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Introduction/motivation

Approach: (unconventional) resummation of perturbative expansions

General: relevant both at T = 0 or T ̸= 0 (and �nite density)

•T = 0: gives estimates of chiral symmetry breaking order parameters:
Fπ(mq = 0)/ΛQCD

MS
:

Fπ ≃ 92.2MeV → Fπ(mq = 0) → Λ
nf =3

MS
→ αMS

S (µ = mZ ).

N3LO: F
mq=0

π /Λ
nf =3

MS
≃ 0.25± .01 → αS(mZ ) ≃ 0.1174± .001± .001

(JLK, A.Neveu, '13))

(compares well with latest (2016) αS world average [PDG2016])

In this talk I illustrate ⟨q̄q⟩ RGOPT determination at N3LO:

⟨q̄q⟩1/3mq=0
(2GeV) ≃ −(0.84± 0.01)ΛMS (JLK, A.Neveu, '15))

Note: parameter free determination!

NB: can also address gluon 'mass' determination in principle...



More motivations (thermal context)

Complete QCD phase diagram far from being con�rmed:

T ̸= 0, µ = 0 well-established from lattice: no sharp phase transition,
continuous crossover at Tc ≃ 154± 9 MeV

Goal: more analytical approximations, ultimately in regions not much
accessible on the lattice: large density (chemical potential) due to the
(in)famous �sign problem�
(i.e. complex Euclidian fermion determinant on the lattice)

•RGOPT considerably reduces the well-known problems of unstable
+badly scale-dependent thermal perturbative expansions
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2. (Variationally) Optimized Perturbation (OPT)

Trick (T = 0): add and subtract a mass, consider m δ as interaction:

LQCD(g ,m) → LQCD(δ g ,m(1− δ)) (e.g. in QCD g ≡ 4παS)

where 0 < δ < 1 interpolates between Lfree and massless Lint ;
e.g. in QCD (quark) mass mq → m: arbitrary trial parameter

• Take any standard (renormalized) QCD pert. series, expand in δ after:

mq → m (1− δ); g → δ g
then take δ → 1 (to recover original massless theory):

BUT a m-dependence remains at any �nite δk -order:
�xed typically by stationarity prescription: optimization (OPT):
∂
∂m (physical quantity) = 0 for m = m̄opt(αS) ̸= 0:

•T = 0: exhibits dimensional transmutation: m̄opt(g) ∼ µ e−const./g

•T ̸= 0 similar idea: �screened perturbation� (SPT), or resummed �hard
thermal loop (HTLpt)�, etc: expand around a quasi-particle mass.
But does this 'cheap trick' always work? and why?



Expected behaviour (ideally)

Physical quantity

OPT 1st order

2d order

3rd order etc...

m0

Exact result

(non−perturbative)

O( Λ )

But not quite what happens, except in simple models:
•Convergence proof of this procedure for D = 1 ϕ4 oscillator
(cancels large pert. order factorial divergences!) Guida et al '95

particular case of 'order-dependent mapping' Seznec, Zinn-Justin '79

•But QFT multi-loop calculations (specially T ̸= 0) (very) di�cult:
→ what about convergence? not much apparent

•Main pb at higher order: OPT: ∂m(...) = 0 has multi-solutions (some
complex!), how to choose right one, if no nonperturbative �insight�??



3. RG compatible OPT (≡ RGOPT)

Our main additional ingredient to OPT (JLK, A. Neveu '10):

Consider a physical quantity (i.e. perturbatively RG invariant)
(for example, in thermal context, the pressure P(m, g ,T )):

in addition to OPT: ∂
∂m

P(k)(m, g , δ = 1)|m≡m̃ ≡ 0,
Require (δ-modi�ed!) result at order δk to satisfy a standard
(perturbative) Renormalization Group (RG) equation:

RG

(
P(k)(m, g , δ = 1)

)
= 0

with standard RG operator (g = 4παS for QCD):

RG ≡ µ
d

d µ
= µ

∂

∂µ
+ β(g)

∂

∂g
− γm(g)m

∂

∂m

β(g) ≡ −b0g2 − b1g
3 + · · · , γm(g) ≡ γ0g + γ1g

2 + · · ·

→ Additional nontrivial constraint: contains a priori more consistent RG
information than ∂mP(m) optimization.



→ If combined with OPT, RG Eq. reduces to massless form:[
µ

∂

∂µ
+ β(g)

∂

∂g

]
P(k)(m, g , δ = 1) = 0

Then using OPT AND RG completely �x m ≡ m̄ and g ≡ ḡ .

But ΛMS(g) satis�es by def.:
[µ ∂

∂µ + β(g) ∂
∂g ] ΛMS ≡ 0 consistently at a given pert. order for β(g).

Thus equivalent to:

∂

∂m

(
Pk(m, g , δ = 1)

ΛMS(g)

)
= 0 ;

∂

∂ g

(
Pk(m, g , δ = 1)

ΛMS(g)

)
= 0 for m̄, ḡ

Optimal m̄, ḡ = 4πᾱS unphysical: �nal (physical) result from P(m̄, ḡ ,T )

At T = 0 reproduces at �rst order exact nonperturbative results in
simpler models [e.g. Gross-Neveu model]



OPT + RG = RGOPT main new features
•Standard OPT: embarrassing freedom (a priori) in interpolating form:
e.g. why not m → m (1− δ)a ?
Most previous works (T = 0 or SPT, HTLpt,...(T ̸= 0):
linear interpolation �add and subtract� (a = 1) without deep justi�cation
but generally (we have shown) a = 1 spoils RG invariance!

•OPT,RG Eqs: many solutions at increasing δk -orders

→ Our approach restores RG, +requires optimal solution to match
perturbation (i.e. Asymptotic Freedom for QCD (T = 0)):
αS → 0 (µ → ∞): ḡ(µ) ∼ 1

2b0 ln
µ
m̄
+ · · · , m̄ ∼ ΛQCD

→ At successive orders AF-compatible optimal solution (often unique)
only appears for universal critical a:

m → m (1− δ)
γ0
b0 (in general γ0

b0
̸= 1)

→ Goes beyond simple �add and subtract� trick

+ It removes any spurious solutions incompatible with AF

− But does not always avoid complex solutions
(if occur, possibly cured by renormalization scheme change)



4. Application: T = 0 QCD quark condensate (JLK, A. Neveu '15)

⟨q̄q⟩: chiral symmetry breaking order parameter:
SU(nf )L × SU(nf )R → SU(nf )L+R , nf massless quarks. (nf = 2, 3)

• Start from perturbative result, known to 3 loops (Chetyrkin et al '94;
Chetyrkin +Maier '10)

x x x

x x

m ⟨q̄q⟩(m, g)MS = 3 m4

2π2

[
1

2
− Lm + g

π2 (L
2
m − 5

6
Lm + 5

12
)

+( g
16π2 )

2[f30(nf )L
3
m + f31(nf )L

2
m + f32(nf )Lm + f33(nf )]

]
, (Lm ≡ ln m

µ )

Important rk: this �nite part (after mass + coupling renormalization) is
not separately RG-invariant:
µ d
dµm⟨q̄q⟩ = O(m4) ≡ vacuum energy anomalous dimension

•Known generic RG feature (but often missed in literature): needs
appropriate 'subtraction' terms (consistently RG-determined) to recover
perturbative RG invariance



First attempt: naive (direct) optimization of m⟨q̄q⟩?
NB works pretty well for Fπ/ΛQCD :
i⟨0|TAi

µ(p)A
j
ν(0)|0⟩ ≡ δijgµνF

2
π(m = 0); Ai

µ ≡ q̄γµγ5
τi
2
q

(empirical convergence of RGOPT observed already at 2-loops)

•For m⟨q̄q⟩: One-loop order: no nontrivial OPT +RG solution...

•Higher orders (2- and 3-loops): gives right order of magnitude, but
ambiguous results: plagued by large, unphysical, imaginary parts
→ no conclusive stability/convergence trend (appears slow at best)

• Instabilities traced to strong sensitivity to regularization choice:

with naive cuto� the (dominant) one-loop quadratic divergence gives
correct (negative) sign of ⟨q̄q⟩ (a pillar of the success of
Nambu-Jona-Lasinio model!)
but (one-loop) sign �ips in (D = 4− ϵ) dimensional regularization (MS)

Yet important to keep bene�ts of MS: high order QCD perturbative
results available: crucial for stability/convergence check.

→ Like any other variational methods it is sensible to start from a
suitable quantity to optimize: here the spectral density of the Dirac
operator, intimately related to ⟨q̄q⟩.



4. ⟨q̄q⟩ and Spectral density ρ(λ)

Euclidean Dirac operator:
i /D un(x) = λn un(x); /D ≡ /∂ + g /A ;
NB i /D (γ5un(x)) = −λn (γ5un(x))

On a lattice: ρ(λ) ≡ 1

V
⟨
∑

n δ(λ− λ
[A]
n )⟩A

V → ∞: spectrum becomes dense, and

⟨q̄q⟩ ≡ 1

V
Tr 1

m+ /D
→ ⟨q̄q⟩V→∞(m) ≡ −2m

∫∞
0

dλ ρ(λ)
λ2+m2

ρ(λ): spectral density of the (euclidean) Dirac operator.

Banks-Casher relation ('80): ⟨q̄q⟩(m → 0) ≡ −πρ(0)
(using e.g. limm→0

1

m−iλ = i PV ( 1λ ) + πδ(λ))

'Washes out' large λ problems (e.g. quadratic UV divergences)

Conversely: −ρ(λ) = 1

2π (⟨q̄q⟩(iλ+ ϵ)− ⟨q̄q⟩(iλ− ϵ)) |ϵ→0

i.e. ρ(λ) determined by discontinuities of ⟨q̄q⟩(m) across imaginary axis.

Perturbative expansion: → ln(m → iλ) discontinuities
→ no contributions from divergence and non-log terms (like anom. dim.)



Adapting OPT and RG Eqs. to spectral density

• Perturbative logarithmic discontinuities simply from

lnn
(
m

µ

)
→ 1

2iπ

[(
ln

|λ|
µ

+ i
π

2

)n

−
(
ln

|λ|
µ

− i
π

2

)n]
(1)

i .e. ln
(
m
µ

)
→ 1/2; ln2

(
m
µ

)
→ ln |λ|

µ ; ln3
(
m
µ

)
→ 3

2
ln2 |λ|

µ − π2

8
; · · ·

• Modi�ed perturbation: intuitively λ plays the role of m, so:

ρpert(λ, g) → ρopt(λ(1− δ)
4

3

γ0
2b0 , δg) ; expand in δ ; δ → 1 (2)

• OPT Eq.: ∂

∂λ
ρopt(g , λ) = 0 for λ = λ̄opt(g) ̸= 0 (3)

• Using ∂
∂m

m
λ2+m2 = − ∂

∂λ
λ

λ2+m2 , one �nds ρ(λ) obeys RG eq.:[
µ

∂

∂µ
+ β(g)

∂

∂g
− γm(g)λ

∂

∂λ
− γm(g)

]
ρ(g , λ) = 0 (4)

→ RGOPT recipe: -After (1), (2), solve (3), (4) for optimal λ̄, ḡ ;
then ρ(λ̄, ḡ) ≃ ρ(0) ≡ −⟨q̄q⟩(m = 0)/π.



Example: RG and OPT ρ(λ) solutions: up to 4-loops

NB ⟨q̄q⟩pert exactly known at present to 3-loop α2

S order.
But 1) RG properties determine next (4-loop) α3

S lnp(m/µ) coe�cients,
2) non-logarithmic terms do not contribute to ρpert(λ):
→ we get ρpert(λ) exact to 4-loop!
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-5

-4
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-1

1

2

RG 4-loop solutions

Optimized solutions

S

Ln ( λ /µ)

α

RGOPT solution

Asymptotically free branches



RGOPT 2,3,4-loop results for ⟨q̄q⟩ (nf = 2)

δk , RG order ln λ̄
µ ᾱS

−⟨q̄q⟩1/3

Λ̄2
(µ̄) µ̄

Λ̄2

−⟨q̄q⟩1/3RGI

Λ̄2
δ, RG 2-loop −0.45 0.480 0.822 2.8 0.821
δ2, RG 3-loop −0.703 0.430 0.794 3.104 0.783
δ3, RG 4-loop −0.820 0.391 0.796 3.446 0.773

(and similarly behaving results for nf = 3).

NB: ⟨q̄q⟩RGI = ⟨q̄q⟩(µ) (2b0 g)
γ0
2b0

(
1+ ( γ1

2b0
− γ0 b1

2b2
0

) g + · · ·
)

• stability/convergence exhibited;
• already realistic value at 2-loop order

RG Evolution to reference scale µ = 2 GeV:

−⟨q̄q⟩1/3nf =2
(2GeV) = (0.833(4−loop) − 0.845(3−loop))Λ̄2

→ Using most precise Λ̄2 lattice result: Λ̄2 = 331± 21
(quark potential, Karbstein et al '14) �nally gives:

−⟨q̄q⟩1/3nf =2
(rgopt, 2GeV ) ≃ 278± 2(rgopt)± 18(Λ̄2)MeV

•compares with latest lattice result (Engel et al '14):

−⟨q̄q⟩1/3nf =2
(µ = 2GeV) = 261± 6± 8 MeV



Thermal perturbative expansion (QCD, gϕ4, ...)

known problem: poorly convergent and very scale-dependent (ordinary)
perturbative expansions:

QCD (pure glue) pressure at successive (standard) perturbation orders
shaded regions: scale-dependence for πT < µ < 4πT
(illustration from Andersen, Strickland, Su '10)



Problems of thermal perturbation (QCD but generic)
Main culprit: mix up of hard p ∼ T and soft p ∼ αST modes.

Thermal 'Debye' screening mass m2

D ∼ αST
2 gives IR cuto�,

BUT ⇒ perturbative expansion in
√
αS in QCD

→ often advocated reason for slower convergence

Yet many interesting QGP physics features happen at not that large
coupling αS(∼ 2πTc) ∼ .5, (αS(∼ 2πTc) ∼ 0.3 for pure glue)

Many e�orts to improve this (review e.g. Blaizot, Iancu, Rebhan '03):

Screened PT (SPT) (Karsch et al '97), ∼ Hard Thermal Loop (HTL)

resummation (Andersen, Braaten, Strickland '99); Functional RG, 2-particle

irreducible (2PI) formalism (Blaizot, Iancu, Rebhan '01; Berges, Borsanyi,

Reinosa, J. Serreau '05)

RGOPT(T ̸= 0): essentially treats thermal mass 'RG consistently':
→ UV divergences induce its anomalous dimension.

(NB some qualitative connections with recently advocated �massive scheme�

approach (Blaizot, Wschebor '14)



5. RGOPT(thermal ϕ4) (JLK, M.B Pinto '15, '16)

•Start from 2-loop vacuum energy m ̸= 0, T ̸= 0 (MS scheme):

(4π)2F0 = E0 − m4

8
(3− 4 ln m

µ )−
T4

2
J0(

m
T
)

+ 1

8
( g
16π2 )

[
(1− 2 ln m

µ )m
2 − T 2 J1(

m
T
)
]2

J0(
m
T
) ∼

∫∞
0

dp 1√
p2+m2

1

e
√
p2+m2−1

; ∂xJ0(x) ≡ −2x J1(x)

First step: E0: necessary �nite vacuum energy subtraction:

E0(g ,m) = −m4

(
s0
g
+ s1 + s2g + · · ·

)
(T -independent, determined by requiring RG invariance:)

s0 =
1

2(b0−4γ0)
= 8π2; s1 =

(b1−4γ1)
8γ0 (b0−4γ0)

= −1, ...:

missed by SPT, or HTLpt (hot QCD): explains the important scale
dependence observed in those approaches (more below)

Next: expand in δ, δ → 1 after m2 → m2(1− δ)a ; g → δg
RG only consistent for a = 2γ0/b0 (= 1/3 for ϕ4: while a = 1 in SPT)

Practical bonus: non-trivial mass gap m̄(g ,T ) already at one-loop.
NB 1/g in E0 automatically cancels in (optimized) energy.



One-loop RGOPT (O(δ0))
Exact OPT �thermal mass gap� m̄ self-consistent solution of

m̄2 =
g

2

[
b0m̄

2(ln
m̄2

µ2
− 1) + T 2J1(

m̄

T
)

]
(m̄2(T = 0) = µ2e

1+ 2

b0 g )

or from simple quadratic Eq. for m/T <∼ 1 (su�cient for most purpose):(
1

b0 g
+ γE + ln

µ

4πT

)
(
m

T
)2 + 2π

m

T
− 2

π2

3
= 0

m̄

T
= π

√
1+ 2

3
( 1

b0 g
+ LT )− 1

1

b0 g
+ LT

∼ π(
2

3

√
b0g−b0g+

1

2
√
6
(3−2LT )(b0g)

3/2+· · · )

P

P0

(G ) = 1− 5

4
G − 15

2
G 2(G + 1) +

5

3

√
6

[
G (1+

3

2
G )

]3/2
+ · · ·

LT ≡ γE + ln µ
4πT , 1/G ≡ 1/(b0g(µ)) + LT ; P0 = π2T 4/90

⇒ m̄, and thus P(m̄) are explicitly exactly scale-invariant

+ reproduces much simply exact (all orders) known large N results
(Drummond et al '98)



RGOPT mass and Pressure: two-loop order

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

g

m/T

OPT

RG solution 2
RG Solution 1

(g(µ)/24)1/2 ≡ g(µ) with scale-dependence πT < µ < 4πT

At two-loops a remnant scale-dependence reappears from unperfectly
matched running coupling ↔ mass and pressure:
but moderate in P(g), shown to be of higher (4-loop) order O(g3 lnµ).

Generic: RGOPT at O(gk) → lnµ appears at O(gk+1) for any m̄, but
m̄2 ∼ gT 2: so P ≃ m̄4/g + · · · has leading µ-dependence at O(gk+2).

•Note intersection of RG and OPT solutions: can �x a 'nonperturbative'
g(µ ∼ απT ) (alternative to running coupling)

•The other RG solution with tiny scale-dependence (red) is driven by
(spurious perturbative) UV �xed point: to be discarded.



Two-loop RGOPT compared with standard PT and SPT

[JLK, M.B Pinto, PRL 116 (2016); PRD 92 (2015)]

De�nite scale-dependence improvement (a factor ∼ 3) w.r.t. SPT [J.O.

Andersen et al '01]

-Improvement should be more drastic at 3-loops, where SPT scale
dependence increases rather strongly.

NB RGOPT pressure has a di�erent slope at g ∼ 0: not a problem:
g not �xed at a physical scale (similar to e.g. large N di�erent slope)
[Alternatively: solving OPT Eq. as ḡ(m): P ≡ P(m); where m is
arbitrary: now using physical (screening) mass P(m → mD(g)):
→ recover standard perturbative terms of P(g)]



Closer to QCD: O(N) nonlinear σ model (NLSM)
[G. Ferreri, JLK, M.B. Pinto, R.0 Ramos, arXiv:1709...]

(1+1)D NLSM shares many properties with QCD: asymptotic freedom,
mass gap. Also T ̸= 0 pressure, trace anomaly have QCD-similar shape
Other nonperturbative T ̸= 0 results available for comparison
(lattice [Giacosa et al '12], 1/N expansion [Andersen et al '04], others)

L0 =
1

2
(∂πi )

2 +
g(πi∂πi )

2

2(1− gπ2

i )
− m2

g

(
1− gπ2

i

)1/2
two-loop pressure from:

•Advantage w.r.t. QCD: exact T -dependence at 2-loops:

Ppert.2loop = − (N − 1)

2

[
I0(m,T ) +

(N − 3)

4
m2gI1(m,T )2

]
+E0,

I0(m,T ) =
1

2π

(
m2(1− ln

m

µ
) + 4T 2K0(

m

T
)

)
K0(x) =

∫∞
0

dz ln
(
1− e−

√
z2+x2

)
, I1(m,T ) = ∂I0(m,T )/∂m2



NLSM peculiarity: standard perturbative RG invariance
E0 in P2−loop: ≡ m2

g
already there in Lagrangian!

If it would be ignored, reconstructed consistently by RG 'subtraction':

E0(g ,m) = m2

(
s0
g
+ s1 + s2g + · · ·

)
s0 =

(N−1)
4π(b0−2γ0)

= 1 , s1 = (b1 − 2γ1)
s0
2γ0

= 0

A property not expected in any other models: consequence of NLSM
renormalization with only two counterterms (coupling Zg and �eld Zπ)):

Zm = ZgZ
−1/2
π

•RG consistency: m → m(1− δ)
γ0
b0 , γ0

b0
= (N − 3)/(N − 2)/2 for NLSM

Other properties similar to ϕ4:

•Exact one-loop scale invariance
•Very moderate remnant scale dependence at 2-loops
•Also reproduces exact (all orders) known large N (LN) results
(Andersen et al '04)



One-loop RGOPT for NLSM pressure
Exact T -dependent mass gap m̄(g ,T ) from ∂mP(m) = 0:

ln
m̄

µ
= − 1

b0 g(µ)
− 2K1(

m̄

T
), (bnlsm0 =

N − 2

2π
)

more explicitly for T = 0: m̄ = µe
− 1

b0 g(µ) = Λ1−loop
MS

and for T ≫ m:
m̄

T
=

π b0 g

1− b0 g LT
, (LT ≡ ln

µ eγE

4πT
)

PRGOPT
1L,exact = − (N − 1)

π
T 2

[
K0(x̄) +

x̄2

8
(1+ 4K1(x̄) )

]
, (x̄ ≡ m̄/T )

PRGOPT
1L (T ≫ m) ≃ 1− 3

2
b0g(

4πT

eγE
)

with one-loop running g−1(µ) = g−1(M0) + b0 ln
µ
M0

)

→ Remarkable property of RGOPT: running with T consistently included!
(for standard perturbation, and SPT, HTLpt, µ ∼ 2πT put 'by hand'
e.g. to get correct Stefan-Boltzmann limit)



RGOPT NLSM mass and pressure: two-loops

P/PSB(N = 4, g(M0) = 1) vs standard perturbation (PT), large N (LN),
and SPT ≡ ignoring RG-induced subtraction; m2 → m2(1− δ):
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S
B
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RGOPT 1L

RGOPT 2L

SPT

PSB =
π

6

(N − 1)T2

(shaded range: scale-dependence πT < µ ≡ M < 4πT )
→ A moderate scale-dependence reappears, from unperfectly matched
2-loop standard running coupling.



RGOPT(NLSM) vs lattice results

•NLSM T ̸= 0 lattice simulations: only done for N = 3
[E. Seel, D. Smith, S. Lottini, F. Giacosa '12]

•Comparison for large coupling: g(M0) = 2π

•Drawback: for such large coupling 2-loop RGOPT remnant scale
dependence much more sizable.
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shaded regions: scale-dependence πT < µ = M < 4πT

However 2-loop good agreement is rather accidental for large g(M0) (not

genuine RGOPT prediction)



NLSM interaction measure (trace anomaly)
(normalized) T 2∆2D NLSM ≡ E − P = S T − 2P ≡ T 3∂T (

P
T2 )
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RGOPT 1L

RGOPT 2L

SPT

N = 4, g(M0) = 1 (shaded regions: scale-dependence πT < µ = M < 4πT )

•2-loop ∆SPT : small, monotonic behaviour + sizeable scale dependence.

•RGOPT shape 'qualitatively' comparable to QCD, showing a peak
(but no spontaneous sym breaking/phase transition in 2D NLSM
(Mermin-Wagner-Coleman theorem): re�ects broken conformal
invariance (mass gap).



6. Thermal (pure glue) QCD: hard thermal loop (HTLpt)
QCD generalization of OPT = HTLpt [Andersen, Braaten, Strickland '99]:

same �OPT� trick operates on a gluon �mass� term [Braaten-Pisarski '90]:

LQCD(gauge)−
m2

2
Tr

[
Gµα⟨

yαyβ

(y .D)2
⟩yGµ

β

]
, Dµ = ∂µ−ig Aµ, yµ = (1, ŷ)

(e�ective, gauge-invariant, but nonlocal Lagrangian):

describes screening mass m2 ∼ αST
2, but also many more 'hard thermal

loop' contributions [modi�es vertices and gluon propagators]

P
HTL,exact

1-loop
= (N2

c − 1)×{
m4

64π2
(Cg − ln

m

µ
) +

∫ ∞

0

dω

(2π3

1

e
ω
T − 1

∫ ∞

ω

dk k
2(2ϕT − ϕL)

− T

2π2

∫ ∞

0

dk k
2

[
2 ln(1− e

−ωT
T ) + ln(1− e

−ωL
T )

]
− π2T 4

90

}
where k2 +m2

[
1− ωL

2k
ln(ωL+kωL−k

)
]
= 0; f (ωT ) = 0; ϕL, ϕT : complicated.

•Exact 2-loop? daunting task...

→ Clearly more complicated than gluon mass in Curci-Ferrari model [e.g.
RSTW approach discussed here '15 '16]



More standard HTLpt results

HTLpt advantage: calculated up to 3-loops α2

S (NNLO)
[Andersen et al '99-'15] BUT only as m/T expansions
Drawback: HTLpt ≡ high-T approximation (by de�nition)

P
HTLpt

1-loop,MS

= Pideal ×[
1− 15

2
m̂2 + 30m̂3 +

45

4
m̂4(ln

µ

4πT
+ γE − 7

2
+

π2

3
)

]
m̂ ≡ m

2πT Pideal = (N2
c − 1)π2 T

4

45



More standard HTLpt results

Pure glue up to NNLO 3-loops [Andersen, Strickland, Su '10]:

Reasonable agreement with lattice simulations (Boyd et al '96) at NNLO
(3-loop), down to T ∼ 2− 3Tc , for low scale µ ∼ πT − 2πT .

Main issue of HTLpt however: odd increasing scale dependence at higher
(NNLO) order
Moreover HTLpt (frequent) mass prescription m̄ → m

pert
D (αS) [to avoid

complex optimized solutions]: may miss more �nonperturbative�
information.



RGOPT adaptation of HTLpt =RGOHTL

Main RGOPT changes:

• Crucial RG invariance-restoring subtractions in Free energy (pressure):
PHTLpt → PHTLpt −m4 s0

αS
: re�ects its anomalous dimension.

• interpolate with m2(1− δ)
γ0
b0 , where gluon 'mass' anomalous dimension

de�ned from its (available) counterterm.

RGOPT scale dependence should improve at higher orders, from RG
invariance maintained at all stages:
from subtraction terms (prior to interpolation), and from interpolation
restoring RG invariance.

• SPT,HTLpt,... do not include these subtractions:
yet scale dependence moderate up to 2-loops,
because the (leading order) RG-unmatched term, of O(m4 lnµ), is
perturbatively formally like a (3-loop order) α2

S term: m2 ∼ αS T
2.

→ Explains why HTLpt scale dependence dramatically resurfaces at
3-loops!



Preliminary RGO(HTL) results (1- and 2-loop, pure glue)
One-loop: exactly scale-invariant pressure (like for ϕ4 and NLSM):

2-loops: a moderate scale-dependence reappears, similar to ϕ4, NLSM
case: a factor ∼ 2 improvement w.r.t. HTLpt 2-loops:
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T/T c

P/Pideal

HTLpt 3−loop

RGOPT 2−loop

HTLpt 2−loop

RGOPT 1−loop

(Preliminary!)

[JLK, M.B Pinto, to appear soon]

NB scale dependence should improve much at 3-loops, generically:

RGOPT at O(αk
S) → m̄(µ) appears at O(αk+1

S ) for any m̄, but

m̄2 ∼ αST
2 → P ≃ m̄4

G/αS + · · · : leading µ-dependence at O(αk+2

S ).

• However low T ∼ Tc genuine pressure shape needs determining higher
order subtraction terms of O(m4α2

S lnµ): new calculations of 3-loop HTL
integrals (neglected in standard HTLpt as formally O(α4

S))



(Very) preliminary RGO(HTL) approximate 3-loop results

3-loops: exact missing m4α2

S terms need extra nontrivial calculations, but
P3l
RGOHTL ∼
RGOPT (P2l

HTLpt) +m4α2

S(C30 ln
3 µ
2πT

+ C31 ln
2 µ
2πT

+ C32 ln
µ

2πT
+ C33):

leading logarithms (LL) and next-to-leading (NLL) C30,C31 fully
determined from lower orders from RG invariance
Within this LL, NLL approximation and in the T/Tc >∼ 2 range where
more trustable:
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We assume/expect unknown terms will not spoil this improved scale
dependence.



Summary and Outlook

•OPT gives a simple procedure to resum perturbative expansions, using
only perturbative information.

•Our RGOPT version includes 2 major di�erences w.r.t. previous
OPT/SPT/HTLpt... approaches:

1) OPT +/or RG optimizations �x optimal m̄ and possibly ḡ = 4πᾱS

2) Maintaining RG invariance uniquely �xes the basic interpolation
m → m(1− δ)γ0/b0 : discards spurious solutions and accelerates
convergence.

• Applied to T ̸= 0: exhibits improved stability + much improved scale
dependence (with respect to standard PT, but also wrt SPT ∼ HTLpt)

•Paves the way to extend such RG-compatible methods to full QCD
thermodynamics, (work in progress, starting with T ̸= 0 pure
gluodynamics) specially for exploring also �nite density



Backup: RGOPT in Gross-Neveu model

•D = 2 O(2N) GN model shares many properties with QCD (asymptotic
freedom, (discrete) chiral sym., mass gap,..)

LGN = Ψ̄i ̸∂Ψ+ g0
2N

(
∑N

1
Ψ̄Ψ)2 (massless)

Standard mass-gap (massless, large N approx.):

work out Ve� (σ ∼ ⟨Ψ̄Ψ⟩) ∼ σ2

2g
+ Tr ln(i /∂ − σ);

∂Ve�
∂σ = 0: → σ ≡ M = µe−

2π
g ≡ ΛMS

•Mass gap also known exactly for any N:

Mexact(N)

ΛMS

=
(4e)

1

2N−2

Γ[1− 1

2N−2
]

(From D = 2 integrability: Bethe Ansatz) Forgacs et al '91



Massive (large N) GN model

M(m, g) ≡ m(1+ g ln M
µ )−1: Resummed mass (g/(2π) → g)

= m(1− g ln m
µ + g2(ln m

µ + ln2 m
µ ) + · · · ) (pert. re-expanded)

• Only fully resummed M(m, g) gives right result, upon:

-identifying Λ ≡ µe−1/g ; → M(m, g) = m
g ln

M
Λ

≡ m̂
ln

M
Λ

;

-taking reciprocal: m̂ = M ln M
Λ → M(m̂ → 0) ∼ m̂

m̂/Λ+O(m̂2) = Λ

never seen in standard perturbation: Mpert(m → 0) → 0!

•Now (RG)OPT gives M = Λ at �rst (and any) δ-order!
(at any order, OPT sol.: ln m̄

µ = − 1

ḡ
, RG sol.: ḡ = 1 )

•At δ2-order (2-loop), RGOPT ∼ 1− 2% from Mexact(anyN)

•Not speci�c to GN model: generalize to any model:
RG, OPT solutions at �rst (and all) orders:
ln m̄

µ = − γ0
2b0

; ḡ = 1

γ0
correctly resums pure RG LL, NLL,... (as far as

b0, γ0 dependence concerned).


