Some applications of Renormalization Group Optimized perturbation (zero and finite temperatures)

Jean-Loïc Kneur (Lab. Charles Coulomb, Montpellier)

Infrared QCD Workshop, APC, Paris, Nov 9, 2017

Introduction/motivation

Approach: (unconventional) resummation of perturbative expansions

General: relevant both at T=0 or T
eq 0 (and finite density)

• T=0: gives estimates of chiral symmetry breaking order parameters: $F_{\pi}(m_a=0)/\Lambda_{\infty}^{\rm QCD}$:

$$F_\pi \simeq 92.2 {
m MeV}
ightarrow F_\pi(m_q=0)
ightarrow \Lambda_{\overline{
m MS}}^{n_{
m f}=3}
ightarrow lpha_{\overline{
m S}}^{\overline{
m MS}}(\mu=m_Z).$$

$$N^3LO$$
: $F_\pi^{m_{
m q}=0}/\Lambda_{
m MS}^{n_{
m f}=3}\simeq 0.25\pm.01 o lpha_{
m S}(m_{
m Z})\simeq 0.1174\pm.001\pm.001$ (JLK, A.Neveu, '13))

(compares well with latest (2016) $lpha_{\mathcal{S}}$ world average [PDG2016])

In this talk I illustrate $\langle \bar{q}q \rangle$ RGOPT determination at N^3LO : $\langle \bar{q}q \rangle_{m_q=0}^{1/3} (2\,\mathrm{GeV}) \simeq -(0.84 \pm 0.01) \Lambda_{\overline{\mathrm{MS}}}$ (JLK, A.Neveu, '15)) Note: parameter free determination!

NB: can also address gluon 'mass' determination in principle...

More motivations (thermal context)

Complete QCD phase diagram far from being confirmed:

 $T \neq 0, \mu=0$ well-established from lattice: no sharp phase transition, continuous crossover at $T_c \simeq 154 \pm 9$ MeV

Goal: more analytical approximations, ultimately in regions not much accessible on the lattice: large density (chemical potential) due to the (in)famous "sign problem"

(i.e. complex Euclidian fermion determinant on the lattice)

•RGOPT considerably reduces the well-known problems of unstable +badly scale-dependent thermal perturbative expansions

Content

- ▶ 1. Introduction/Motivation
- 2. Optimized perturbation (OPT)
- ▶ 3. RG-compatible OPT \equiv RGOPT
- ▶ 4. T=0 application: chiral quark condensate $\langle \bar{q}q \rangle$ determination
- ▶ 5. $T \neq 0$: scalar ϕ^4 model and non-linear σ model $(\sigma \text{ model: many similarities with QCD but simpler})$
- ► 6. application to thermal QCD (pure glue)
- Summary and outlook

2. (Variationally) Optimized Perturbation (OPT)

Trick (T=0): add and subtract a mass, consider $m \delta$ as interaction:

$$\mathcal{L}_{QCD}(g,m)
ightarrow \mathcal{L}_{QCD}(\delta\,g,m(1-\delta))$$
 (e.g. in QCD $g \equiv 4\pilpha_S$)

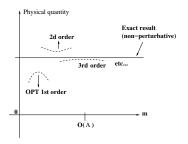
where $0 < \delta < 1$ interpolates between \mathcal{L}_{free} and massless \mathcal{L}_{int} ; e.g. in QCD (quark) mass $m_q \to m$: arbitrary trial parameter

• Take any standard (renormalized) QCD pert. series, expand in δ after: $m_q \to m \, (1 - \delta)$; $g \to \delta \, g$ then take $\delta \to 1$ (to recover original massless theory):

BUT a m-dependence remains at any finite δ^k -order: fixed typically by stationarity prescription: optimization (OPT): $\frac{\partial}{\partial m}(\text{physical quantity}) = 0$ for $m = \bar{m}_{opt}(\alpha_S) \neq 0$:

- T=0: exhibits dimensional transmutation: $\bar{m}_{opt}(g)\sim \mu~e^{-const./g}$
- $\bullet T \neq 0$ similar idea: "screened perturbation" (SPT), or resummed "hard thermal loop (HTLpt)", etc: expand around a quasi-particle mass. But does this 'cheap trick' always work? and why?

Expected behaviour (ideally)



But not quite what happens, except in simple models:

•Convergence proof of this procedure for D=1 ϕ^4 oscillator (cancels large pert. order factorial divergences!) Guida et al '95

particular case of 'order-dependent mapping' Seznec, Zinn-Justin '79

- ullet But QFT multi-loop calculations (specially T
 eq 0) (very) difficult:
- ightarrow what about convergence? not much apparent
- •Main pb at higher order: OPT: $\partial_m(...) = 0$ has multi-solutions (some complex!), how to choose right one, if no nonperturbative "insight"??

3. RG compatible OPT (\equiv RGOPT)

Our main additional ingredient to OPT (JLK, A. Neveu '10):

Consider a *physical* quantity (i.e. perturbatively RG invariant) (for example, in thermal context, the pressure P(m, g, T)):

in addition to OPT: $\frac{\partial}{\partial m}P^{(k)}(m,g,\delta=1)|_{m\equiv \tilde{m}}\equiv 0$, Require (δ -modified!) result at order δ^k to satisfy a standard (perturbative) Renormalization Group (RG) equation:

$$\operatorname{RG}\left(P^{(k)}(m,g,\delta=1)\right)=0$$

with standard RG operator ($g = 4\pi\alpha_S$ for QCD):

$$\mathrm{RG} \equiv \mu \frac{\mathrm{d}}{\mathrm{d}\,\mu} = \mu \frac{\partial}{\partial \mu} + \beta(\mathbf{g}) \frac{\partial}{\partial \mathbf{g}} - \gamma_{\mathit{m}}(\mathbf{g})\,\mathit{m} \frac{\partial}{\partial \mathit{m}}$$

$$\beta(g) \equiv -b_0 g^2 - b_1 g^3 + \cdots, \quad \gamma_m(g) \equiv \gamma_0 g + \gamma_1 g^2 + \cdots$$

 \rightarrow Additional nontrivial constraint: contains a priori more consistent RG information than $\partial_m P(m)$ optimization.

 \rightarrow If combined with OPT, RG Eq. reduces to massless form:

$$\left[\mu \frac{\partial}{\partial u} + \beta(g) \frac{\partial}{\partial g}\right] P^{(k)}(m, g, \delta = 1) = 0$$

Then using OPT AND RG completely fix $m \equiv \bar{m}$ and $g \equiv \bar{g}$.

But $\Lambda_{\overline{MS}}(g)$ satisfies by def.:

$$[\mu \frac{\partial}{\partial \mu} + \beta(g) \frac{\partial}{\partial g}] \Lambda_{\overline{MS}} \equiv 0$$
 consistently at a given pert. order for $\beta(g)$.

Thus equivalent to:

$$\frac{\partial}{\partial m} \left(\frac{P^k(m, g, \delta = 1)}{\Lambda_{\overline{\text{MS}}}(g)} \right) = 0 \; ; \quad \frac{\partial}{\partial g} \left(\frac{P^k(m, g, \delta = 1)}{\Lambda_{\overline{\text{MS}}}(g)} \right) = 0 \; \text{for } \bar{m}, \bar{g}$$

Optimal $\bar{m}, \bar{g} = 4\pi \bar{\alpha}_S$ unphysical: final (physical) result from $P(\bar{m}, \bar{g}, T)$

At T = 0 reproduces at first order exact nonperturbative results in simpler models [e.g. Gross-Neveu model]

OPT + RG = RGOPT main new features

- •Standard OPT: embarrassing freedom (a priori) in interpolating form: e.g. why not $m \to m(1-\delta)^a$?
- Most previous works (T = 0 or SPT, HTLpt,...($T \neq 0$):

linear interpolation "add and subtract" (a=1) without deep justification but generally (we have shown) a=1 spoils RG invariance!

- ulletOPT,RG Eqs: many solutions at increasing δ^k -orders
- \rightarrow Our approach restores RG, +requires optimal solution to match perturbation (i.e. Asymptotic Freedom for QCD (T=0)):

$$lpha_{\mathsf{S}}
ightarrow 0 \; (\mu
ightarrow \infty) \colon ar{g}(\mu) \sim rac{1}{2b_{\mathsf{D}} \ln rac{\mu}{z}} + \cdots \; , \; ar{m} \sim ar{\Lambda}_{\mathsf{QCD}}$$

→ At successive orders AF-compatible optimal solution (often unique) only appears for universal critical a:

$$m o m (1 - \delta)^{\frac{\gamma_0}{b_0}}$$
 (in general $\frac{\gamma_0}{b_0} \neq 1$)

- → Goes beyond simple "add and subtract" trick
- + It removes any spurious solutions incompatible with AF
- But does not always avoid complex solutions
 (if occur, possibly cured by renormalization scheme change)

4. Application: T = 0 QCD quark condensate (JLK, A. Neveu '15)

 $\langle \bar{q}q \rangle$: chiral symmetry breaking order parameter: $SU(n_f)_L \times SU(n_f)_R \to SU(n_f)_{L+R}$, n_f massless quarks. $(n_f=2,3)$

• Start from perturbative result, known to 3 loops (Chetyrkin et al '94; Chetyrkin + Maier '10)



$$m \langle \bar{q}q \rangle (m,g)_{\overline{\text{MS}}} = 3 \frac{m^4}{2\pi^2} \left[\frac{1}{2} - L_m + \frac{g}{\pi^2} (L_m^2 - \frac{5}{6} L_m + \frac{5}{12}) + (\frac{g}{16\pi^2})^2 [f_{30}(n_f) L_m^3 + f_{31}(n_f) L_m^2 + f_{32}(n_f) L_m + f_{33}(n_f)] \right], \quad (L_m \equiv \ln \frac{m}{\mu})$$

Important rk: this finite part (after mass + coupling renormalization) is not separately RG-invariant:

$$\mu rac{d}{d\mu} m \langle ar q q
angle = \mathcal{O}(m^4) \equiv ext{vacuum energy anomalous dimension}$$

•Known generic RG feature (but often missed in literature): needs appropriate 'subtraction' terms (consistently RG-determined) to recover perturbative RG invariance

First attempt: naive (direct) optimization of $m\langle \bar{q}q\rangle$?

NB works pretty well for F_{π}/Λ_{QCD} : $i\langle 0|TA^i_{\mu}(p)A^j_{\nu}(0)|0\rangle \equiv \delta^{ij}g_{\mu\nu}F^2_{\pi}(m=0); \quad A^i_{\mu} \equiv \bar{q}\gamma_{\mu}\gamma_5\frac{\tau_i}{2}q$ (empirical convergence of RGOPT observed already at 2-loops)

- •For $m\langle \bar{q}q \rangle$: One-loop order: no nontrivial OPT +RG solution...
- ◆Higher orders (2- and 3-loops): gives right order of magnitude, but ambiguous results: plagued by large, unphysical, imaginary parts
 → no conclusive stability/convergence trend (appears slow at best)
- Instabilities traced to strong sensitivity to regularization choice:

with naive cutoff the (dominant) one-loop quadratic divergence gives correct (negative) sign of $\langle \bar{q}q \rangle$ (a pillar of the success of Nambu-Jona-Lasinio model!)

but (one-loop) sign flips in $(D=4-\epsilon)$ dimensional regularization $(\overline{\rm MS})$

Yet important to keep benefits of MS: high order QCD perturbative results available: crucial for stability/convergence check.

 \rightarrow Like any other variational methods it is sensible to start from a suitable quantity to optimize: here the spectral density of the Dirac operator, intimately related to $\langle \bar{q}q \rangle$.

4 $\langle \bar{q}q \rangle$ and Spectral density $\rho(\lambda)$

Euclidean Dirac operator:

$$i \not \! D u_n(x) = \lambda_n u_n(x); \quad \not \! D \equiv \partial + g \not \! A;$$

NB
$$i \not \! D (\gamma_5 u_n(x)) = -\lambda_n (\gamma_5 u_n(x))$$

On a lattice:
$$\rho(\lambda) \equiv \frac{1}{V} \langle \sum_n \delta(\lambda - \lambda_n^{[A]}) \rangle_A$$

$$V
ightarrow \infty$$
: spectrum becomes dense, and

$$\langle \bar{q}q \rangle \equiv \frac{1}{V} \operatorname{Tr} \frac{1}{m + \not p} \to \langle \bar{q}q \rangle_{V \to \infty}(m) \equiv -2m \int_0^\infty d\lambda \frac{\rho(\lambda)}{\lambda^2 + m^2}$$

$$\rho(\lambda)$$
: spectral density of the (euclidean) Dirac operator.

Banks-Casher relation ('80):
$$\langle \bar{q}q \rangle (m \to 0) \equiv -\pi \rho(0)$$
 (using e.g. $\lim_{m \to 0} \frac{1}{m-i\lambda} = i PV(\frac{1}{\lambda}) + \pi \delta(\lambda)$)

'Washes out' large λ problems (e.g. quadratic UV divergences)

Conversely:
$$-\rho(\lambda) = \frac{1}{2\pi} \left(\langle \bar{q}q \rangle (i\lambda + \epsilon) - \langle \bar{q}q \rangle (i\lambda - \epsilon) \right) |_{\epsilon \to 0}$$
 i.e. $\rho(\lambda)$ determined by discontinuities of $\langle \bar{q}q \rangle (m)$ across imaginary axis.

Perturbative expansion: $\rightarrow \ln(m \rightarrow i\lambda)$ discontinuities \rightarrow no contributions from divergence and non-log terms (like anom. dim.)

Adapting OPT and RG Eqs. to spectral density

• Perturbative logarithmic discontinuities simply from

$$\ln^{n}\left(\frac{m}{\mu}\right) \to \frac{1}{2\mathrm{i}\pi} \left[\left(\ln\frac{|\lambda|}{\mu} + \mathrm{i}\frac{\pi}{2} \right)^{n} - \left(\ln\frac{|\lambda|}{\mu} - \mathrm{i}\frac{\pi}{2} \right)^{n} \right] \tag{1}$$

$$\text{i.e. } \ln\left(\frac{m}{\mu}\right) \to 1/2; \ \ln^2\left(\frac{m}{\mu}\right) \to \ln\frac{|\lambda|}{\mu}; \ \ln^3\left(\frac{m}{\mu}\right) \to \frac{3}{2}\ln^2\frac{|\lambda|}{\mu} - \frac{\pi^2}{8} \; ; \cdots$$

• Modified perturbation: intuitively λ plays the role of m, so:

$$\rho_{pert}(\lambda, g) \to \rho_{opt}(\lambda(1 - \delta)^{\frac{4}{3}\frac{\gamma_0}{2b_0}}, \delta g); \text{ expand in } \delta; \delta \to 1$$
 (2)

• OPT Eq.:
$$\frac{\partial}{\partial \lambda} \rho_{opt}(g,\lambda) = 0 \text{ for } \lambda = \bar{\lambda}_{opt}(g) \neq 0$$
 (3)

• Using $\frac{\partial}{\partial m} \frac{m}{\lambda^2 + m^2} = -\frac{\partial}{\partial \lambda} \frac{\lambda}{\lambda^2 + m^2}$, one finds $\rho(\lambda)$ obeys RG eq.:

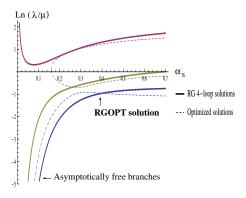
$$\left[\mu \frac{\partial}{\partial \mu} + \beta(\mathbf{g}) \frac{\partial}{\partial \mathbf{g}} - \gamma_{\mathbf{m}}(\mathbf{g}) \lambda \frac{\partial}{\partial \lambda} - \gamma_{\mathbf{m}}(\mathbf{g})\right] \rho(\mathbf{g}, \lambda) = 0 \tag{4}$$

ightarrow RGOPT recipe: -After (1), (2), solve (3), (4) for optimal $\bar{\lambda}$, \bar{g} ; then $ho(\bar{\lambda}, \bar{g}) \simeq
ho(0) \equiv -\langle \bar{q}q \rangle (m=0)/\pi$.

Example: RG and OPT $\rho(\lambda)$ solutions: up to 4-loops

NB $\langle \bar{q}q \rangle_{pert}$ exactly known at present to 3-loop α_S^2 order. But 1) RG properties determine next (4-loop) $\alpha_S^3 \ln^p(m/\mu)$ coefficients, 2) non-logarithmic terms do not contribute to $\rho_{pert}(\lambda)$:

 \rightarrow we get $\rho_{pert}(\lambda)$ exact to 4-loop!



RGOPT 2,3,4-loop results for $\langle \bar{q}q \rangle$ $(n_f = 2)$

δ^k , RG order	$\ln rac{ar{\lambda}}{\mu}$	$ar{lpha}_{S}$	$\frac{-\langle \bar{q}q \rangle^{1/3}}{\bar{\Lambda}_2} (\bar{\mu})$	$\frac{\bar{\mu}}{\bar{\Lambda}_2}$	$\frac{-\langle \bar{q}q \rangle_{RGI}^{1/3}}{\bar{\Lambda}_2}$
δ , RG 2-loop	-0.45	0.480	0.822	2.8	0.821
δ^2 , RG 3-loop	-0.703	0.430	0.794	3.104	0.783
δ^3 , RG 4-loop	-0.820	0.391	0.796	3.446	0.773

(and similarly behaving results for $n_f = 3$).

NB:
$$\langle \bar{q}q \rangle_{RGI} = \langle \bar{q}q \rangle(\mu) \left(2b_0 g\right)^{\frac{\gamma_0}{2b_0}} \left(1 + \left(\frac{\gamma_1}{2b_0} - \frac{\gamma_0 b_1}{2b_0^2}\right)g + \cdots\right)$$

- stability/convergence exhibited;
- already realistic value at 2-loop order

RG Evolution to reference scale $\mu = 2$ GeV:

$$-\langle \bar{q}q \rangle_{n_{\ell}=2}^{1/3} (2 \text{GeV}) = (0.833_{(4-loop)} - 0.845_{(3-loop)}) \bar{\Lambda}_2$$

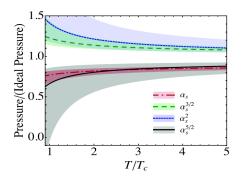
- \rightarrow Using most precise $\bar{\Lambda}_2$ lattice result: $\bar{\Lambda}_2 = 331 \pm 21$
- (quark potential, Karbstein et al '14) finally gives:

$$-\langle \bar{q}q \rangle_{n_e=2}^{1/3} (\text{rgopt}, 2\text{GeV}) \simeq 278 \pm 2(\text{rgopt}) \pm 18(\bar{\Lambda}_2) \text{ MeV}$$

- •compares with latest lattice result (Engel et al '14):
- $-\langle \bar{q}q \rangle_{n_c=2}^{1/3} (\mu = 2 \text{GeV}) = 261 \pm 6 \pm 8 \text{ MeV}$

Thermal perturbative expansion (QCD, $g\phi^4$, ...)

known problem: poorly convergent and very scale-dependent (ordinary) perturbative expansions:



QCD (pure glue) pressure at successive (standard) perturbation orders shaded regions: scale-dependence for $\pi T < \mu < 4\pi T$ (illustration from Andersen, Strickland, Su '10)

Problems of thermal perturbation (QCD but generic)

Main culprit: mix up of hard $p \sim T$ and soft $p \sim \alpha_S T$ modes.

Thermal 'Debye' screening mass $m_D^2 \sim \alpha_S \, T^2$ gives IR cutoff, BUT \Rightarrow perturbative expansion in $\sqrt{\alpha_S}$ in QCD \rightarrow often advocated reason for slower convergence

Yet many interesting QGP physics features happen at not that large coupling $\alpha_S(\sim 2\pi T_c)\sim .5$, $(\alpha_S(\sim 2\pi T_c)\sim 0.3$ for pure glue)

Many efforts to improve this (review e.g. Blaizot, Iancu, Rebhan '03):

Screened PT (SPT) (Karsch et al '97), \sim Hard Thermal Loop (HTL) resummation (Andersen, Braaten, Strickland '99); Functional RG, 2-particle irreducible (2PI) formalism (Blaizot, Iancu, Rebhan '01; Berges, Borsanyi, Reinosa, J. Serreau '05)

RGOPT($T \neq 0$): essentially treats thermal mass 'RG consistently': \rightarrow UV divergences induce its anomalous dimension.

(NB some qualitative connections with recently advocated "massive scheme" approach (Blaizot, Wschebor '14)

5. RGOPT(thermal ϕ^4) (JLK, M.B Pinto '15, '16)

•Start from 2-loop vacuum energy $m \neq 0$, $T \neq 0$ (\overline{MS} scheme):

$$(4\pi)^2 \mathcal{F}_0 = \frac{\mathcal{E}_0}{8} - \frac{m^4}{8} (3 - 4 \ln \frac{m}{\mu}) - \frac{T^4}{2} J_0(\frac{m}{T})$$
$$+ \frac{1}{8} (\frac{g}{16\pi^2}) \left[(1 - 2 \ln \frac{m}{\mu}) m^2 - T^2 J_1(\frac{m}{T}) \right]^2$$
$$J_0(\frac{m}{T}) \sim \int_0^\infty dp \frac{1}{\sqrt{p^2 + m^2}} \frac{1}{e^{\sqrt{p^2 + m^2} - 1}} ; \quad \partial_x J_0(x) \equiv -2x J_1(x)$$

First step: \mathcal{E}_0 : necessary *finite* vacuum energy subtraction:

$$\mathcal{E}_0(g,m) = -m^4 \left(\frac{s_0}{g} + s_1 + s_2 g + \cdots \right)$$
(*T*-independent, determined by requiring RG invariance:)

 $s_0=rac{1}{2(b_0-4\gamma_0)}=8\pi^2; \quad s_1=rac{(b_1-4\gamma_1)}{8\gamma_0\,(b_0-4\gamma_0)}=-1, \ldots$ missed by SPT, or HTLpt (hot QCD): explains the important scale

dependence observed in those approaches (more below) Next: expand in δ , $\delta \to 1$ after $m^2 \to m^2(1-\delta)^a$; $g \to \delta g$ RG only consistent for $a=2\gamma_0/b_0$ (= 1/3 for ϕ^4 : while a=1 in SPT)

Practical bonus: non-trivial mass gap $\bar{m}(g,T)$ already at one-loop.

NB 1/g in \mathcal{E}_0 automatically cancels in (optimized) energy.

One-loop RGOPT $(\mathcal{O}(\delta^0))$

Exact OPT "thermal mass gap"
$$ar{m}$$
 self-consistent solution of

$$ar{m}^2 = rac{g}{2} \left[b_0 ar{m}^2 (\ln rac{ar{m}^2}{\mu^2} - 1) + T^2 J_1(rac{ar{m}}{T}) \right] \quad (ar{m}^2 (T = 0) = \mu^2 e^{1 + rac{2}{b_0 g}})$$

or from simple quadratic Eq. for $m/T \leq 1$ (sufficient for most purpose):

$$\left(\frac{1}{b_0 g} + \gamma_E + \ln \frac{\mu}{4\pi T}\right) \left(\frac{m}{T}\right)^2 + 2\pi \frac{m}{T} - 2\frac{\pi^2}{3} = 0$$

$$\left(\frac{1}{b_0 g} + \gamma_E + \ln \frac{\mu}{4\pi T}\right) \left(\frac{m}{T}\right)^2 + 2\pi \frac{m}{T} - 2\frac{\pi}{3} = 0$$

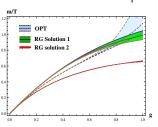
$$\frac{\bar{m}}{T} = \pi \frac{\sqrt{1 + \frac{2}{3}(\frac{1}{b_0 g} + L_T) - 1}}{\frac{1}{b_0 g} + L_T} \sim \pi (\frac{2}{3}\sqrt{b_0 g} - b_0 g + \frac{1}{2\sqrt{6}}(3 - 2L_T)(b_0 g)^{3/2} + \cdots)$$

$$\frac{P}{P_0}(G) = 1 - \frac{5}{4}G - \frac{15}{2}G^2(G+1) + \frac{5}{3}\sqrt{6}\left[G(1+\frac{3}{2}G)\right]^{3/2} + \cdots$$

$$L_T \equiv \gamma_E + \ln \frac{\mu}{4\pi T}$$
, $1/G \equiv 1/(b_0 g(\mu)) + L_T$; $P_0 = \pi^2 T^4/90$

 $\Rightarrow \bar{m}$, and thus $P(\bar{m})$ are explicitly exactly scale-invariant + reproduces much simply exact (all orders) known large N results (Drummond et al '98)

RGOPT mass and Pressure: two-loop order



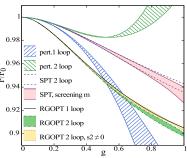
$$(g(\mu)/24)^{1/2} \equiv g(\mu)$$
 with scale-dependence $\pi T < \mu < 4\pi T$

At two-loops a remnant scale-dependence reappears from unperfectly matched running coupling \leftrightarrow mass and pressure: but moderate in P(g), shown to be of higher (4-loop) order $\mathcal{O}(g^3 \ln \mu)$.

Generic: RGOPT at $\mathcal{O}(g^k) \to \ln \mu$ appears at $\mathcal{O}(g^{k+1})$ for any \bar{m} , but $\bar{m}^2 \sim gT^2$: so $P \simeq \bar{m}^4/g + \cdots$ has leading μ -dependence at $\mathcal{O}(g^{k+2})$.

- •Note intersection of RG and OPT solutions: can fix a 'nonperturbative' $g(\mu \sim \alpha \pi T)$ (alternative to running coupling)
- •The other RG solution with tiny scale-dependence (red) is driven by (spurious perturbative) UV fixed point: to be discarded.

Two-loop RGOPT compared with standard PT and SPT



[JLK, M.B Pinto, PRL 116 (2016); PRD 92 (2015)]

Definite scale-dependence improvement (a factor \sim 3) w.r.t. SPT [J.O. Andersen et al $\,$ '01]

-Improvement should be more drastic at 3-loops, where SPT scale dependence increases rather strongly.

NB RGOPT pressure has a different slope at $g \sim 0$: not a problem: g not fixed at a physical scale (similar to e.g. large N different slope) [Alternatively: solving OPT Eq. as $\bar{g}(m)$: $P \equiv P(m)$; where m is arbitrary: now using physical (screening) mass $P(m \to m_D(g))$: \to recover standard perturbative terms of P(g)]

Closer to QCD: O(N) nonlinear σ model (NLSM) [G. Ferreri, JLK, M.B. Pinto, R.O Ramos, arXiv:1709...]

(1+1)D NLSM shares many properties with QCD: asymptotic freedom, mass gap. Also $T \neq 0$ pressure, trace anomaly have QCD-similar shape Other nonperturbative $T \neq 0$ results available for comparison (lattice [Giacosa et al '12], 1/N expansion [Andersen et al '04], others)

$$\mathcal{L}_0 = rac{1}{2} (\partial \pi_i)^2 + rac{g(\pi_i \partial \pi_i)^2}{2(1 - g \pi_i^2)} - rac{m^2}{g} \left(1 - g \pi_i^2\right)^{1/2}$$

two-loop pressure from:

•Advantage w.r.t. QCD: exact *T*-dependence at 2-loops:

$$P_{\text{pert.2loop}} = -\frac{(N-1)}{2} \left[I_0(m,T) + \frac{(N-3)}{4} m^2 g I_1(m,T)^2 \right] + \mathcal{E}_0,$$

$$I_0(m,T) = \frac{1}{2\pi} \left(m^2 (1 - \ln \frac{m}{\mu}) + 4T^2 K_0(\frac{m}{T}) \right)$$

$$K_0(x) = \int_0^\infty dz \ln\left(1 - e^{-\sqrt{z^2 + x^2}}\right), \quad I_1(m, T) = \partial I_0(m, T)/\partial m^2$$

NLSM peculiarity: standard perturbative RG invariance \mathcal{E}_0 in P_{2-loop} : $\equiv \frac{m^2}{g}$ already there in Lagrangian!

If it would be ignored, reconstructed consistently by RG 'subtraction':

$$\mathcal{E}_0(g,m)=m^2\left(\frac{s_0}{g}+s_1+s_2g+\cdots\right)$$

$$s_0=rac{(N-1)}{4\pi(b_0-2\gamma_0)}=1$$
, $s_1=(b_1-2\gamma_1)rac{s_0}{2\gamma_0}=0$
A property not expected in any other models: consequence of NLSM

renormalization with only two counterterms (coupling Z_g and field Z_π)):

$$Z_m = Z_g Z_\pi^{-1/2}$$

•RG consistency:
$$m o m(1-\delta)^{\frac{\gamma_0}{b_0}}$$
, $\frac{\gamma_0}{b_0} = (N-3)/(N-2)/2$ for NLSM

Other properties similar to ϕ^4 :

- Exact one-loop scale invariance
- •Very moderate remnant scale dependence at 2-loops
- •Also reproduces exact (all orders) known large N (LN) results (Andersen et al '04)

One-loop RGOPT for NLSM pressure

Exact *T*-dependent mass gap $\bar{m}(g,T)$ from $\partial_m P(m) = 0$:

$$\ln \frac{\bar{m}}{\mu} = -\frac{1}{b_0 g(\mu)} - 2K_1(\frac{\bar{m}}{T}), \quad (b_0^{\mathrm{nlsm}} = \frac{N-2}{2\pi})$$

more explicitly for T=0: $\bar{m}=\mu e^{-\frac{1}{h_0 \, g(\mu)}}=\Lambda_{\overline{\rm MS}}^{1-{
m loop}}$

and for $T \gg m$:

$$\frac{\overline{m}}{T} = \frac{\pi b_0 g}{1 - b_0 g L_T}, \quad (L_T \equiv \ln \frac{\mu e^{\gamma E}}{4\pi T})$$

$$P_{1L,\text{exact}}^{\text{RGOPT}} = -\frac{(N-1)}{\pi}T^2\left[K_0(\bar{x}) + \frac{\bar{x}^2}{8}\left(1 + 4K_1(\bar{x})\right)\right], \quad (\bar{x} \equiv \bar{m}/T)$$

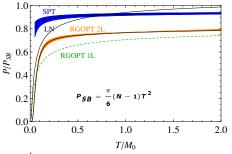
$$P_{1L}^{\mathrm{RGOPT}}(T\gg m)\simeq 1-rac{3}{2}b_0g(rac{4\pi\ T}{e^{\gamma_E}})$$

with one-loop running $g^{-1}(\mu) = g^{-1}(M_0) + b_0 \ln \frac{\mu}{M_0}$

ightarrow Remarkable property of RGOPT: running with T consistently included! (for standard perturbation, and SPT, HTLpt, $\mu \sim 2\pi T$ put 'by hand' e.g. to get correct Stefan-Boltzmann limit)

RGOPT NLSM mass and pressure: two-loops

 $P/P_{SB}(N=4,g(M_0)=1)$ vs standard perturbation (PT), large N (LN), and SPT \equiv ignoring RG-induced subtraction; $m^2 \rightarrow m^2(1-\delta)$:

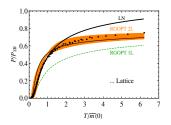


(shaded range: scale-dependence $\pi \, T < \mu \equiv M < 4 \pi \, T$)

 \rightarrow A moderate scale-dependence reappears, from unperfectly matched 2-loop standard running coupling.

RGOPT(NLSM) vs lattice results

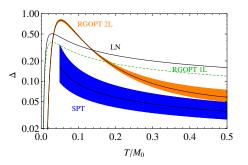
- •NLSM $T \neq 0$ lattice simulations: only done for N = 3 [E. Seel, D. Smith, S. Lottini, F. Giacosa '12]
- •Comparison for large coupling: $g(M_0) = 2\pi$
- •Drawback: for such large coupling 2-loop RGOPT remnant scale dependence much more sizable.



shaded regions: scale-dependence $\pi T < \mu = M < 4\pi T$ However 2-loop good agreement is rather accidental for large $g(M_0)$ (not genuine RGOPT prediction)

NLSM interaction measure (trace anomaly)

(normalized)
$$T^2 \Delta_{\text{2D NLSM}} \equiv \mathcal{E} - P = S T - 2P \equiv T^3 \partial_T (\frac{P}{T^2})$$



 $N=4, g(M_0)=1$ (shaded regions: scale-dependence $\pi T < \mu = M < 4\pi T$)

- •2-loop Δ_{SPT} : small, monotonic behaviour + sizeable scale dependence.
- •RGOPT shape 'qualitatively' comparable to QCD, showing a peak (but no spontaneous sym breaking/phase transition in 2D NLSM (Mermin-Wagner-Coleman theorem): reflects broken conformal invariance (mass gap).

6. Thermal (pure glue) QCD: hard thermal loop (HTLpt) QCD generalization of OPT = HTLpt [Andersen, Braaten, Strickland '99]:

same "OPT" trick operates on a gluon "mass" term [Braaten-Pisarski '90]:

$$\mathcal{L}_{QCD}(\text{gauge}) - \frac{m^2}{2} \operatorname{Tr} \left[G_{\mu\alpha} \langle \frac{y^{\alpha}y^{\beta}}{(y.D)^2} \rangle_y G^{\mu}_{\beta} \right], \quad D^{\mu} = \partial^{\mu} - ig A^{\mu}, \quad y^{\mu} = (1, \mathbf{\hat{y}})$$

describes screening mass $m^2 \approx \alpha s T^2$ but also many more 'hard thermal

(effective, gauge-invariant, but nonlocal Lagrangian):

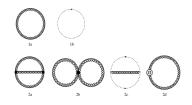
describes screening mass $m^2 \sim \alpha_S T^2$, but also many more 'hard thermal loop' contributions [modifies vertices and gluon propagators]

$$\begin{split} &P_{\text{1-loop}}^{HTL,\text{exact}} = (N_c^2 - 1) \times \\ &\left\{ \frac{m^4}{64\pi^2} (C_g - \ln \frac{m}{\mu}) + \int_0^\infty \frac{d\omega}{(2\pi^3} \frac{1}{e^{\frac{\omega}{T}} - 1} \int_\omega^\infty dk \ k^2 (2\phi_T - \phi_L) \\ &- \frac{T}{2\pi^2} \int_0^\infty dk \ k^2 \left[2 \ln(1 - e^{-\frac{\omega_T}{T}}) + \ln(1 - e^{-\frac{\omega_L}{T}}) \right] - \frac{\pi^2 T^4}{90} \right\} \end{split}$$

where $k^2 + m^2 \left[1 - \frac{\omega_L}{2k} \ln(\frac{\omega_L + k}{\omega_L - k}) \right] = 0$; $f(\omega_T) = 0$; ϕ_L, ϕ_T : complicated.

- Exact 2-loop? daunting task...
- \rightarrow Clearly more complicated than gluon mass in Curci-Ferrari model [e.g. RSTW approach discussed here '15 '16]

More standard HTLpt results

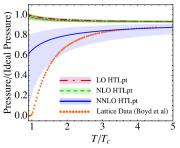


HTLpt advantage: calculated up to 3-loops α_5^2 (NNLO) [Andersen et al '99-'15] BUT only as m/T expansions Drawback: HTLpt \equiv high-T approximation (by definition)

$$\begin{split} P_{1-\text{loop},\overline{\text{MS}}}^{HTLpt} &= P_{\text{ideal}} \times \\ & \left[1 - \frac{15}{2} \hat{m}^2 + 30 \hat{m}^3 + \frac{45}{4} \hat{m}^4 \left(\ln \frac{\mu}{4\pi T} + \gamma_E - \frac{7}{2} + \frac{\pi^2}{3} \right) \right] \\ & \hat{m} \equiv \frac{m}{2\pi T} \qquad \qquad P_{\text{ideal}} &= (N_c^2 - 1) \pi^2 \frac{T^4}{45} \end{split}$$

More standard HTLpt results

Pure glue up to NNLO 3-loops [Andersen, Strickland, Su '10]:



Reasonable agreement with lattice simulations (Boyd et al '96) at NNLO (3-loop), down to $T\sim 2-3T_c$, for low scale $\mu\sim \pi T-2\pi T$.

Main issue of HTLpt however: odd increasing scale dependence at higher (NNLO) order

Moreover HTLpt (frequent) mass prescription $\bar{m} \to m_D^{pert}(\alpha_S)$ [to avoid complex optimized solutions]: may miss more "nonperturbative" information.

RGOPT adaptation of HTLpt = RGOHTL

Main RGOPT changes:

- Crucial RG invariance-restoring subtractions in Free energy (pressure): $P_{HTLpt} \rightarrow P_{HTLpt} m^4 \frac{s_0}{\alpha_8}$: reflects its anomalous dimension.
- interpolate with $m^2(1-\delta)^{\frac{\gamma_0}{k_0}}$, where gluon 'mass' anomalous dimension defined from its (available) counterterm.

RGOPT scale dependence should improve at higher orders, from RG invariance maintained at all stages:

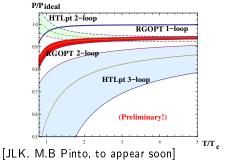
from subtraction terms (prior to interpolation), and from interpolation restoring RG invariance.

- SPT,HTLpt,... do not include these subtractions: yet scale dependence moderate up to 2-loops, because the (leading order) RG-unmatched term, of $\mathcal{O}(m^4 \ln \mu)$, is perturbatively formally like a (3-loop order) α_S^2 term: $m^2 \sim \alpha_S T^2$.
- ightarrow Explains why HTLpt scale dependence dramatically resurfaces at 3-loops!

Preliminary RGO(HTL) results (1- and 2-loop, pure glue)

One-loop: exactly scale-invariant pressure (like for ϕ^4 and NLSM):

2-loops: a moderate scale-dependence reappears, similar to ϕ^4 , NLSM case: a factor \sim 2 improvement w.r.t. HTLpt 2-loops:



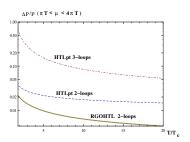
NB scale dependence should improve much at 3-loops, generically:

RGOPT at
$$\mathcal{O}(\alpha_S^k) \to \bar{m}(\mu)$$
 appears at $\mathcal{O}(\alpha_S^{k+1})$ for any \bar{m} , but $\bar{m}^2 \sim \alpha_S T^2 \to P \simeq \bar{m}_S^4/\alpha_S + \cdots$: leading μ -dependence at $\mathcal{O}(\alpha_S^{k+2})$.

• However low $T \sim T_c$ genuine pressure shape needs determining higher order subtraction terms of $\mathcal{O}(m^4\alpha_S^2 \ln \mu)$: new calculations of 3-loop HTL integrals (neglected in standard HTLpt as formally $\mathcal{O}(\alpha_S^4)$)

(Very) preliminary RGO(HTL) approximate 3-loop results

3-loops: exact missing $m^4\alpha_S^2$ terms need extra nontrivial calculations, but $P_{RGOHTL}^{31}\sim RGOPT(P_{HTLpt}^{21})+m^4\alpha_S^2(C_{30}\ln^3\frac{\mu}{2\pi T}+C_{31}\ln^2\frac{\mu}{2\pi T}+C_{32}\ln\frac{\mu}{2\pi T}+C_{33})$: leading logarithms (LL) and next-to-leading (NLL) C_{30} , C_{31} fully determined from lower orders from RG invariance Within this LL, NLL approximation and in the $T/T_c\gtrsim 2$ range where more trustable:



We assume/expect unknown terms will not spoil this improved scale dependence.

Summary and Outlook

- •OPT gives a simple procedure to resum perturbative expansions, using only perturbative information.
- •Our RGOPT version includes 2 major differences w.r.t. previous OPT/SPT/HTLpt... approaches:
- 1) OPT +/or RG optimizations fix optimal \bar{m} and possibly $\bar{g}=4\pi\bar{\alpha}_{S}$
- 2) Maintaining RG invariance uniquely fixes the basic interpolation $m \to m(1-\delta)^{\gamma_0/b_0}$: discards spurious solutions and accelerates convergence.
- Applied to $T \neq 0$: exhibits improved stability + much improved scale dependence (with respect to standard PT, but also wrt SPT \sim HTLpt)
- •Paves the way to extend such RG-compatible methods to full QCD thermodynamics, (work in progress, starting with $T \neq 0$ pure gluodynamics) specially for exploring also finite density

Backup: RGOPT in Gross-Neveu model

• $D = 2 \ O(2N)$ GN model shares many properties with QCD (asymptotic freedom, (discrete) chiral sym., mass gap,..)

$$\mathcal{L}_{GN} = ar{\Psi}i
ot \partial \Psi + rac{g_0}{2N} (\sum_1^N ar{\Psi}\Psi)^2$$
 (massless)

Standard mass-gap (massless, large N approx.):

$$\begin{array}{c} \text{work out } V_{\text{eff}}(\sigma \sim \langle \bar{\Psi}\Psi \rangle) \sim \frac{\sigma^2}{2g} + \textit{Tr} \ln(i \, \partial \!\!\!/ - \sigma); \\ \frac{\partial V_{\text{eff}}}{\partial \sigma} = 0; \qquad \rightarrow \sigma \equiv \textit{M} = \mu e^{-\frac{2\pi}{g}} \equiv \Lambda_{\overline{\text{MS}}} \end{array}$$

•Mass gap also known exactly for any N:

$$\frac{M_{exact}(N)}{\Lambda_{\overline{MS}}} = \frac{(4e)^{\frac{1}{2N-2}}}{\Gamma[1 - \frac{1}{2N-2}]}$$

(From D = 2 integrability: Bethe Ansatz) Forgacs et al '91

Massive (large N) GN model

$$M(m,g) \equiv m(1+g \ln \frac{M}{\mu})^{-1}$$
: Resummed mass $(g/(2\pi) \to g)$
= $m(1-g \ln \frac{m}{\mu} + g^2(\ln \frac{m}{\mu} + \ln^2 \frac{m}{\mu}) + \cdots)$ (pert. re-expanded)

• Only fully resummed M(m, g) gives right result, upon:

-identifying
$$\Lambda \equiv \mu e^{-1/g}$$
; $\to M(m,g) = \frac{m}{g \ln \frac{M}{\Lambda}} \equiv \frac{\hat{m}}{\ln \frac{M}{\Lambda}}$;

-taking reciprocal:
$$\hat{m} = M \ln \frac{M}{\Lambda} \to M(\hat{m} \to 0) \sim \frac{\hat{m}}{\hat{m}/\Lambda + \mathcal{O}(\hat{m}^2)} = \Lambda$$

never seen in standard perturbation: $M_{pert}(m \rightarrow 0) \rightarrow 0!$

- Now (RG)OPT gives $M=\Lambda$ at first (and any) δ -order! (at any order, OPT sol.: $\ln \frac{\bar{m}}{\mu} = -\frac{1}{\bar{g}}$, RG sol.: $\bar{g}=1$)
- •At δ^2 -order (2-loop), RGOPT $\sim 1-2\%$ from $M_{exact}({\sf any}\,{\sf N})$
- •Not specific to GN model: generalize to any model:

RG, OPT solutions at first (and all) orders:

$$\ln \frac{\bar{m}}{\mu} = -\frac{\gamma_0}{2b_0}$$
; $\bar{g} = \frac{1}{\gamma_0}$ correctly resums pure RG LL, NLL,... (as far as b_0, γ_0 dependence concerned).