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Introduction /motivation

Approach: (unconventional) resummation of perturbative expansions

General: relevant both at T =0 or T # 0 (and finite density)

o7 = 0: gives estimates of chiral symmetry breaking order parameters:
cD
Fr(mg = 0)/ASST:

Fr =~ 92.2MeV — Fr(mg = 0) — A= 5 o¥5(1 = my).

™S
N3LO: Fo~% /N3 ~ 0.25 + .01 — as(myz) ~ 0.1174 + .001 + .001

(JLK, A.Neveu, '13))
(compares well with latest (2016) as world average [PDG2016])

In this talk | illustrate (gq) RGOPT determination at N3LO:
(Gq)m_o(2GeV) ~ —(0.84 £0.01)As  (JLK, ANeveu, '15))

Note: parameter free determination!

NB: can also address gluon 'mass’ determination in principle...



More motivations (thermal context)

Complete QCD phase diagram far from being confirmed:

T # 0, u = 0 well-established from lattice: no sharp phase transition,
continuous crossover at T, ~ 154 + 9 MeV

Goal: more analytical approximations, ultimately in regions not much
accessible on the lattice: large density (chemical potential) due to the
(in)famous “sign problem”

(i.e. complex Euclidian fermion determinant on the lattice)

oRGOPT considerably reduces the well-known problems of unstable
+badly scale-dependent thermal perturbative expansions
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(Variationally) Optimized Perturbation (OPT)

Trick (T = 0): add and subtract a mass, consider m¢ as interaction:
Locp(g,m) = Locp(0 g, m(1 —0)) (e.g. in QCD g = 4was)

where 0 < 6 < 1 interpolates between L. and massless Lin:;
e.g. in QCD (quark) mass mg — m: arbitrary trial parameter

e Take any standard (renormalized) QCD pert. series, expand in 0 after:
mg—m(l—9);, g—0g
then take § — 1 (to recover original massless theory):

BUT a m-dependence remains at any finite §%-order:

fixed typically by stationarity prescription: optimization (OPT):
%(physical quantity) = 0 for m = mgp(as) # O:

oT = 0: exhibits dimensional transmutation: Mop:(g) ~ e~ o"st-/8

oT = 0 similar idea: “screened perturbation” (SPT), or resummed "hard
thermal loop (HTLpt)", etc: expand around a quasi-particle mass.
But does this 'cheap trick’ always work? and why?



Expected behaviour (ideally)

Physical quantity

Exact result
2d order (non-perturbative)

/

OPT 1st order

O(N)

But not quite what happens, except in simple models:
eConvergence proof of this procedure for D = 1 ¢* oscillator
(cancels large pert. order factorial divergences!) Guida et al '95

particular case of 'order-dependent mapping' Seznec, Zinn-Justin '79

eBut QFT multi-loop calculations (specially T # 0) (very) difficult:
— what about convergence? not much apparent

eMain pb at higher order: OPT: Op,(...) = 0 has multi-solutions (some
complex!), how to choose right one, if no nonperturbative “insight”??



3. RG compatible OPT (= RGOPT)

Our main additional ingredient to OPT (JLK, A. Neveu '10):

Consider a physical quantity (i.e. perturbatively RG invariant)
(for example, in thermal context, the pressure P(m, g, T)):

in addition to OPT: -2 P)(m, g,6 = 1)|m=pm = 0,
Require (d-modified!) result at order §* to satisfy a standard
(perturbative) Renormalization Group (RG) equation:

RG (P(k)(m,g,(5 = 1)) =0

with standard RG operator (g = 4mas for QCD):

40 9 9
RG:/LTN—H@+B(g)@_7m(g)m%
B(g) = —bog® — big® + -+, Tm(g) =08 + 718>+

— Additional nontrivial constraint: contains a priori more consistent RG
information than 0,,P(m) optimization.



— If combined with OPT, RG Eq. reduces to massless form:

{ -+ B(E) 5 ]P“)(m g.5=1)=0

Then using OPT AND RG completely fix m=mand g = g.

But Aws(g) satlsfies by def..
[Ma# +B8(g) 2 ] Aws = 0 consistently at a given pert. order for 5(g).

Thus equivalent to:

13} Pk(mg6:1)> 0 (Pk(mgézl))

— | ———— =0, —(———=———=)=0formg
om ( A (e) 0g \ " us(e) y
Optimal /m, g = 4was unphysical: final (physical) result from P(m, g, T)

At T = 0 reproduces at first order exact nonperturbative results in
simpler models [e.g. Gross-Neveu model]



OPT 4+ RG = RGOPT main new features

oStandard OPT: embarrassing freedom (a priori) in interpolating form:
e.g. why not m — m(1—9)?7

Most previous works (T =0 or SPT, HTLpt,...(T # 0):

linear interpolation “add and subtract” (a = 1) without deep justification
but generally (we have shown) a =1 spoils RG invariance!

eOPT,RG Eqgs: many solutions at increasing 6*-orders

— Our approach restores RG, +requires optimal solution to match
perturbation (i.e. Asymptotic Freedom for QCD (T = 0)):
as — 0 (u — oo): E(M)NW‘F"' . M~ Nocp

— At successive orders AF-compatible optimal solution (often unique)
only appears for universal critical a:

Vi
m%m(lfé)fol (in general ¢ 7 1)
— Goes beyond simple “add and subtract” trick
+ It removes any spurious solutions incompatible with AF

— But does not always avoid complex solutions
(if occur, possibly cured by renormalization scheme change)



4. Application: T =0 QCD quark condensate (JLK, A. Neveu '15)

(qq): chiral symmetry breaking order parameter:
SU(nf)L x SU(nf)r — SU(nf) LR, ne massless quarks. (ny = 2,3)

e Start from perturbative result, known to 3 loops (Chetyrkin et al '94;

Chetyrkin +Maier '10)
OO O
& @

m (Gq)(m. g)ws =35 [3 — Lm + & (L2 — L+ 5)
+(3652)?ho(ne) L3, + faa(ne)Ly, + Fo(ne) L + f33(nf)]] , (Lm=1In %)

Important rk: this finite part (after mass + coupling renormalization) is
not separately RG-invariant:
,uﬁm(c’qq) = O(m*) = vacuum energy anomalous dimension

eKnown generic RG feature (but often missed in literature): needs
appropriate 'subtraction’ terms (consistently RG-determined) to recover
perturbative RG invariance



First attempt: naive (direct) optimization of m(gq)?
NB works pretty well for"Fﬂ—//\QCD: _
i(0| TA,(p)AL,(0)[0) =Ygy, FZ(m =0); A, =3q1u75% g
(empirical convergence of RGOPT observed already at 2-loops)

eFor m(gq): One-loop order: no nontrivial OPT +RG solution...

eHigher orders (2- and 3-loops): gives right order of magnitude, but
ambiguous results: plagued by large, unphysical, imaginary parts
— no conclusive stability /convergence trend (appears slow at best)

e Instabilities traced to strong sensitivity to regularization choice:

with naive cutoff the (dominant) one-loop quadratic divergence gives
correct (negative) sign of (gq) (a pillar of the success of
Nambu-Jona-Lasinio model!)

but (one-loop) sign flips in (D = 4 — €) dimensional regularization (MS)

Yet important to keep benefits of MS: high order QCD perturbative
results available: crucial for stability/convergence check.

— Like any other variational methods it is sensible to start from a
suitable quantity to optimize: here the spectral density of the Dirac
operator, intimately related to (gq).



4. (gq) and Spectral density p(A)

Euclidean Dirac operator:
’D Un(X) =\ Un(X); [DEa+gA ;
NB i D (ysun(x)) = —Xn (75Ua(x))

On a lattice: p(A) = L(3>, 0(A — ALA]»A

V — 0o: spectrum becomes dense, and
(@9) = & Trts = (@a)vooo(m) = —2m [ dA22L

p(N): spectral density of the (euclidean) Dirac operator.

Banks-Casher relation ('80): (gq)(m — 0) = —7p(0)
(using e.g. limpo —2~ =i PV(3) 4+ m6(N))

"Washes out’ large A problems (e.g. quadratic UV divergences)

Conversely: —p(A) = 2 (()(iA + ) — (G0 (A — €)) o
i.e. p(A\) determined by discontinuities of (gq)(m) across imaginary axis.

Perturbative expansion: — In(m — i)) discontinuities
— no contributions from divergence and non-log terms (like anom. dim.)



Adapting OPT and RG Egs. to spectral density

e Perturbative logarithmic discontinuities simply from

R T T
e n(2) 172 2 (2) 5Bl () o 3 Bl

o Modified perturbation: intuitively A plays the role of m, so:

Ppert(A, 8) = popr(A(1 — 5)32%, 0g); expand ind; 6 —1 (2)

. 0 <
e OPT Eq.: 5Popt(ga)\) =0for A = Aope(g) #0 (3)
e Using B%W’"mz = —%ﬁ, one finds p()\) obeys RG eq.:
0 0
ny, @) vm(g)/\ —¥m(g)| r(g,A) =0 (4)
1 og

— RGOPT recipe: -After (1), (2), solve (3), (4) for optimal A g
then p(A, g) ~ p(0) = —(gq)(m = 0)/m.



Example: RG and OPT p(\) solutions: up to 4-loops

NB (gq)perr exactly known at present to 3-loop a2 order.

But 1) RG properties determine next (4-loop) a3 In"(m/p) coefficients,
2) non-logarithmic terms do not contribute to ppet(A):

— we get ppert(A) exact to 4-loop!

Ln (A/W)

— RG 4-loop solutions

!
RGOPT solution -~ Optimized solutions

;“ -~ Asymptotically free branches



e stability /convergence exhibited;
e already realistic value at 2-loop order

RG Evolution to reference scale u =2 GeV:

—(q9)

1/3
ng= 2

(2GeV) =

(0.833(4—100p) —

RGOPT 2,3,4-loop results for (gq) (nf = 2)
— _ _ = 1/3
6%, RG order In% as 77@/_@1/3 (m) | % _<q,f\72>RG'
5, RG 2loop || —0.45 | 0.480 | 0.822 28 | 0821
82, RG 3-loop || —0.703 | 0.430 0.794 3.104 | 0.783
5%, RG 4-loop || —0.820 | 0.391 | 0.796 | 3.446 | 0.773
(and similarly behaving results for nf = 3).
— _ Do
NB: (3} rer = (@) 1) (2bo &) (14 (52 — ) g+ )
0 0

0~84'5(3floop) )/_\2

— Using most precise A, lattice result: Ay = 331+ 21
(quark potential, Karbstein et al '14) finally gives:

1/3

—(Gq) =, (rgopt, 2GeV) ~ 278 + 2(rgopt) & 18(Az) MeV

ecompares with latest lattice result (Engel et al '14):

—(@a) 52 (u

=2GeV) =261+ 6+ 8 MeV




Thermal perturbative expansion (QCD, g¢*, ...)

known problem: poorly convergent and very scale-dependent (ordinary)
perturbative expansions:

Pressure/(Ideal Pressure)

QCD (pure glue) pressure at successive (standard) perturbation orders
shaded regions: scale-dependence for 7T <y < 47T
(illustration from Andersen, Strickland, Su "10)



Problems of thermal perturbation (QCD but generic)
Main culprit: mix up of hard p ~ T and soft p ~ asT modes.

Thermal 'Debye’ screening mass m% ~ as T2 gives IR cutoff,
BUT = perturbative expansion in y/ag in QCD
— often advocated reason for slower convergence

Yet many interesting QGP physics features happen at not that large
coupling ag(~ 27 T.) ~ .5, (as(~ 2w T,) ~ 0.3 for pure glue)

Many efforts to improve this (review e.g. Blaizot, lancu, Rebhan '03):

Screened PT (SPT) (Karsch et al '97), ~ Hard Thermal Loop (HTL)
resummation (Andersen, Braaten, Strickland '99); Functional RG, 2-particle
irreducible (2PI) formalism (Blaizot, lancu, Rebhan '01; Berges, Borsanyi,
Reinosa, J. Serreau '05)

RGOPT(T # 0): essentially treats thermal mass 'RG consistently':
— UV divergences induce its anomalous dimension.

(NB some qualitative connections with recently advocated “massive scheme”
approach (Blaizot, Wschebor '14)



5. RGOPT (thermal ¢*) (Jik, M.B Pinto '15, '16)

oStart from 2-loop vacuum energy m# 0, T # 0 (wms scheme):
(472 F0 = &0 — (3~ 4In2) — T2 jo(2)
2
+1 () [(1 —2In™)m? — T2 Jl(%)]

Jo(2) ~ [5° dp\/pzler2 e\/le . Ocdo(x) = —2x J1(x)

+m2 -1

First step: &: necessary finite vacuum energy subtraction:
&g, m) = —m* (SEO + 51 +52g+--~>
(T-independent, determined by requiring RG invariance:)

(ba—dm) 4
870 (bo—470)

missed by SPT, or HTLpt (hot QCD): explains the important scale
dependence observed in those approaches (more below)

— 1 — 2. —
%0 = 2(bo—470) 8% s =

Next: expand in §, § — 1 after m®> — m?(1 —§)? ; g — ig
RG only consistent for a = 27y/by (= 1/3 for ¢*: while a =1 in SPT)

Practical bonus: non-trivial mass gap m(g, T) already at one-loop.
NB 1/g in & automatically cancels in (optimized) energy.



One-loop RGOPT (O(48?))
Exact OPT “thermal mass gap” m self-consistent solution of

> _
-2 _ & =20 M 2, (M YL R R B S s

or from simple quadratic Eq. for m/T < 1 (sufficient for most purpose):

2

1 m,, m T

. 14+ 3(5p +L7) -1
m 2 1
— = ~ (5 bog—bog+—=(3-2L7)(bog)®*+
T ™ bongLT 7T(3 08 —Do& 2\/5( 7)(bog)

P 3 %2

F(G): ——G——GQ(G+1)+ \f{ (1+2G)] + o

0

Lr=ye+Ingks . 1/G=1/(bog(n)) + Ly Po=m>T*/90

= m, and thus P(m) are explicitly exactly scale-invariant
+ reproduces much simply exact (all orders) known large N results

(Drummond et al "98)



RGOPT mass and Pressure: two-loop order

m/T

rrrrr oPT

E= RG Solution 1
mes RG solution 2

06

=g
(g(1)/24)Y? = g(u) with scale-dependence 7T < p < 4n T
At two-loops a remnant scale-dependence reappears from unperfectly

matched running coupling <> mass and pressure:
but moderate in P(g), shown to be of higher (4-loop) order O(g3In 11).

Generic: RGOPT at O(g*) — In i appears at O(g**!) for any m, but
m? ~ gT?: so P~ m*/g +--- has leading y-dependence at O(g**+2).

eNote intersection of RG and OPT solutions: can fix a 'nonperturbative’
g(p ~ anT) (alternative to running coupling)

oThe other RG solution with tiny scale-dependence (red) is driven by
(spurious perturbative) UV fixed point: to be discarded.



0.98-

0.96

P/,

0.94 -

0.92

09¢ RGOPT 2 loop, s2 #0
0 02 0.4 s 06 0.8 1

[JLK, M.B Pinto, PRL 116 (2016); PRD 92 (2015)]

Definite scale-dependence improvement (a factor ~ 3) w.r.t. SPT [J.0.
Andersen et al '01]

-Improvement should be more drastic at 3-loops, where SPT scale

dependence increases rather strongly.

NB RGOPT pressure has a different slope at g ~ 0: not a problem:
g not fixed at a physical scale (similar to e.g. large N different slope)
[Alternatively: solving OPT Eq. as g(m): P = P(m); where mis
arbitrary: now using physical (screening) mass P(m — mp(g)):

— recover standard perturbative terms of P(g)]



Closer to QCD: O(N) nonlinear & model (NLSM)

[G. Ferreri, JLK, M.B. Pinto, R.0 Ramos, arXiv:1709...]

(14+1)D NLSM shares many properties with QCD: asymptotic freedom,
mass gap. Also T # 0 pressure, trace anomaly have QCD-similar shape
Other nonperturbative T # 0 results available for comparison
(lattice [Giacosa et al '12], 1/ expansion [Andersen et al '04], others)
1 g(mom)?> m? 1/2
Lo=-(0m)?+ 2 — (1 —gn?
0 =20 o gy g 8

two-loop pressure from:

eAdvantage w.r.t. QCD: exact T-dependence at 2-loops:

N-1 N-3
Poert.2100p = _( 5 ) [/o(”h T)+ (47)m2g11(m T)ﬂ +&,
1 m m
I(m, T)= > <m2(1 “n ﬁ) +4T2K0(T))

Ko(x) = Jy~ dztn (1= eV757 ), h(m, T) = Olo(m, T)/0m?



NLSM peculiarity: standard perturbative RG invariance

Eo in Po_joop: = ’"? already there in Lagrangian!

If it would be ignored, reconstructed consistently by RG 'subtraction’:
Eol(g,m)=m? <‘°§° + 5 +52g+-~->

502%217 s1= (b1 —271)3% =0

A property not expected in any other models: consequence of NLSM
renormalization with only two counterterms (coupling Z, and field Zy)):
Zm = 2,277

Jo

*RG consistency: m — m(1 — 8)%, 3 = (N —3)/(N — 2)/2 for NLSM
Other properties similar to ¢*:

eExact one-loop scale invariance

eVery moderate remnant scale dependence at 2-loops

eAlso reproduces exact (all orders) known large N (LN) results
(Andersen et al '04)



One-loop RGOPT for NLSM pressure
Exact T-dependent mass gap m(g, T) from 9, P(m) = 0:

m 1 m N -2
W= ok (D, (pplem = T2
W hog(n 2l (B o )

[ = - 1-loop
0N _ b _
more explicitly for T =0: m = pe Post) = Ao

and for T > m:

m__Tmhg ot
T 1-boglyr ' " anT
N—-1 X2 _ -
Pl et = *%TQ Ko(x) + 5 (L+4K (%)), (x=m/T)

47 T
eVE

with one-loop running g~ (1) = g~ (Mo) + bo In 7-)
— Remarkable property of RGOPT: running with T consistently included!

(for standard perturbation, and SPT, HTLpt, xx ~ 27T put 'by hand’
e.g. to get correct Stefan-Boltzmann limit)

3
PFLGOPT(T >m)~1-— Ebog(

)



RGOPT NLSM mass and pressure: two-loops

P/Psg(N = 4, g(My) = 1) vs standard perturbation (PT), large N (LN),
and SPT = ignoring RG-induced subtraction; m?> — m?(1 — §):

RGOPT 21

[ /[~ rcopr 1L

3
&
=04
02 Psp = %(N —1)T12
00 L L L
0.0 0.5 1.0 1.5 2.0

T/My
(shaded range: scale-dependence 7T < u=M < 47 T)
— A moderate scale-dependence reappears, from unperfectly matched
2-loop standard running coupling.



RGOPT(NLSM) vs lattice results

oNLSM T # 0 lattice simulations: only done for N = 3
[E. Seel, D. Smith, S. Lottini, F. Giacosa '12]

eComparison for large coupling: g(M) = 27

eDrawback: for such large coupling 2-loop RGOPT remnant scale
dependence much more sizable.

LN
0.8 RGOPT 2

“RGOPT IL

02 i ... Lattice

T0)
shaded regions: scale-dependence 7T < p=M < 4nT
However 2-loop good agreement is rather accidental for large g(Mp) (not
genuine RGOPT prediction)



NLSM interaction measure (trace anomaly)
(normalized) T2 Aop NLSM =E—P=ST —2P = T30r(F)

1.00

0.50

0.20r|

- RGOPTIL

< 0.10f
0.05}

0.02 : : : :
0.0 0.1 0.2 0.3 0.4 0.5

T/M,

N = 4,g(Mo) =1 (shaded regions: scale-dependence 7T < =M < 4xT )
e2-loop Aspr: small, monotonic behaviour + sizeable scale dependence.

eRGOPT shape 'qualitatively’ comparable to QCD, showing a peak
(but no spontaneous sym breaking/phase transition in 2D NLSM
(Mermin-Wagner-Coleman theorem): reflects broken conformal
invariance (mass gap).



6. Thermal (pure glue) QCD: hard thermal loop (HTLpt)

QCD generalization of OPT = HTLpt [Andersen, Braaten, Strickland '99]:
same “OPT" trick operates on a gluon “mass” term [Braaten-Pisarski "90]:

2 a,,B

m
EQCD(gauge)—7 Tr {G““<(};.g)2

(effective, gauge-invariant, but nonlocal Lagrangian):

>ng], Di = 9F_ig A,y = (1,9)

describes screening mass m? ~ a5 T2, but also many more 'hard thermal

loop” contributions [modifies vertices and gluon propagators]

Pl = (N2 1)

m* m > dw 1 i 5
{647(@—“‘?)‘*‘/0 7/w dk k*(2¢1 — 1)

2m3 eT —1

T [ 5 _er _wp w2 T4
fﬁ/o dk k [QIn(lfe ) +In(l—e r)]f }

90

wak

where k% + m? [1 — YL |n( Ltk )} =0; f(wr) =0; ¢r,¢7: complicated.
eExact 2-loop? daunting task...

— Clearly more complicated than gluon mass in Curci-Ferrari model [e.g.
RSTW approach discussed here '15 "16]



More standard HTLpt results

HTLpt advantage: calculated up to 3-loops a2 (NNLO)
[Andersen et al '99-'15] BUT only as m/T expansions
Drawback: HTLpt = high-T approximation (by definition)

HTLpt _p.
Pl loop,ms = Pideal *
15 45 m 7 72
1— —m*+30m° + M( -+ =
2 Mt ty Mg tE-3+3)
P T4
m= 50 ’DideaI*(N _1)2



More standard HTLpt results

Pure glue up to NNLO 3-loops [Andersen, Strickland, Su "10]:

@ 1.0 e R—

2

208

2

~

= 0.6

L

=

§ 0.4 — - — LOHTLpt

P NLO HTLpt

202 P

O : NNLO HTLpt

Q‘: 0.0 ’.' .......... Lattice Data (Boyd et al)
1 2 3 4 5

T/T.

Reasonable agreement with lattice simulations (Boyd et al '96) at NNLO
(3-loop), down to T ~ 2 — 3T, for low scale y ~ 7T —27T.

Main issue of HTLpt however: odd increasing scale dependence at higher
(NNLO) order

Moreover HTLpt (frequent) mass prescription m — m2™"*(as) [to avoid
complex optimized solutions]: may miss more “nonperturbative”
information.



RGOPT adaptation of HTLpt =RGOHTL

Main RGOPT changes:

o Crucial RG invariance-restoring subtractions in Free energy (pressure):
Putipt = PHTipr — m4§—‘;: reflects its anomalous dimension.

Jo . .
e interpolate with m?(1 — §)% , where gluon 'mass’ anomalous dimension
defined from its (available) counterterm.

RGOPT scale dependence should improve at higher orders, from RG
invariance maintained at all stages:

from subtraction terms (prior to interpolation), and from interpolation
restoring RG invariance.

e SPT HTLpt,... do not include these subtractions:

yet scale dependence moderate up to 2-loops,

because the (leading order) RG-unmatched term, of O(m* In u), is
perturbatively formally like a (3-loop order) a2 term: m? ~ as T2.

— Explains why HTLpt scale dependence dramatically resurfaces at
3-loops!



Preliminary RGO(HTL) results (1- and 2-loop, pure glue)

One-loop: exactly scale-invariant pressure (like for ¢* and NLSM):

2-loops: a moderate scale-dependence reappears, similar to ¢*, NLSM
case: a factor ~ 2 improvement w.r.t. HTLpt 2-loops:

P/Pideal

10

[JLK, M.B Pintb, to appear soon]

{!—lTLpt Z—ioop

-

OPT 2-loop—

HTLpt 3-loop —

(Preliminary!)

L
4

ST,

NB scale dependence should improve much at 3-loops, generically:

RGOPT at O(ak) — m(u) appears at O(ak™™) for any m, but
m? ~asT? — P~ m%/as + - leading u-dependence at O(ak™).

o However low T ~ T, genuine pressure shape needs determining higher
order subtraction terms of O(m*a% In p): new calculations of 3-loop HTL
integrals (neglected in standard HTLpt as formally O(a%))



(Very) preliminary RGO(HTL) approximate 3-loop results

3-loops: exact missing m*a2 terms need extra nontrivial calculations, but
s

31
PreonTL ~

RGOPT (P?lripe) + m*a%(Cao In® 52~ + Ga1In® 52— + CazIn 52~ + Gas):
leading logarithms (LL) and next-to-leading (NLL) Gz, C31 fully
determined from lower orders from RG invariance

Within this LL, NLL approximation and in the T/T, > 2 range where

more trustable:

AP/P (MTT< p <4nT)

030f

020

010

002

001

<. HTLpt 3-loops

___HTLpt 2-loops

RGOHTL 2-loops

T
15

RV

We assume/expect unknown terms will not spoil this improved scale

dependence.



Summary and Outlook

oOPT gives a simple procedure to resum perturbative expansions, using
only perturbative information.

eOur RGOPT version includes 2 major differences w.r.t. previous
OPT/SPT/HTLpt... approaches:

1) OPT +/or RG optimizations fix optimal m and possibly g = 4ras

2) Maintaining RG invariance uniquely fixes the basic interpolation
m — m(1 — §)7/b: discards spurious solutions and accelerates
convergence.

e Applied to T # 0: exhibits improved stability + much improved scale
dependence (with respect to standard PT, but also wrt SPT ~ HTLpt)

ePaves the way to extend such RG-compatible methods to full QCD
thermodynamics, (work in progress, starting with T # 0 pure
gluodynamics) specially for exploring also finite density



Backup: RGOPT in Gross-Neveu model

oD =2 O(2N) GN model shares many properties with QCD (asymptotic
freedom, (discrete) chiral sym., mass gap,..)

Loy = Vi JU + £V UW)? (massless)
Standard mass-gap (massless, large N approx.):

work out Veg (o ~ (WW)) ~ % + Trin(i @ — o);

Wer — %UEM:uei?E/\m

eMass gap also known exactly for any N:

Mexact(N) _ (4e)70=
N ML — 571

(From D = 2 integrability: Bethe Ansatz) Forgacs et al '91



Massive (large N) GN model

M(m, g) = m(1 +gIn )71 Resummed mass (g/(27) — g)
=m(l—ghn (In +In? 2)+-++) (pert. re-expanded)

e Only fully resummed M(m, g) gives right result, upon:

“identifying A = pe~&; — M(m,g) = =2 = 1.

gln & In &
-taking reciprocal: 1= M In ¥ — M(m — 0) ~

m//\+"<79(m2) =A

never seen in standard perturbation: Mpe.(m — 0) — 0!

eNow (RG)OPT gives M = A at first (and any) J-order!
(at any order, OPT sol.: In % = —1 RGsol:g=1)
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oAt §%-order (2-loop), RGOPT ~ 1 — 2% from Mexac:(anyN)

eNot specific to GN model: generalize to any model:
RG, OPT solutions at first (and all) orders:

I =—Je; g= 710 correctly resums pure RG LL, NLL,... (as far as

bo, 70 dependence concerned).



