\pi^2\beta_0}}$$

• $S\chi SB$ solution:
$$M(\mu) = \frac{1}{\mu^2 \ln(\mu)^{\frac{-3C_f}{16\pi^2\beta_0}+1}}$$

with $\beta_0 = \frac{1}{16\pi^2} \left(\frac{11}{3} N_c - \frac{2}{3} N_f \right)$

[Fischer and Alkofer PRD 67 (2003). Atkinson et al, PRD 37(1988). Miransky, PL 165B (1985). Aguilar et al, PRD 83 (2011).]

Small parameters in infrared Quantum Chromodynamics

同 ト イ ヨ ト イ ヨ ト

Ultraviolet running of the coupling constant Running of the quark-gluon coupling

- Motivation
- 2 Fist order of this double expansion.
 - Gluon propagator
 - Quark-Gluon vertex
 - Quark propagator
- 3 Rainbow equation

4 Numerical results

- Ultraviolet running of the coupling constant
- Running of the quark-gluon coupling
- 5 Conclusions and perspectives

10 GeV 20 GeV 4 ultraviolet expression imposed

• In the second region the values of $Z_{\psi}(q)$ and M(q) are replaced by their ultraviolet expressions:

$$Z_\psi^{\mathsf{UV}}(q)=1$$

$$M^{ ext{UV}}(q) = b_0 \left(\ln rac{q^2 + m_0^2}{m_0^2}
ight)^lpha + rac{b_2}{q^2} \left(\ln rac{q^2 + m_0^2}{m_0^2}
ight)^{-(lpha+1)}$$

where the exponent $\alpha = -\frac{3C_f}{16\pi^2\beta_0}$.

- The coefficients b₀ and b₂ are chosen in order to make M(p) continuous and differentiable (so they are not free parameters).
- We use the **ultraviolet one-loop running of the coupling constant** for N_f flavors properly regularised in the infrared.

$$g_q^2(\mu) = \frac{g_0^2}{1 + \beta_0 g_0^2 \ln\left(\frac{\mu^2 + x^2 m_0^2}{x^2 m_0^2}\right)}$$

Ultraviolet running of the coupling constant Running of the quark-gluon coupling

Finding the solution:

• We set $m_0 = 0.4$ GeV.

- The initial contions for the flow are:
 - The value of M(10 GeV)
 - g_0 and x
- Starting condition for the iteration:

$$egin{split} Z_\psi(q) &= 1 \ M(q) &= b_1 \left(\ln rac{q^2 + m_0^2}{m_0^2}
ight)^lpha + rac{b_1}{q^2} \left(\ln rac{q^2 + m_0^2}{m_0^2}
ight)^{-(lpha+1)} \end{split}$$

with b_1 so M(10 GeV) has the appropriate value

Ultraviolet running of the coupling constant Running of the quark-gluon coupling

 $Z_{\psi}(p)$ and M(p) for different values of M(10GeV) = 0,001, 0,005, 0,01, 0,02, 0,04, 0,08. Parameters: $N_f = 2, N_c = 3, m_0 = 0,4$ GeV, $g_0 = 4$ and x = 5.

 $Z_{\psi}(p)$ and M(p) for different values of M(10GeV) = 0,001, 0,005, 0,01, 0,02, 0,04, 0,08. Parameters: $N_f = 2, N_c = 3, m_0 = 0,4$ GeV, $g_0 = 11$ and x = 5.

Ultraviolet running of the coupling constant Running of the quark-gluon coupling

Constituent quark mass M(p = 0) as a function of the coupling parameter g_0 for two values of the ultraviolet mass $M(\Lambda_1)$. The variation of g_0 is done by keeping Λ_{QCD} fixed.

Small parameters in infrared Quantum Chromodynamics

(日) (同) (三) (三)

Ultraviolet running of the coupling constant Running of the quark-gluon coupling

Comparision with lattice data from [Oliveira et al. arxiv:1605.09632] for M(p) for M(10GeV) = 0.008, 0.01, 0.02, 0.022. Parametres: $N_f = 2, N_c = 3, m_0 = 0.4$ GeV, $g_0 = 7$ and x = 5.

Small parameters in infrared Quantum Chromodynamics

- ∢ ≣ →

Ultraviolet running of the coupling constant Running of the quark-gluon coupling

Running of the quark-gluon coupling

• Corrections for the quark-gluon vertex:

Ultraviolet running of the coupling constant Running of the quark-gluon coupling

Running of the quark-gluon coupling

• Corrections for the quark-gluon vertex:

- One-loop-diagram with three-gluon vertex must be included.
- The quark propagator appears always in its full form.
- We define the quark-gluon coupling through $\lambda'_1 = -\frac{1}{4g_B(d-2)} Im \sum \text{Tr}(\gamma_{\epsilon} \Gamma_{\mu} P^{\perp}_{\mu\nu}(k) P^{\perp}_{\nu\rho}(r) P^{\perp}_{\rho\epsilon}(p))$ in the kinematic configuration corresponding to two equal and ortogonal quark-antiquark momenta (OTE).

Ultraviolet running of the coupling constant Running of the quark-gluon coupling

• The β -function for g_q takes the form:

$$\beta_{g_q} = \mu \frac{dg_q}{d\mu}|_{g_A} = g_q(\gamma_{\psi} + \frac{1}{2}\gamma_A) + g_q \mu \frac{d\lambda_1^{\Lambda}(ren)}{d\mu}$$
$$\beta_{g_g} = g_g(\gamma_C + \frac{1}{2}\gamma_A)$$

- γ_C is computed in its one loop form.
- In order to compute γ_A we include one loop diagrams in gluon propagator, considering full quark propagators in the diagram with a quark loop.
- λ_1 , γ_A and γ_{ψ} are also coupled with M(p) and $z_{\psi}(p)$.

Ultraviolet running of the coupling constant Running of the quark-gluon coupling

Initial conditions for the flow

• The relation between both coupling constants at 10 GeV (the starting point of the flow) can be done perturbately.

$$g_q(\mu) = g_g(\mu) \left(1 + g_g^2 (\delta Z_\psi - \delta Z_c + \delta \lambda_1^{\Lambda}) \right)$$

• In the OTE configuration, for large μ :

$$g_q(\mu) = g_g(\mu) \left(1 + \frac{g_g^2 N}{64\pi^2} (5 - 3\log(2)) \right)$$

• In this case the flow of the coupling constant is determined only by one parameter, $g_g(10 \, GeV)$. However, this is not a completely free parameter and has to be compared with the known value of the coupling constant.

Ultraviolet running of the coupling constant Running of the quark-gluon coupling

M(p), with initial condition M(10GeV)=0.008, 0.01, 0.015, 0.02, y $g_g(10GeV) = 1,85$

Small parameters in infrared Quantum Chromodynamics

(日) (同) (三) (三)

- Motivation
- 2 Fist order of this double expansion.
 - Gluon propagator
 - Quark-Gluon vertex
 - Quark propagator
- 3 Rainbow equation
- 4 Numerical results
 - Ultraviolet running of the coupling constant
 - Running of the quark-gluon coupling

5 Conclusions and perspectives

Conclusions

To sumarize:

- Based on the fact that, at low energies, the coupling g_g differs significantly from the coupling g_q in the matter sector we treat both constant on different footing.
- Two and three point correlation functions in Yang-Mill sector have shown to be well reproduced by a one loop analysis using a massive Lagrangian.
- We propose a systematic expansion scheme for QCD at low energy based on a double expansion in powers of the coupling strength gg in the Yang-Mills sector of the theory and in powers of 1/N_c.

・ロ > ・ (同 > ・ (回 > ・ (回 > ・

Conclusions and perspectives

Conclusions

- At leading order, this scheme reproduces the well-known rainbow approximation.
- It allows for a systematic study of higher order corrections.
- We are able to implement a consistent renormalization group improvement of the rainbow equations that yields a better control of large logarithms.
- We solve the rainbow approximation using the one loop ultraviolet running for the coupling and also using the quark-gluon vertex. In both cases we reproduce numerically the chiral symmetry breaking.

Conclusions and perspectives

Perspectives

We are begining to use the present scheme to calculate mesonic properties such as the mass spectrum or decay rates.

Thanks

Small parameters in infrared Quantum Chromodynamics