

Taming Gribov copies via the horizon restriction: done and to do

DAVID DUDAL

KU Leuven-Kulak, Belgium

Talk at Infrared QCD (APC, Paris Diderot), 08/11/2017

Collaborators on this research

- S. P. Sorella, M. S. Guimaraes, L. F. Palhares, M. A. L. Capri, B. W. Mintz, D. Fiorentini, UERJ (Brasil)
- R.F. Sobreiro, UFF (Brasil)
- A. Duarte, Heidelberg (Germany)
- D. Vercauteren, Duy Tan (Vietnam)
- A. Cucchieri, T. Mendes, USP São Carlos (Brasil)
- O. Oliveira, P. J. Silva, UCoimbra (Portugal)
- T. De Meerleer, C. P. Felix, M. Roelfs, P. Pais, KU Leuven-Kulak (Belgium)

- A. Bashir, P. Dall'Olio, Morelia (Mexico)
- ► F. Canfora (CECs, Chile)
- L. Rosa (Napoli, Italy)
- our Parisien hosts

Overview

Gribov copies and how to deal with them in the path integral

(Softly broken) standard BRST

BRST symmetric formulation of Gribov-Zwanziger theory in Landau gauge

Comparison with gauge fixed lattice theory

Generalization to the linear covariant gauge

Application of BRST symmetry: Nielsen identities in the Gribov-Zwanziger theory

(Non-Abelian) Landau-Khalatnikov-Fradkin transformations

Gribov-Zwanziger with background fields

Classical level

• Classical SU(N) Yang-Mills action in d = 4 Euclidean space time

$$S_{YM} = \frac{1}{4} \int \mathrm{d}^4 x F^a_{\mu\nu} F^a_{\mu\nu}$$

► SYM possesses enormous local invariance,

$$A_{\mu} \rightarrow A^{S}_{\mu} = S^{+}\partial_{\mu}S + S^{+}A_{\mu}S \qquad S \in SU(N)$$

or in infinitesimal form

$$egin{array}{rcl} {\cal A}^a_\mu & o & {\cal A}^a_\mu \!+\! D^{ab}_\mu \omega^b \ {\cal D}^{ab}_\mu & \equiv & \partial_\mu \delta^{ab} \!-\! g f^{abc} {\cal A}^c_\mu \end{array}$$

Freedom to choose gauge

Gribov copies

 Faddeev and Popov implemented a linear covariant gauge choice as follows

$$Z_{FP} = \int [dA] \delta(\partial A - B) \det \mathcal{M}^{ab} e^{-S_{YM}}$$

$$\mathcal{M}^{ab} = -\partial_{\mu} (\partial_{\mu} \delta^{ab} - gf^{abc} A^{c}_{\mu}) = \text{Faddeev-Popov operator}$$

Gaussian sampling over *B* via $\int [dB] e^{-\frac{B^{2}}{2\alpha}}$.

The FP trick is based on the functional version of

$$\int dx \delta[f(x) - y]g(x) = \left\{ g(x) \left| \frac{\partial f}{\partial x} \right|^{-1} \right\}_{f(x) = y}$$

► Notice that this assumes that f(x) = y only has a single solution! Otherwise one needs

$$\int dx \delta[f(x) - y]g(x) = \sum_{i} \left\{ g(x) \left| \frac{\partial f}{\partial x} \right|^{-1} \right\}_{f(x_i) = y}$$

Gribov copies

BRST II

•

The Faddeev-Popov action

Faddeev and Popov implemented a gauge choice as follows

$$Z_{FP} = \int [dA] \underbrace{\delta(\partial A - B) \det \mathcal{M}^{ab}}_{\rightarrow \text{ unity}} e^{-S_{Yh}}$$

- $\delta(\partial A) \Rightarrow \partial A = 0 \equiv$ Landau gauge if $\alpha = 0$
- Faddeev-Popov determinant det \mathcal{M}^{ab} is corresponding Jacobian
- This form is not suitable to work/compute with (we want Feynman rules from local action)

I BRST II

Lattice

LCG

The Faddeev-Popov action in the Landau gauge

- We shall work with linear covariant gauge $\partial_{\mu}A^{a}_{\mu} = \alpha b^{a}$.
- ► Very popular gauge, as it has many nice (quantum) properties.
- The eventual gauge fixed action reads

BRST II

$$S_{YM} + S_{gf} = \int d^4x \left(\frac{1}{4} F_{\mu\nu}^2 + b^a \partial_\mu A^a_\mu - \frac{\alpha}{2} b^a b^a + \overline{c}^a \partial_\mu D^{ab}_\mu c^b \right)$$

Gribov copies

BRST I

Latt

LCG

Nielsen

Back

The BRST symmetry

an important (crucial) symmetry

• Quantum action enjoys nilpotent BRST symmetry, $s(S_{YM} + S_{gf}) = 0$

$$egin{aligned} &\mathcal{B} A^a_\mu = -D^{ab}_\mu c^b\,, \qquad &\mathcal{S} c^a = rac{g}{2} f^{abc} c^b c^c\,, &\mathbf{S} \overline{c}^a = b^a\,, \qquad &\mathcal{S} b^a = 0\,, \qquad &\mathcal{S}^2 = 0\,, \end{aligned}$$

- Quantum replacement for classical gauge invariance
- Used for proofs of
 - (perturbative) renormalizability via Slavnov-Taylor identity
 - (perturbative) unitarity: e.g. ghost, antighost, longitudinal and timelike gluon polarizations cancel, only 2 transverse gluon degrees of freedom survive!
 - BRST symmetry is an important concept

Lattice

.CG

Gribov copies

Perturbative unitarity (Kugo-Ojima)

- ► Define $|\psi_{\rho}\rangle$ physical state $\Leftrightarrow Q_{BRST} |\psi_{\rho}\rangle = 0$, $|\psi_{\rho}\rangle \neq Q_{BRST} |...\rangle$ using *asymptotic* Fock states/free BRST charge
- $|\psi_p\rangle \in \operatorname{cohom}(Q_{BRST})$
- unphysical states $|\psi_u\rangle$ always come in quartets, and decouple from the physical spectrum.
- ► Indeed: If *N* = counting operator of longitudinal and temporal gauge polarization, ghost, antighost, then *N* = {*Q*_{BRST}, *R*}
- If $\mathcal{N} |\psi_{\rho}\rangle = n |\psi_{\rho}\rangle$, then automatically $|\psi_{\rho}\rangle = 1/n Q_{BRST} [\mathcal{R} |\psi_{\rho}\rangle]$
- So, we find a trivial (zero norm) state, so no unphysical particles in subspace! The 2 transverse gluons remain, with positive norm (as is checked explicitly, this is not following from the BRST).
- BRST analysis thus guarantees perturbative unitarity (Q_{BRST} commutes with H as symmetry)
- Situation beyond perturbation theory:more complicated. Well-defined BRST charge? Sign of norm of states (never related to BRST itself)?

Nielsen

9 / 58

Potential flaw in FP quantization

The Gribov problem

- Take A_{μ} in linear covariant gauge $\Leftrightarrow \partial_{\mu}A_{\mu} = \alpha b$
- Consider (infinitesimal) gauge transform: $A'_{\mu} = A_{\mu} + D_{\mu}\omega$
- ► $\partial_{\mu}A'_{\mu} = \alpha b$ if $\partial_{\mu}D_{\mu}\omega = 0$ GAUGE COPY if FP operator has (normalizable) zero modes!
- ► Was investigated (and drawn attention to) by Gribov in late seventies for Landau (α = 0) and Coulomb gauge (∂_iA_i = 0).

Gribov copies

I BRST II

Lattice

LCG

Nielsen

Potential flaw in FP quantization

The Gribov problem

- There is still some overcounting when using FP action (which is mathematically seen "wrong")
- Solution: use the more correct functional version of δ-function where the argument has multiple zeros.
- Unfortunately: cannot be put in useful partition function

Gribov copies

Lattice

LCG

11 / 58

Treating the copy problem

From Faddeev-Popov to Gribov-Zwanziger: first Landau gauge $\partial A = 0$

- ► A class of copies was related to zero modes of Faddeev-Popov operator $M = -\partial D$
- Let us restrict path integral to region Ω where $\partial A = 0$ and M > 0. Only sensible if $\partial A = 0$ as only then $M = -\partial D$ is Hermitian!
- Ω corresponds to local minima of the functional $\int d^4 x A_{\mu}^2$!
- ► ⇒ This is already an improvement of Faddeev-Popov!
- Compare with lattice where one seeks for (in theory) global minima of $\int d^4 x A_{\mu}^2$
- How to implement restriction to Ω in continuum?

Gribov copies

ITI

Lattice

LCG

Nielsen

LKF

The Gribov-Zwanziger action

Gribov-Zwanziger

- Gribov and later on Zwanziger worked out this problem and proved many properties of region Ω, together with Dell'Antonio.
- ► Example: every gauge orbit passes through Ω, it is convex and bounded in every direction (→ nice integration region).
- Warning: Ω, region of *relative* minima, is still plagued by Gribov copies. One should work in region of absolute minima, but to my knowledge, not so easy to deal with this.

Gribov copies

STI

Lattice

LCG

Nielsen

Backg

13 / 58

Gribov-Zwanziger

The Gribov restriction: semiclassical level

Partition function

$$Z = \int [D\Phi] e^{-S_{YM+FP}}
ightarrow Z = \int [D\Phi] heta(M) e^{-S_{YM+FP}}$$

► how to characterize $\theta(M)$? We look at its inverse, schematically written as

$$M^{-1} = (-\partial D)^{-1} = k^2(1 + \sigma(k^2, A))$$

- Gribov no pole condition: $\sigma(0, A) < 1$
- Partition function

$$Z=\int [D\Phi]e^{-\mathcal{S}_{YM+FP}}
ightarrow Z=\int [D\Phi] heta(1-\sigma(0,\mathcal{A}))e^{-\mathcal{S}_{YM+FP}}$$

Gribov copies

В

Lattice

LCG

Gribov copies

14 / 58

Background GZ

Gribov-Zwanziger

The Gribov restriction: semiclassical level

- $\blacktriangleright\,$ Semiclassical analysis in thermodynamic limit: $\theta \to \delta$
- Partition function (at the quadratic level) [saddle point evaluation]

$$Z = \int [D\Phi] \delta(1 - \sigma(0, A)) e^{-S_{YM+FP}}
ightarrow \int [D\Phi] e^{-S_{YM+FP} + \gamma^4 \int d^4 x A rac{1}{\partial^2} A}$$

• $\gamma =$ thermodynamic parameter, fixed by gap equation,

$$\frac{3}{4}g^2N\int \frac{d^4q}{(2\pi)^4}\frac{1}{q^4+\gamma^4} = 1$$
 (1)

► New partition function (or action) → perfect tool to study theory with

Gribov copies

Gribov-Zwanziger

- Restricts the integration to the Gribov region to all orders (Zwanziger, NPB323 (1989), NPB399 (1993))
- The Gribov-Zwanziger action is given by

$$S_{GZ} = S_{YM} + S_{gf} + \gamma^4 \int \mathrm{d}^4 x \ h(x)$$

with the horizon function

$$h(x) \;\;=\;\; g^2 f^{abc} {\cal A}^b_\mu \left({\cal M}^{-1}
ight)^{ad} f^{dec} {\cal A}^e_\mu$$

horizon condition (= gap equation) $\langle h(x) \rangle = d(N^2 - 1)$

• For $\gamma = 0$, everything reduces to Faddeev-Popov.

Gribov-Zwanziger

- Somewhat easier derivation than Zwanziger: generalization of Gribov's analysis to all orders Capri et al, PLB719 (2013)
- We considered a classical A^a_{μ} , and formally computed the inverse via

$$\langle ar{c}^a(x)c^b(y)
angle = rac{\int \mathcal{D}c\mathcal{D}ar{c}\ ar{c}^a(x)c^b(y)e^{\intar{c}^c\mathcal{M}^{cd}c^d}}{\int \mathcal{D}c\mathcal{D}ar{c}\ e^{\intar{c}^c\mathcal{M}^{cd}c^d}}$$

Then

Gribov copies

$$\mathcal{G}(k,A) = \frac{1}{V(N^2 - 1)} \langle \bar{c}^a(p) c^a(-q) \rangle|_{p=q=k} = \frac{1}{k^2} (1 + \sigma(k,A))$$

Notice we are *tracing* here, which is a simplification, also present in Zwanziger's derivation.

At zero momentum, the series can be resummed and leads to

BRSTI

$$\begin{aligned} \sigma(0,A) &= -\frac{g^2}{VD(N^2 - 1)} \int \frac{d^D p}{(2\pi)^D} \int \frac{d^D q}{(2\pi)^D} A^{ab}_{\mu}(-p) \left(\mathcal{M}^{-1}\right)^{bc}_{pq} A^{ca}_{\mu}(q) \\ &= \frac{H(A)}{DV(N^2 - 1)}. \end{aligned}$$

Gribov-Zwanziger

- No-pole condition: $\sigma(0, A) \leq 1$
- $\Rightarrow \ \theta(1-\sigma) \Rightarrow \delta(1-\sigma) \Rightarrow \langle \sigma \rangle = 1 \Rightarrow \langle H \rangle = DV(N^2-1)$
 - So no-pole gives exactly what Zwanziger also obtained, at smaller cost.
 - Notice that actually, only a posteriori, we can check that

$$\langle \sigma(k,A) \rangle \leq \langle \sigma(0,A) \rangle = 1$$

i.e. after averaging.

BRST II

► Likewise,

Gribov copies

$$1 + \langle \sigma(k, A) \rangle_{conn} = \frac{1}{1 - \langle \sigma(k, A) \rangle_{1Pl}}$$

Nielsen

D. Dudal

Gribov-Zwanziger

We replace the action with a local (equivalent) action

$$S_{GZ} = S_{YM} + S_{gf} + S_h$$

with now

$$\begin{split} S_{h} &= \int \mathrm{d}^{4}x \Big(\overline{\varphi}_{\mu}^{ac} \partial_{\nu} \left(\partial_{\nu} \varphi_{\mu}^{ac} + g f^{abm} A_{\nu}^{b} \varphi_{\mu}^{mc} \right) - \overline{\omega}_{\mu}^{ac} \partial_{\nu} \left(\partial_{\nu} \omega_{\mu}^{ac} + g f^{abm} A_{\nu}^{b} \omega_{\mu}^{mc} \right) - g \left(\partial_{\nu} \overline{\omega}_{\mu}^{ac} \right) f^{abm} \left(D_{\nu} c \right)^{b} \varphi_{\mu}^{mc} \\ &- \gamma^{2} g \left(f^{abc} A_{\mu}^{a} \varphi_{\mu}^{bc} + f^{abc} A_{\mu}^{a} \overline{\varphi}_{\mu}^{bc} + \frac{4}{g} \left(N^{2} - 1 \right) \gamma^{2} \right) \Big) \end{split}$$

horizon condition (= gap equation)

$$\frac{\partial \Gamma}{\partial \gamma^2} = 0 \Leftrightarrow \underbrace{\langle g f^{abc} A^a_\mu (\phi + \overline{\phi})^{bc}_\mu \rangle = 2d(N^2 - 1)\gamma^2}_{d = 2 \text{ condensate}}$$

• $\gamma \propto \Lambda_{QCD}$: source of dimensional transmutation.

BRS

Lattice

LCG

Gribov-Zwanziger

Gribov-Zwanziger quantization

The GZ formalism is a geometrically inspired path-integral construction (cf. boundary condition to stay within the Gribov region in e.g. DSE approach) with good quantum properties that improves upon the standard FP quantization.

Gribov-Zwanziger quantization

Nice property: closely related to lattice formulation, as in both cases minimization of $\int A^2$ along the gauge orbit is used to define the (a) nonperturbative Landau gauge.

There is the technical issue of having multiple local minima, unknown how to be dealt with at the quantitative level.

Gribov copies

BRST I

Latt

LCG

Nielsen

Overview

Gribov copies and how to deal with them in the path integral

(Softly broken) standard BRST

BRST symmetric formulation of Gribov-Zwanziger theory in Landau gauge

Comparison with gauge fixed lattice theory

Generalization to the linear covariant gauge

Application of BRST symmetry: Nielsen identities in the Gribov-Zwanziger theory

(Non-Abelian) Landau-Khalatnikov-Fradkin transformations

Gribov-Zwanziger with background fields

The Gribov-Zwanziger action

What about the BRST symmetry?

The (naturally extended) BRST symmetry

$$s\overline{\omega}^{ab}_{\mu} \ = \ \overline{\phi}^{ab}_{\mu} \ , \qquad s\overline{\phi}^{ab}_{\mu} = 0 \ , \qquad s\phi^{ab}_{\mu} = \omega^{ab}_{\mu} \ , \qquad s\omega^{ab}_{\mu} = 0 \ ,$$

is softly broken

$$sS_{GZ} = g\gamma^2 \int d^4x \left(f^{abc} A^a_\mu \omega^{bc}_\mu - (D^{am}_\mu c^m) (\overline{\phi}^{bc}_\mu + \phi^{bc}_\mu) \right)$$

- Apparently: treating Gribov copy leads to soft breaking of BRST.
- What about gauge parameter independence of correlation functions of BRST invariant operators if we were to generalize GZ to other gauges?

```
Let us first find a BRST!
```

BRSTI

Gribov copies

BRST II

Lattice

LCG

Nielsen

L

The Gribov-Zwanziger action vs. BRST

BRST I

 If nilpotent BRST is found, we can define/study cohomology. Also good news for renormalization proof (but in se not necessary) Invariant subspace under time evolution. This is good news, but notice that gluon propagator behaves as

$$D(
ho^2)=rac{
ho^2}{
ho^4+\lambda^4}$$

 \rightarrow poles at $p^2 = \pm i\lambda^2$. The Kugo-Ojima analysis makes use of *asymptotic* states. To us, it is unclear how to define these in presence of complex conjugate (*cc*) masses. For example, canonical quantization leads to exploding/dampened Fourier expansion in terms of time *t*.

In general (known to us), there is no rigorous way to deal with constructing a physical sector with positivity/unitarity using such constituent propagators. This is beyond simply having a BRST invariance.

The Gribov-Zwanziger action vs. BRST

As studied in Baulieu et al, PRD82 (2010); Dudal et al, PRL106 (2011); Windisch et al, PRD87 (2013); Felix et al, PRD96 (2017) at leading order, it is possible to combine *cc* masses pairwise to get a physical spectral representation

$$D(\rho^2) = \int_0^\infty \frac{\rho(t)dt}{t+\rho^2}, \qquad \rho(t) \ge 0$$

of gauge invariant composite operator correlation functions (correct branch cut location + positivity), but also other cuts emerge, in e.g. $\langle F_{\mu\nu}^2(p)F_{\mu\nu}^2(-p)\rangle$. Open problem how to "massage away" the unphysical cuts when working with basic propagators with *cc* poles.

- See also talk of Oliveira on lattice gluon/ghost spectral function.
- Also non-perturbative context, e.g. by modelling (lattice) quark propagator via series of *cc* masses Alkofer et al, PRD70 (2004), study Bethe-Salpeter bound state eq. in such settings, etc, with good results on the (investigated) physical Minkowski half-axis, but the "unphysical sectors" are not discussed Bhagwat, Pichowsky, Tandy, PRD 67(2003), work of Roberts et al..

BRSTI

Lattice

LCG

Nielsen

Lł

Overview

Gribov copies and how to deal with them in the path integral

(Softly broken) standard BRST

BRST symmetric formulation of Gribov-Zwanziger theory in Landau gauge

Comparison with gauge fixed lattice theory

Generalization to the linear covariant gauge

Application of BRST symmetry: Nielsen identities in the Gribov-Zwanziger theory

(Non-Abelian) Landau-Khalatnikov-Fradkin transformations

Gribov-Zwanziger with background fields

Preliminaries

Consider A²-functional

$$f_{A}[u] \equiv \operatorname{Tr} \int d^{4}x \, A^{u}_{\mu} A^{u}_{\mu} = \operatorname{Tr} \int d^{4}x \left(u^{\dagger} A_{\mu} u + \frac{i}{g} u^{\dagger} \partial_{\mu} u \right)^{2}$$

and set $v = he^{ig\omega}$.

Working up to 2nd order to identify minima:

$$f_{A}[v] = f_{A}[h] + 2\operatorname{Tr} \int d^{4}x \, \left(\omega \partial_{\mu} A^{h}_{\mu}\right) - \operatorname{Tr} \int d^{4}x \, \omega \partial_{\mu} D_{\mu}(A^{h}) \omega + O(\omega^{3})$$

$$\Rightarrow \partial_{\mu}A^{h}_{\mu} = 0 \quad \& \quad -\partial_{\mu}D_{\mu}[A^{h}] > 0$$

We recognize the Landau gauge and defining condition of the Gribov region (positive FP operator).

Gribov copies

BRST II

Lattice

LCG

Nielsen

Preliminaries

The "minimum configuration" can be solved for

$$A_{\mu}^{h} = A_{\mu} - \frac{1}{\partial^{2}} \partial_{\mu} \partial A - ig \frac{\partial_{\mu}}{\partial^{2}} \left[A_{V}, \partial_{V} \frac{\partial A}{\partial^{2}} \right] - i \frac{g}{2} \frac{\partial_{\mu}}{\partial^{2}} \left[\partial A, \frac{1}{\partial^{2}} \partial A \right] + ig \left[A_{\mu}, \frac{1}{\partial^{2}} \partial A \right] + i \frac{g}{2} \left[\frac{1}{\partial^{2}} \partial A, \frac{\partial_{\mu}}{\partial^{2}} \partial A \right] + O(A^{3})$$

It is transverse and gauge invariant order by order. See also Lavelle, McMullan, Phys. Rep. 279 (1997).

• Observation: if $\partial A = 0$, $A = A^h$. More precisely

 $A = A^h + \text{non-local power series in } (A, \partial A)$

Gribov copies

TI BRST II

Lat

LCG

 $A = A^h + \text{non-local power series in } (A, \partial A)$

Consider GZ action with non-local horizon action

$$H(A) = g^2 \int d^4x d^4y \ f^{abc} A^b_\mu(x) \left[\mathcal{M}^{-1}(x,y) \right]^{ad} f^{dec} A^e_\mu(y)$$

$$\begin{split} S_{GZ} &= S_{YM} + \int d^4 x \left(b \partial_\mu A_\mu + \bar{c} \partial_\mu D_\mu c \right) + \gamma^4 H(A) \\ &= S_{YM} + \int d^4 x \left(b \partial_\mu A_\mu + \bar{c} \partial_\mu D_\mu c \right) + \gamma^4 H(A^h) - \gamma^4 R(A)(\partial A) \\ &= S_{YM} + \int d^4 x \left(b^h \partial_\mu A_\mu + \bar{c} \partial_\mu D_\mu c \right) + \gamma^4 H(A^h) \end{split}$$

with a new field b^h

$$b^h = b - \gamma^4 R(A)$$

Gribov copies

BRST II

Lattice

LCG

Introduce auxiliary fields to obtain

$$\begin{split} S_{GZ} &= S_{YM} + \int d^4 x \left(b^h \partial_\mu A_\mu + \bar{c} \partial_\mu D_\mu c \right) \\ &+ \int d^4 x \left(\bar{\phi} \mathcal{M}(A^h) \phi - \bar{\omega} \mathcal{M}(A^h) \omega + \gamma^2 A^h (\bar{\phi} + \phi) \right) \end{split}$$

and rename $b^h \rightarrow b$ again.

 This new (equivalent) GZ action in the Landau gauge enjoys a nilpotent BRST symmetry

$$\begin{split} s \mathcal{A}^{a}_{\mu} &= -D^{ab}_{\mu} c^{b} , \ s c^{a} = \frac{g}{2} f^{abc} c^{b} c^{c} , \ s \bar{c}^{a} = b^{a} , \ s b^{a} = 0 , \\ s \phi^{ab}_{\mu} &= s \omega^{ab}_{\mu} = s \bar{\omega}^{ab}_{\mu} = s \bar{\phi}^{ab}_{\mu} = 0 \end{split}$$

thanks to $sA^h = 0$.

Gribov copies

- ► Very nonlocal because of A^h → hard to discuss renormalizability etc.
- Locality of A^h_µ via introduction of Stückelberg field

$$\mathcal{A}^h_\mu = (\mathcal{A}^h)^a_\mu \mathcal{T}^a = h^\dagger \mathcal{A}^a_\mu \mathcal{T}^a h + rac{i}{g} h^\dagger \partial_\mu h, \quad h = e^{ig\xi^a t^a}$$

- ► Addition of $\int d^4x \left[\tau \partial A^h \overline{\eta} \mathcal{M}(A^h)\eta\right]^1$ to action gives rise to equivalent action as before upon solving the ξ -EOM
- $sA^h = 0$ under

$$h \rightarrow u^{\dagger} h$$
, $h^{\dagger} \rightarrow h^{\dagger} u$, $A_{\mu} \rightarrow u^{\dagger} A_{\mu} u + \frac{i}{g} u^{\dagger} \partial_{\mu} u$

or

$$sh^{ij} = -igc^{a}(T^{a})^{ik}h^{kj} \Rightarrow$$

$$s\xi^{a} = -c^{a} + \frac{g}{2}f^{abc}c^{b}\xi^{c} - \frac{g^{2}}{12}f^{amr}f^{mpq}c^{p}\xi^{q}\xi^{r} + O(g^{3})$$

¹Thanks to M. Tissier for alerting the rôle of $(\eta, \overline{\eta})$.

Gribov copies BRST I BRST II	Lattice	LCG	Nielsen	LKF	Background GZ
------------------------------	---------	-----	---------	-----	---------------

- Can be combined with algebraic renormalization formalism, following Dragon et al, NPB Proc.Suppl.56B (1997). A fully renormalizable framework, see Capri et al, PRD94 (2016) & PRD96 (2017)
- Important comment about renormalization: Addition of $\tau \partial A^h$ saves the day.
 - Standard Stückelberg propagator (via addition of gauge invariant mass term m²A^hA^h):

$$\langle \xi \xi \rangle \sim \frac{1}{m^2 p^2}$$

 \rightarrow leads to power counting non-renormalizibility!

• Here (even for $m \neq 0$):

$$\langle \xi \xi \rangle \sim \frac{1}{p^4}$$

Final (important) point of interest

BRST II

$$\langle A \dots \overline{c} \dots c \rangle_{\mathsf{new GZ}} \equiv \langle A \dots \overline{c} \dots c \rangle_{\mathsf{old GZ}}$$

(Landau gauge)

Nielsen

Overview

Gribov copies and how to deal with them in the path integral

(Softly broken) standard BRST

BRST symmetric formulation of Gribov-Zwanziger theory in Landau gauge

Comparison with gauge fixed lattice theory

Generalization to the linear covariant gauge

Application of BRST symmetry: Nielsen identities in the Gribov-Zwanziger theory

(Non-Abelian) Landau-Khalatnikov-Fradkin transformations

Gribov-Zwanziger with background fields

The Refined Gribov-Zwanziger action in linear covariant gauge: extra dynamical effects

- We include extra dynamical effects due to non-perturbative gauge invariant d = 2 condensates → lower vacuum energy Dudal et al, PRD78 (2008), PRD84 (2011) & work in progress
- Ghost propagator $G(p^2) \sim \frac{1}{p^2}$ for $p^2 \sim 0$, $G(p^2) \neq \frac{1}{p^4}$.
- Gluon propagator

$$D(p^2) \propto \frac{p^2 + M^2}{p^4 + (M^2 + m^2)p^2 + \lambda^4}, \qquad D(0) \neq 0.$$

 m^2 and M^2 are mass scales corresponding to condensates, in particular

$$m^2 \sim \left\langle A^h A^h \right\rangle, \qquad M^2 \sim \left\langle \overline{\phi} \phi - \overline{\omega} \omega \right\rangle$$

Works pretty well to describe Landau lattice data Oliveira et al, PRD81 (2010) 074505; Cucchieri al, PRD85 (2012) 094513; Bornyakov et al, PRD85 (2012) Rodriguez-Quintero et al, PRD88 (2013). Massive-type gluon propagator with cc poles.

This is of course nice, but also not fully satisfactory: there is still a (direct) dependence on lattice input.

Lattice

The Refined Gribov-Zwanziger action

Effective action approach (sketch)

- We add d = 2 Local Composite Operators (LCO) O to the action with sources: S → S + ∫ JO + ∫ ζJ²
- Renormalizability can be proven; ζJ² needed to cure vacuum divergences, as well as consistency with renormalization group.
- Via Hubbard-Stratonovich transformation with field σ, one gets an effective action Γ(σ) with ⟨σ⟩ ∝ ⟨*O*⟩. Γ obeys homogenous renormalization group equation by construction (role of ζ), and contains a term ~ σ*O* and *J*σ. No more quadratic *J*²-source term.
- ► We apply generalization of this to GZ + relevant d = 2 operators (Dudal et al, PD84 (2011) for unfinished attempt, now being further developed) to construct $\Gamma(m^2, M^2, \gamma^2)$. Notice presence of Gribov parameter $\gamma^2 \neq 0$. Somewhat more complicated due to mixing of operators.

The Refined Gribov-Zwanziger action

Effective action approach (sketch)

- We must solve gap equations $\frac{\partial \Gamma}{\partial \text{scale}} = 0$, leading to scale $\propto \Lambda_{QCD}$.
- As $\gamma \neq 0$, very difficult to have e.g. $\frac{\partial \Gamma}{\partial M^2}\Big|_{M^2=0} = 0$
- GZ transforms almost automatically into RGZ on dynamical grounds. Though, it remains to be seen how well the computed values will compare with lattice fits. Our goal is to make the current RGZ independent from lattice input for the non-perturbative scales.
- ► Notice that m² ∝ ⟨A^hA^h⟩ = ⟨AA⟩_{Landau}, leading to m²A² term in action. Connection with work of Serreau, Tissier, Reinosa, Peláez, Wschebor? To be explored!

Gribov copies

BR

Lattice

LCG

Lattice gluon propagator in the linear covariant gauge

Figure: taken from Bicudo et al, PRD92 (2015)

We notice almost no dependence on gauge parameter. Nonperturbatively, the longitudinal propagator still fixed by $\frac{\alpha}{p^2} \frac{\rho_{\mu}\rho_{\nu}}{p^2}$.

Gribov copies

BRST I

Lattice

LCG

Nielsen

Lattice gluon propagator in the linear covariant gauge

We notice almost no dependence on gauge parameter. Compare with Dyson-Schwinger equations (DSE) output, with a more prominent dependence. Less good modeling of vertices for $\alpha \neq 0$ than in Landau?

Figure: taken from Huber, PRD91 (2015). Similar results as in Aguilar et al, PRD 91 (2015). Left: ghost form factor $p^2G(p^2)$; right: transversal gluon form factor $p^2D(p^2)$. Outside Landau gauge, the ghost is suppressed in IR with gauge parameter? What does GZ teach us?

Gribov copies

TI

Lattice

LCG

Nielsen

L

Overview

Gribov copies and how to deal with them in the path integral

(Softly broken) standard BRST

BRST symmetric formulation of Gribov-Zwanziger theory in Landau gauge

Comparison with gauge fixed lattice theory

Generalization to the linear covariant gauge

Application of BRST symmetry: Nielsen identities in the Gribov-Zwanziger theory

(Non-Abelian) Landau-Khalatnikov-Fradkin transformations

Gribov-Zwanziger with background fields

How to tame Gribov copies in generic linear covariant gauge

We will restrict to

$$\Omega^{h} = \{ A^{a}_{\mu} | \partial_{\mu} A^{a}_{\mu} = -i\alpha b^{a}, \ \mathcal{M}^{ab}(A^{h}) > 0 \}$$

Due to $\partial A^h = 0$, $\mathcal{M}^{ab}(A^h) > 0$ makes sense.

- In Dudal et al, PRD92 (2015), it was shown that this removes all infinitesimal gauge copies that are connected via Taylor expansion in α to Landau gauge zero modes.
- The (BRST symmetric) RGZ action reads

$$\begin{split} S &= S_{YM} + \int d^4x \left(\alpha \frac{b^a b^a}{2} + i b^a \partial_\mu A^a_\mu + \bar{c}^a \partial_\mu D^{ab}_\mu (A) c^b \right) \\ &+ \int d^4x \, \tau^a \, \partial_\mu (A^h)^a_\mu + \int d^4x \bar{\eta}^a \partial_\mu D^{ab}_\mu (A^h) \eta^b + \int d^4x \frac{m^2}{2} A^{h,a}_\mu A^{h,a}_\mu \\ &+ \int d^4x \left(-\bar{\phi}^{ac}_\mu \mathcal{M} (A^h)^{ab} \phi^{bc}_\mu + \bar{\phi}^{ac}_\mu \mathcal{M} (A^h)^{ab} \phi^{bc}_\mu + g \gamma^2 f^{abc} (A^h)^a_\mu (\phi^{bc}_\mu + \bar{\phi}^{bc}_\mu) + M^2 (\bar{\phi}^{bc}_\mu \phi^{bc}_\mu - \bar{\phi}^{bc}_\mu \phi^{bc}_\mu)) \right) \end{split}$$

Gribov copies

BRST II

Lattice

LCG

How to tame Gribov copies in generic linear covariant gauge Sketch of the argument

► From

$$\partial A = \alpha b \Rightarrow A = A^h + \tau$$
 with $\partial \tau = \partial A = \alpha b = O(\alpha)$

Assume that ζ is such that

 $\partial D\zeta = 0$ (zero mode of standard FP operator)

Then also

$$\partial D^h \zeta = \partial (\tau \zeta) \Rightarrow \zeta = (\partial D^h)^{-1} (\partial (\tau \zeta))$$

Linear covariant gauge = continuous deformation around Landau gauge α = 0:

$$\zeta = \sum_{n=0}^{\infty} \zeta_n \alpha^n$$

Recursively,

$$\zeta_n = 0$$
 since $\partial D^h = O(1), \tau = O(\alpha)$

LCG

36 / 58

Intermediate summary

Gauge invariant GZ action

- Constructed a local (non-polynomial) GZ action
- Kills off (large class of) infinitesimal copies in generic linear covariant gauge
- Fully gauge invariant and renormalizable to all orders, including gauge invariant Gribov mass

$$\left\langle g f^{abc} A^{h,a}_{\mu}(\phi + \overline{\phi})^{bc}_{\mu}
ight
angle = 2 d (N^2 - 1) \gamma^2$$

and other gauge invariant d = 2 condensates.

Gribov copies

ΤI

Lattic

LCG

Nielsen

Overview

Gribov copies and how to deal with them in the path integral

(Softly broken) standard BRST

BRST symmetric formulation of Gribov-Zwanziger theory in Landau gauge

Comparison with gauge fixed lattice theory

Generalization to the linear covariant gauge

Application of BRST symmetry: Nielsen identities in the Gribov-Zwanziger theory

(Non-Abelian) Landau-Khalatnikov-Fradkin transformations

Gribov-Zwanziger with background fields

Back to RGZ propagator in Landau gauge

- D(p²) = p²+M²/p⁴+(M²+m²)p²+λ⁴</sub> → 2 complex conjugate mass poles
 Cannot correspond to physical gluon → sort of "effective confinement".
- What about situation in other linear gauges?
- ► cc poles are RG and gauge independent → follows from Nielsen identities
- Much more can be learnt from GZ Nielsen identities!

Gribov copies

1

Lattice

LCG

Nielsen

Nielsen identities (NPB101 (1975))

► BRST invariance → functional Slavnov-Taylor identity (STI) on 1PI generator Γ:

$$\mathcal{S}(\Gamma) = \int d^4 x \left(\frac{\delta\Gamma}{\delta\Omega^a_{\mu}} \frac{\delta\Gamma}{\delta A^a_{\mu}} + \frac{\delta\Gamma}{\delta L^a} \frac{\delta\Gamma}{\delta c^a} + \frac{\delta\Gamma}{\delta K^a} \frac{\delta\Gamma}{\delta \xi^a} + ib^a \frac{\delta\Gamma}{\delta \bar{c}^a} \right) + \chi \frac{\partial\Gamma}{\partial\alpha}$$

Ω is source coupled to BRST variation of *A* (*Dc*), *L* to that of *c* (*Lcc*) and $s\alpha = \chi$, χ couples to $\overline{c}b$.

 Acting with test operators on STI allows to derive functional relations between *n*-point functions.

In particular, deriving w.r.t. χ allows to control $\alpha\text{-dependence}!$ Sibold, Piguet, NPB253 (1985)

After a long technical analysis in GZ theory (due to mixed propagators, using properties of SU(N) tensors):

$$\frac{\partial}{\partial \alpha}$$
[gluon poles] = 0

Nielsen

Nielsen identities

 $\frac{\partial}{\partial \alpha}[\text{gluon poles}] = 0$

gives an *a posteriori* argument why it works to fit lattice Landau gauge propagator with

$$D(p^{2}) = Z \frac{p^{2} + M^{2}}{p^{4} + (M^{2} + m^{2})p^{2} + \lambda^{4}}$$

and the observed α -independence of lattice gluon propagator. Indeed, same (tree level propagator) fit will work for any α .

RGZ strategy

To avoid confusion: RGZ has a nontrivial vacuum, encoded in a few gauge invariant d = 2 condensates. On top of that non-perturbative, we assume perturbation theory to work, with a small effective coupling g_{eff}^2 , with the IR screened due to the mass scales, so that g_{eff}^2 does not get too large. The RGZ tree level propagator is thus never supposed to be exact, it will receive (presumably) controllable corrections, leading to logs etc. Though, to capture first essential physics, one (we) can fit the tree level propagator to the "full" lattice data, and "feed" such propagator into other quantities.

Gribov copies

RSTI

Lattic

LCG

Nielsen

Backg

Longitudinal gluon propagator

Slavnov-Taylor identity, next to Ward identity $\frac{\delta\Gamma}{\delta b} = \alpha \partial A$ (gauge condition) allows to prove, also in GZ, that

$$rac{b_{\mu} p_{
u}}{p^2} \left\langle A_{\mu} A_{
u}
ight
angle \equiv rac{lpha}{p^2}$$

(consistent with lattice)

► Interesting comment: gluon self energy, (AA)_{1Pl}, is not transverse, despite exact BRST invariance. This is only true in absence of propagator mixing!

Gribov copies

I E

Lattice

LCG

Nielsen

GZ ghost propagator in the linear covariant gauge

$$G(k^2) = \frac{1}{k^2} \frac{1}{1 - \omega(k^2)}$$

where

$$\omega(k^{2}) = \frac{Ng^{2}}{k^{2}(N^{2}-1)} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{k_{\mu}(k-q)_{\nu}}{(k-q)^{2}} \langle A_{\mu}^{a}(q) A_{\nu}^{a}(-q) \rangle = \omega^{T}(k^{2}) + \omega^{L}(k^{2})$$

 $\omega^{T}(k^{2})$ comes from transverse component of gluon propagator, with

$$\omega^{T}(k^{2}) = c + O(k^{2})$$

 $\omega^L(k^2)$ stems from the (standard perturbative) longitudinal component, at 1-loop

$$\omega^L(k^2) = \alpha \frac{Ng^2}{64\pi^2} \log \frac{k^2}{\bar{\mu}^2}$$

as we have exactly $D_{L,\mu\nu}(k^2) = \frac{\alpha}{k^2} \frac{k_{\mu}k_{\nu}}{k^2}$. So, logarithmic IR suppression is there, and will remain to be there at higher orders.

Gribov copies

I TI

BRST

Lattic

LCG

Nielsen

Backg

Lattice ghost propagator in the linear covariant gauge

- ► No predictions yet, because the FP operator $-\partial D$ is non-Hermitian for $\alpha \neq 0 \rightarrow$ numerically not so easy nut to crack how to invert this FP operator.
- Work in progress by Roelfs, Cucchieri, Oliveira et al, based on lattice linear covariant gauge minimizing functional Cucchieri & Mendes, PRL103 (2009), Binosi et al, PRD92(2015).

$$\min_{U} \operatorname{Tr} \int d^4x \left(A^U_{\mu} A^U_{\mu} + \frac{2}{g} \operatorname{Re}(iU\Lambda) \right)$$

 Λ^a Gaussian sampled with width related to gauge parameter.

► In conjunction with Gribov copy question based on this functional.

Gribov copies

BRST I

La

LCG

Overview

Gribov copies and how to deal with them in the path integral

(Softly broken) standard BRST

BRST symmetric formulation of Gribov-Zwanziger theory in Landau gauge

Comparison with gauge fixed lattice theory

Generalization to the linear covariant gauge

Application of BRST symmetry: Nielsen identities in the Gribov-Zwanziger theory

(Non-Abelian) Landau-Khalatnikov-Fradkin transformations

Gribov-Zwanziger with background fields

Nielsen identities

In a compact notation, for a propagator the Nielsen identity looks like

$$rac{\partial}{\partial lpha} G_{\phi \phi} = G_{\phi \phi} M$$

where *M* corresponds to a composite operator correlation function like $\Gamma_{\chi\Omega\phi}$ (1*PI* insertion of *Dc* and $\int \overline{c}b$). This leads to

$$G_{\phi\phi}^{(\alpha)} = G_{\phi\phi}^{(\alpha=0)} e^{\int_0^\alpha dlpha' M(lpha')}$$

- This relates propagator in one gauge to that of Landau gauge via an exponential prefactor containing *all* gauge dependent stuff.
- Work in progress to use the Nielsen identities to "resum" the gauge dependence.

Schematically: $\alpha \ln k^2 \rightarrow e^{\alpha \ln k^2} = (k^2)^{\alpha}$.

BRST II

Such approach does exist already, but not via Nielsen identities.

LKF

Nielsen

(Abelian) Landau-Khalatnikov-Fradkin transformations

- Landau & Khalatnikov, Sov. Phys. JETP 2 (1956) & Fradkin, idem, see also Johnson & Zumino, PRL3 (1959)
- (Abelian!) transformation that relates photon and electron propagator in different gauges,

$$\langle \bar{\psi}(x)\psi(y)\rangle_{\alpha} = \langle \bar{\psi}(x)\psi(y)\rangle_{\alpha=0} \left\langle e^{-ig\xi(x)}e^{ig\xi(y)}\right\rangle_{\alpha=0}$$

with

$$\langle \xi(\rho)\xi(-\rho)\rangle_{\alpha} = -\alpha \frac{1}{\rho^4}$$

- Useful to check validity of e.g. vertex Ansätze: consistent with gauge (LKF) transformation law, see e.g. Bashir & Raya, PRD66 (2002) and other works. Related to gauge invariance of physical estimates, far from trivial, even in Abelian case, see Kızılersü et al, PRD91 (2015).
- Would be most interesting to apply to QCD, to see how "gauge covariance" manifests itself based on employed vertex modelling in Landau gauge.
- Problem: only Abelian LKFs are known! (at least to our knowledge)

BRST

Lattice

LCG

Nielsen

LKF

(non-Abelian) Landau-Khalatnikov-Fradkin

- ► The Abelian LKF can be derived via path integral manipulations.
- An alternative proof was given in Sonoda, PLB 499 (2001) using Stückelberg-like trick (to construct gauge invariant photon).
- ► Since we have by now access to non-Abelian gauge invariant A^h, without destroying renormalizability → possibility to derive non-Abelian LKF? → YES
- ► Gauge invariant A^h, but also gauge invariant

$$\psi^h = h^{\dagger} \psi$$

with $h = e^{ig\xi^a t^a}$, t^a in adjoint or fundamental rep. For the moment, we solve for ξ :

$$\xi = \frac{1}{\partial^2} \partial_\mu A_\mu + i \frac{g}{\partial^2} \left[\partial A, \frac{\partial A}{\partial^2} \right] + i \frac{g}{\partial^2} \left[A_\mu, \partial_\mu \frac{\partial A}{\partial^2} \right] + \frac{i}{2} \frac{g}{\partial^2} \left[\frac{\partial A}{\partial^2}, \partial A \right] + O(A^3)$$

Gribov copies

LCG

Nielsen

LKF

(non-Abelian) Landau-Khalatnikov-Fradkin

work in progress by De Meerleer, Bashir, et al

Crux of the matter

$$\begin{split} \left\langle A^{h} \dots \overline{\psi}^{h} \dots \psi^{h} \right\rangle &= \text{gauge invariant} \\ &= \left\langle A \dots \overline{\psi} \dots \psi \right\rangle_{\alpha=0} \\ &= \left\langle A \dots \overline{\psi} \dots \psi \right\rangle_{\alpha} + \text{ series in } \xi \text{ (or } \partial A \text{)} \end{split}$$

Application: LKF for quark propagator

Using the Landau gauge properties, we found for example

$$\langle \bar{\psi}(x)\psi(y) \rangle_{\alpha} = \langle \bar{\psi}(x)\psi(y) \rangle_{\alpha=0} \langle h^{\dagger}(x)h(y) \rangle_{\alpha=0}$$

Gribov copies

T I BRST II

Lattic

LCG

Nielsen

Back

LKF

47 / 58

(non-Abelian) Landau-Khalatnikov-Fradkin

Alternative derivation via path integral transformation (leading to same LKFTs)

$$egin{aligned} &\mathcal{A}_{\mu}
ightarrow \mathcal{A}_{\mu}' = U^{\dagger}\mathcal{A}_{\mu}U + rac{i}{g}U^{\dagger}\partial_{\mu}U\,, \ &\psi
ightarrow U^{\dagger}\psi\,, \ &U = e^{ig\xi} = 1 + ig\xi - rac{g^2}{2}\xi^2 + O(\xi^3)\ &c
ightarrow U^{\dagger}cU\,, \ &ar{c}
ightarrow U^{\dagger}ar{c}U\,, \ &ar{c}
ightarrow U^{\dagger}ar{c}U\,, \end{aligned}$$

the Jacobian is trivial, and for example

$$Z[\alpha, J, \bar{J}] = Z[\alpha', UJ, \bar{J}U^{\dagger}]$$

with J, \overline{J} sources coupled to $\overline{\psi}, \psi$. Deriving w.r.t. sources gives desired LKF transformations in the matter sector.

(non-Abelian) Landau-Khalatnikov-Fradkin

Main conceptual requirement: we want to keep the action invariant, up to gauge parameter $\alpha\to\alpha'.$ We have that

$${\cal A}'_{\mu}=-\partial_{\mu}\xi+ig[{\cal A}_{\mu},\xi]+rac{ig}{2}[\partial_{\mu}\xi,\xi]+{\cal O}({
m fields}^3)\,,$$

thence we must impose that

$$\begin{aligned} \partial_{\mu}A'_{\mu} &= \partial_{\mu}A_{\mu} - \partial^{2}\xi + ig[A_{\mu}, \partial_{\mu}\xi] + ig[\partial_{\mu}A_{\mu}, \xi] + \frac{ig}{2}[\xi, \partial^{2}\xi] + O(\mathsf{fields}^{3}) \\ &\equiv (1+X)\partial_{\mu}A_{\mu} \end{aligned}$$

which sends

.

$$\int \mathrm{d}^4 x \left(i b \partial_\mu A_\mu + \frac{\alpha}{2} b^2 \right) \to \int \mathrm{d}^4 x \left(i b' \partial_\mu A'_\mu + \frac{\alpha'}{2} (b')^2 \right)$$

with

$$b \rightarrow b' = \frac{1}{1+X}b$$
, $\alpha \rightarrow \alpha' = (1+X)^2 \alpha$,

Gribov copies

G

Nielsen

LKF

(non-Abelian) Landau-Khalatnikov-Fradkin

We get

$$\begin{split} \xi &= -X \frac{1}{\partial^2} \partial_\mu A_\mu - ig X \frac{1}{\partial^2} \left[A_\mu, \frac{1}{\partial^2} \partial_\mu \partial_\nu A_\nu \right] \\ &- ig X \frac{1}{\partial^2} \left[\partial_\nu A_\nu, \frac{1}{\partial^2} \partial_\mu A_\mu \right] + \frac{ig X^2}{2} \frac{1}{\partial^2} \left[\frac{1}{\partial^2} \partial_\mu A_\mu, \partial_\nu A_\nu \right] + O(A^3) \,. \end{split}$$

with the LKF-propagator given by

$$\langle \xi(\rho)\xi(-\rho)
angle_{lpha'} = -X^2 lpha rac{1}{
ho^4} \, .$$

- $X \rightarrow -1$ corresponds to LKF ending up in Landau gauge.
- The LKF field ξ is not free, but interacts quite complicatedly in the non-Abelian case.

LKF

Overview

Gribov copies and how to deal with them in the path integral

(Softly broken) standard BRST

BRST symmetric formulation of Gribov-Zwanziger theory in Landau gauge

Comparison with gauge fixed lattice theory

Generalization to the linear covariant gauge

Application of BRST symmetry: Nielsen identities in the Gribov-Zwanziger theory

(Non-Abelian) Landau-Khalatnikov-Fradkin transformations

Gribov-Zwanziger with background fields

Gribov-Zwanziger with background

Why?

► As discussed in Marhauser, Pawlowski, arXiv:0812.1144; talk and work of Reinhardt et al; talk and work of our hosts, access to Polyakov loop *vev* via (A₀), more precisely [SU(2)]

$$\langle \mathcal{P}
angle = \cos rac{r}{2}, \qquad r = g eta ar{A}_0, \qquad ar{A}^a_\mu = \delta_{\mu 0} \delta^{a 3} ar{A}_0 = ext{background}$$

- ► Access to (de)confinement transition and thermodynamics in both phases using functional techniques for Γ(r).
- Evidently, we must then face the introduction of \bar{A}_0 into the GZ theory.

Gribov copies

BRST II

Lattice

_CG

Nielsen

LKF

Gribov-Zwanziger with background

Work in Landau-DeWitt gauge (Landau background gauge)

$$\bar{D}a = 0 \Leftrightarrow \bar{D}A = 0$$
 if $\partial \bar{A} = 0$

with

$$a = \bar{A} + A$$

► How to generalize (standard) GZ action in presence of \overline{A} ? Natural guess, based on standard "rule" $\partial \rightarrow \overline{D} \equiv \partial + \overline{A}$:

$$S_{ ext{GZ+PLoop}} = \int d^d x \, \left\{ rac{1}{4} F^a_{\mu
u} F^a_{\mu
u} - rac{(ar{D}A)^2}{2\xi} + ar{c}^a ar{D}^{ab}_\mu D^{bd}_\mu(a) c^d + ar{\phi}^{ac}_\mu ar{D}^{ab}_
u D^{bd}_
u(a) \phi^{dc}_\mu - ar{\phi}^{ac}_\mu ar{D}^{ab}_
u D^{bd}_
u(a) \phi^{dc}_\mu - g \gamma^2 f^{abc} A^a_\mu \left(\phi^{bc}_\mu + ar{\phi}^{bc}_\mu
ight) - \gamma^4 d(N^2 - 1)
ight\} \,.$$

- ► Corresponds to -D(D+A) > 0, i.e. positive background FP related to excluding infinitesimal copies Zwanziger, NPB209 (1982).
- So far so good (it seems).

Gribov copies

Lattice

LCG

Nielsen

LK

52 / 58

Gribov-Zwanziger with background: hopeful result

Figure: taken from Canfora, Pais et al, EPJC75(2015). Gribov parameter (line) and *r* (dots) in terms of temperature *T*. There is a phase transition, with cusp behaviour for Gribov mass λ^2 . Value for T_c is lower than compared to "lattice experiment", notice no RGZ yet since we are still working on T = 0 effective action approach!

Gribov copies BRST I BRST II Lattice LCG Nielsen LKF Background GZ

Gribov-Zwanziger with background: less hopeful result

► Pressure P relative to P(T = 0) is non-monotonous at low T, and becomes even negative over small region.

Gribov-Zwanziger with background: less hopeful result

The "oscillatory behaviour" at low T is expected and not clear how to avoid, see also Benic, Blaschke, Buballa, PRD86 (2012). Roughly speaking:

massive DOF $\Rightarrow e^{-m/T}$ at low $T \Rightarrow$ if *m* complex, then sin & cos

► Also *P* < 0 at low *T* has a "deep cause".

First without background: massless ghosts versus massive gluons (supported by *all* functional approaches): the negative norm ghosts will always dominate at low T. (Having) BRST does not help here, unlike in the large T regime. See also Chernodub, Za-kharov, PRL100 (2008).

On general grounds, one expects that for $T < T_c$, as the confined spectrum is massive, that *P* is exponentially suppressed in 1/T.

 Coupling to a background makes this problem milder, see e.g. Reinosa et al, PRD91 (2015), but it persists.

Lattice

LCG

Nielsen

LKF

55 / 58

Gribov-Zwanziger with background: another conceptual issue

 Current background GZ action does not enjoy background gauge invariance.

$$\delta \bar{A} = \bar{D} \omega, \qquad \delta A = g f A \omega, \dots$$

background gauge invariance is the big merit of using a background gauge fixing

Not merely a technical problem, also conceptual problem.

At T = 0, \bar{A}_0 is gauge equivalent to zero. Canfora, Pais et al, PLB763 (2016); PLB772 (2017); Dudal, Vercauteren, to appear. So we should expect $\Gamma(\bar{A}_0) \equiv 0$, but we even find nontrivial minimum at $\bar{A}_0 \neq 0$. Of course related to lack of background gauge invariance. Evidently, spontaneous Lorentz symmetry breaking is also not desirable.

Gribov copies

BRST II

Lattice

LCG

Gribov-Zwanziger with background: background invariant formulation

- BRST is crucially related to background gauge invariance Grassi, Hurth, Quadri, PRD70 (2004). STI + ghost Ward identity δΣ/δc = ... actually gives background gauge invariance encoded in Ward identity.
- ► Use GZ action based on *a^h*

$$\begin{split} \Sigma &= \dots \\ &+ \int d^4 x \left(\bar{\phi}^{ac}_{\mu} \partial_{\nu} (D^h)^{ab}_{\nu} \phi^{bc}_{\mu} - \bar{\omega}^{ac}_{\mu} \partial_{\nu} (D^h)^{ab}_{\nu} \omega^{bc}_{\mu} + \gamma^2 f^{abc} (a^h)^a_{\mu} (\bar{\phi}^{bc}_{\mu} + \phi^{bc}_{\mu}) \right) \end{split}$$

implementing $-\partial D(a^h) > 0$. This is sufficient to kill infinitesimal gauge copies related to Landau-DeWitt gauge $\overline{D}A = 0$.

By construction, it is background gauge invariant!

Gribov copies

I BRST II

Lattice

LCG

Gribov-Zwanziger with background: background invariant formulation

• Quite technical analysis, for SU(2) (lowest order in quantum field expansion):

$$\begin{aligned} a^{h})^{a}_{\mu} = & \mathsf{R}^{ab}_{3}(g\mathcal{A}x_{0})\mathcal{A}^{b}_{\mu} - \partial_{\mu}\frac{1}{\partial^{2}}\partial_{\nu}(\mathsf{R}^{ab}_{3}(g\mathcal{A}x_{0})\mathcal{A}^{b}_{\nu}) + \cdots \\ &= \left(\delta_{\mu\nu} - \frac{\partial_{\mu}\partial_{\nu}}{\partial^{2}}\right)(\mathsf{R}^{ab}_{3}(g\mathcal{A}x_{0})\mathcal{A}^{b}_{\nu}) + \cdots . \end{aligned}$$

Interpretation: construct gauge transform that minimizes $\int \bar{A}^2$ (i.e. that gives \bar{A}^h), then use this "gauge angle" to adjointly transform A, and then project on the transverse subspace.

- By construction now at T = 0, Γ(A₀) ≡ 0. We also checked it explicitly at one loop (non-trivial computation to find a trivial zero).
- At T > 0, \overline{A}_0 cannot necessarily be transformed to 0 due to periodicity constraint,

$$g(\bar{A}^h)^a_\mu = rT\delta_{\mu 0}\delta^{a3}\,,\qquad r\in [-\pi,\pi[.$$

Effective action computation using now correct background GZ action in progress.

58 / 58

The End!

Thanks!

Gribov copies

STI

BRS

Lattice

LCG

Nielser

LKF