Landau-gauge Yang-Mills correlation functions from the functional renormalization group

Mario Mitter

Brookhaven National Laboratory

APC, Paris Diderot University, November 2017

fQCD collaboration - QCD (phase diagram) with FRG:

J. Braun, L. Corell, <u>A. K. Cyrol</u>, W. J. Fu, M. Leonhardt, <u>MM</u>, <u>J. M. Pawlowski</u>, M. Pospiech, F. Rennecke, <u>N. Strodthoff</u>, N. Wink, ...

[Schaefer, Wagner, '08]

fQCD collaboration - QCD (phase diagram) with FRG:

J. Braun, L. Corell, <u>A. K. Cyrol</u>, W. J. Fu, M. Leonhardt, <u>MM</u>, <u>J. M. Pawlowski</u>, M. Pospiech, F. Rennecke, <u>N. Strodthoff</u>, N. Wink, ...

[Schaefer, Wagner, '08]

large part of this effort: vacuum QCD and YM-theory

fQCD collaboration - QCD (phase diagram) with FRG:

J. Braun, L. Corell, <u>A. K. Cyrol</u>, W. J. Fu, M. Leonhardt, <u>MM</u>, <u>J. M. Pawlowski</u>, M. Pospiech, F. Rennecke, <u>N. Strodthoff</u>, N. Wink, ...

[Schaefer, Wagner, '08]

large part of this effort: vacuum QCD and YM-theory

M. Mitter (BNL)

Correlators of QCD

why?

$$\Gamma[\Phi] = \sum_{n} \int_{\{p_i\}} \Gamma_{\Phi_1 \cdots \Phi_n}^{(n)}(p_1, \dots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \dots - p_{n-1})$$

$$\Gamma[\Phi] = \sum_{n} \int_{\{p_i\}} \Gamma_{\Phi_1 \cdots \Phi_n}^{(n)}(p_1, \dots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \dots - p_{n-1})$$

• full information about QFT encoded in $\Gamma[\Phi]/correlators:$

$$\Gamma[\Phi] = \sum_{n} \int_{\{p_i\}} \Gamma^{(n)}_{\Phi_1 \cdots \Phi_n}(p_1, \dots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \dots - p_{n-1})$$

- full information about QFT encoded in $\Gamma[\Phi]$ /correlators:
 - bound state spectrum: pole structure of the Γ⁽ⁿ⁾
 - e.g. [Roberts, Williams, '94], [Alkofer, Smekal, '00], [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, '16]
 - form factors: photon-particle correlators

e.g. [Cloet, Eichmann, El-Bennich, Klahn, Roberts, '08], [Sanchis-Alepuz, Williams, Alkofer, '13]

 \Rightarrow decay constants

e.g. [Maris, Roberts, Tandy, '97], [MM, Pawlowski, Strodthoff, in prep.]

$$\Gamma[\Phi] = \sum_{n} \int_{\{p_i\}} \Gamma^{(n)}_{\Phi_1 \cdots \Phi_n}(p_1, \dots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \dots - p_{n-1})$$

- full information about QFT encoded in $\Gamma[\Phi]$ /correlators:
 - bound state spectrum: pole structure of the $\Gamma^{(n)}$
 - e.g. [Roberts, Williams, '94], [Alkofer, Smekal, '00], [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, '16]
 - form factors: photon-particle correlators

e.g. [Cloet, Eichmann, El-Bennich, Klahn, Roberts, '08], [Sanchis-Alepuz, Williams, Alkofer, '13]

 \Rightarrow decay constants

- e.g. [Maris, Roberts, Tandy, '97], [MM, Pawlowski, Strodthoff, in prep.]
- thermodynamic quantities: $\Gamma[\Phi] \propto$ grand potential
 - equation of state
 e.g. [Herbst, MM, Pawlowski, Schaefer, Stiele, '13]
 - * fluctuations of conserved charges e.g. [Fu, Rennecke, Pawlowski, Schaefer, '16]

$$\Gamma[\Phi] = \sum_{n} \int_{\{p_i\}} \Gamma_{\Phi_1 \cdots \Phi_n}^{(n)}(p_1, \dots, p_{n-1}) \Phi^1(p_1) \cdots \Phi^n(-p_1 - \dots - p_{n-1})$$

- full information about QFT encoded in $\Gamma[\Phi]$ /correlators:
 - bound state spectrum: pole structure of the Γ⁽ⁿ⁾
 - e.g. [Roberts, Williams, '94], [Alkofer, Smekal, '00], [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, '16]
 - form factors: photon-particle correlators

e.g. [Cloet, Eichmann, El-Bennich, Klahn, Roberts, '08], [Sanchis-Alepuz, Williams, Alkofer, '13]

- ⇒ decay constants e.g. [Maris, Roberts, Tandy, '97], [MM, Pawlowski, Strodthoff, in prep.]
- thermodynamic quantities: $\Gamma[\Phi] \propto$ grand potential
 - equation of state
 e.g. [Herbst, MM, Pawlowski, Schaefer, Stiele, '13]
 - * fluctuations of conserved charges e.g. [Fu, Rennecke, Pawlowski, Schaefer, '16]
- further quantities: $\Gamma[\Phi] \propto$ eff. potential, propagators, 't Hooft determinant
 - **\star** chiral condensate(s)/ $\langle \sigma \rangle$

e.g. [Schaefer, Wambach '04], [Fischer, Luecker, Mueller '11], [MM, Schaefer, '13]

★ (dressed) Polyakov loop

e.g. [Fischer, '09], [Braun, Haas, Marhauser, Pawlowski, '09], [MM, et al., '17]

- axial anomaly
 e.g.[Grahl, Rischke, '13], [MM, Schaefer, '13], [Fejos, '15], [Heller, MM, '15]
- * spectral functions e.g. [Tripolt, Strodthoff, Smekal, Wambach, '14]

Nonperturbative QCD

- \bullet two crucial phenomena: S χSB and confinement
- very sensitive to small quantitative errors
- similar scales hard to disentangle

Nonperturbative QCD

- two crucial phenomena: $S\chi SB$ and confinement
- very sensitive to small quantitative errors
- similar scales hard to disentangle

crawling towards QCD at finite density:

- quenched matter part
- pure SU(N) YM-theory
- $N_f = 2 \text{ QCD}$
- YM-theory at finite temperature T > 0

[MM, Strodthoff, Pawlowski, 2014]

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

[Cyrol, MM, Strodthoff, Pawlowski, 2017]

[Cyrol, MM, Strodthoff, Pawlowski, 2017]

Nonperturbative QCD

- two crucial phenomena: $S\chi SB$ and confinement
- very sensitive to small quantitative errors
- similar scales hard to disentangle

crawling towards QCD at finite density:

- quenched matter part [MM, Strodthoff, Pawlowski, 2014]
- pure *SU*(*N*) YM-theory [Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]
- $N_f = 2 \text{ QCD}$ [Cyrol, MM, Strodthoff, Pawlowski, 2017]
- YM-theory at finite temperature T > 0 [Cyrol, MM, Strodthoff, Pawlowski, 2017]
- use results from lattice gauge theory to check truncation: what do we need from the lattice?

- mass-like IR regulator:
 - $S[\Phi] \rightarrow S[\Phi] + \langle \Phi, R_k \Phi \rangle$
 - (renormalised) initial action $\Gamma_{\Lambda \to \infty}[\Phi] = S[\Phi]$

- mass-like IR regulator:
 - $S[\Phi] \rightarrow S[\Phi] + \langle \Phi, R_k \Phi \rangle$
 - (renormalised) initial action $\Gamma_{\Lambda \to \infty}[\Phi] = S[\Phi]$
- use only perturbative QCD input:
 - $\alpha_{S}(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$

- mass-like IR regulator:
 - $S[\Phi] \rightarrow S[\Phi] + \langle \Phi, R_k \Phi \rangle$
 - (renormalised) initial action $\Gamma_{\Lambda \to \infty}[\Phi] = S[\Phi]$
- use only perturbative QCD input:
 - $\alpha_{S}(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
- $\partial_k \Leftrightarrow$ integration of momentum shells:

[Wetterich '93]

```
\partial_k \Gamma_k[A, \overline{c}, c(, \overline{q}, q)] \frac{1}{2}
```


- mass-like IR regulator:
 - $S[\Phi] \to S[\Phi] + \langle \Phi, R_k \Phi \rangle$
 - (renormalised) initial action $\Gamma_{\Lambda \to \infty}[\Phi] = S[\Phi]$
- use only perturbative QCD input:
 - $\alpha_{\mathcal{S}}(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
- $\partial_k \Leftrightarrow$ integration of momentum shells:

[Wetterich '93]

 $\Rightarrow \mathsf{full} \ \underline{\mathsf{non-perturbative}} \ \mathsf{quantum} \ \mathsf{effective} \ \mathsf{action} \ \mathsf{\Gamma}[\Phi] = \lim_{k \to 0} \mathsf{\Gamma}_k[\Phi]$

- mass-like IR regulator:
 - $S[\Phi] \to S[\Phi] + \langle \Phi, R_k \Phi \rangle$
 - (renormalised) initial action $\Gamma_{\Lambda \to \infty}[\Phi] = S[\Phi]$
- use only perturbative QCD input:
 - $\alpha_{S}(\Lambda = \mathcal{O}(10) \text{ GeV})$
 - $m_q(\Lambda = \mathcal{O}(10) \text{ GeV})$
- $\partial_k \Leftrightarrow$ integration of momentum shells:

[Wetterich '93]

 \Rightarrow full <u>non-perturbative</u> quantum effective action $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$

- Landau gauge:
 - ghosts appear
 - $\blacktriangleright \ gauge \ symmetry \ \rightarrow \ BRST-symmetry$

M. Mitter (BNL)

Truncation for SU(N) YM-theory

classical tensors with momentum dependent-dressings:

Truncation for SU(N) YM-theory

classical tensors with momentum dependent-dressings:

aim for "apparent convergence" of $\Gamma[\Phi] = \lim_{k \to 0} \Gamma_k[\Phi]$

(Euclidean) Correlation functions with the FRG

[Cyrol, Fister, MM, Pawlowski, Strodthoff, '16]

• functional derivatives of Wetterich equation

 \Rightarrow (truncated) equations for correlators:

(Euclidean) Correlation functions with the FRG

[Cyrol, Fister, MM, Pawlowski, Strodthoff, '16]

• functional derivatives of Wetterich equation

 \Rightarrow (truncated) equations for correlators:

• set of coupled equations: cf. DoFun [Huber, Braun, '11], FormTracer [Cyrol, MM, Strodthoff, '16] all propagators/vertices dressed and momentum-dependent

M. Mitter (BNL)

Correlators of QCD

Intermission: "apparent convergence"

[Cyrol, Fister, MM, Pawlowski, Strodthoff, '16]

• different approximations for vertex dressing functions:

- RG scale dep.: $\lambda_X(k; p, q, z) \equiv \lambda_X(k)$
- 1D mom dep.: $\lambda_X(k; p, q, z) \equiv \lambda_X(k; \bar{p})$
- 3D mom dep.: $\lambda_{\bar{c}cA/A^3}(k; p, q, z)$ and $\lambda_{A^4}(k; \bar{p})/\lambda_{A^4}(k; p, q, z)$

M. Mitter (BNL)

• Landau gauge: gauge symmetry \rightarrow BRST-symmetry:

$$s\Phi = s(A_\mu, ar c, c) = (D_\mu c, 0, igc^2)$$

• Landau gauge: gauge symmetry \rightarrow BRST-symmetry:

$$s\Phi=s(A_{\mu},ar{c},c)=(D_{\mu}c,0,igc^2)$$

$$\frac{\delta \Gamma[\Phi, Q]}{\delta Q} \frac{\delta \Gamma[\Phi, Q]}{\delta \Phi} = 0$$

• Landau gauge: gauge symmetry \rightarrow BRST-symmetry:

$$s\Phi=s(A_{\mu},ar{c},c)=(D_{\mu}c,0,igc^2)$$

$$\frac{\delta \Gamma[\Phi, Q]}{\delta Q} \frac{\delta \Gamma[\Phi, Q]}{\delta \Phi} = 0$$

- functional derivatives \Rightarrow Slavnov-Taylor identities (STIs):
 - nontrivial relations between counter terms
 - massless (longitudinal) gluon
 - degenerate (longitudinal) running couplings of vertices

• Landau gauge: gauge symmetry \rightarrow BRST-symmetry:

$$s\Phi=s(A_{\mu},ar{c},c)=(D_{\mu}c,0,igc^2)$$

$$\frac{\delta \Gamma[\Phi, Q]}{\delta Q} \frac{\delta \Gamma[\Phi, Q]}{\delta \Phi} = 0$$

- functional derivatives \Rightarrow Slavnov-Taylor identities (STIs):
 - nontrivial relations between counter terms
 - massless (longitudinal) gluon
 - degenerate (longitudinal) running couplings of vertices
- only valid, if regularisation leaves BRST intact!

• Landau gauge: gauge symmetry \rightarrow BRST-symmetry:

$$s\Phi=s(A_{\mu},ar{c},c)=(D_{\mu}c,0,igc^2)$$

$$\frac{\delta \Gamma[\Phi, Q]}{\delta Q} \frac{\delta \Gamma[\Phi, Q]}{\delta \Phi} = 0$$

- functional derivatives \Rightarrow Slavnov-Taylor identities (STIs):
 - nontrivial relations between counter terms
 - massless (longitudinal) gluon
 - degenerate (longitudinal) running couplings of vertices
- only valid, if regularisation leaves BRST intact!
- perturbation theory with e.g. sharp cutoff, ...
 - mass counter term for gluon required
 - nontrivial counterterms for vertices to recover degenerate α 's

• regulator term not BRST symmetric

 $s\langle \Phi, R_k \Phi
angle
eq 0$

• regulator term not BRST symmetric

 $s\langle \Phi, R_k \Phi
angle
eq 0$

• modified "master equation" ($Q = \text{source of BRST variation } s\Phi$):

$$\frac{\delta \Gamma_{k}[\Phi, Q]}{\delta Q} \frac{\delta \Gamma_{k}[\Phi, Q]}{\delta \Phi} = \Delta \Gamma_{k}[\Phi, Q; R_{k}] \qquad \text{[Ellwanger '94]}$$

• regulator term not BRST symmetric

 $s\langle \Phi, R_k \Phi
angle
eq 0$

• modified "master equation" ($Q = \text{source of BRST variation } s\Phi$):

$$\frac{\delta\Gamma_{k}[\Phi,Q]}{\delta Q}\frac{\delta\Gamma_{k}[\Phi,Q]}{\delta \Phi} = \Delta\Gamma_{k}[\Phi,Q;R_{k}] \qquad \text{[Ellwanger '94]}$$

 $\lim_{k\to 0} \Delta \Gamma_k[\Phi, Q; R_k] = 0 \text{ if } \Gamma_k \text{ fulfills above equation}$

• regulator term not BRST symmetric

 $s\langle \Phi, R_k \Phi
angle
eq 0$

• modified "master equation" ($Q = \text{source of BRST variation } s\Phi$):

$$\frac{\delta \Gamma_{k}[\Phi, Q]}{\delta Q} \frac{\delta \Gamma_{k}[\Phi, Q]}{\delta \Phi} = \Delta \Gamma_{k}[\Phi, Q; R_{k}] \qquad \text{[Ellwanger '94]}$$
$$\lim_{k \to 0} \Delta \Gamma_{k}[\Phi, Q; R_{k}] = 0 \text{ if } \Gamma_{k} \text{ fulfills above equation}$$

- functional derivatives \Rightarrow modified Slavnov-Taylor identities (mSTIs):
 - nontrivial counter terms for vertices to recover degenerate α 's
 - mass term $m_k^2 \delta_{\mu\nu}$ for gluon required @ k > 0

[Ellwanger '94], [Ellwanger, Hirsch, Weber '96]

• regulator term not BRST symmetric

 $s\langle \Phi, R_k \Phi
angle
eq 0$

• modified "master equation" ($Q = \text{source of BRST variation } s\Phi$):

$$\frac{\delta\Gamma_{k}[\Phi, Q]}{\delta Q} \frac{\delta\Gamma_{k}[\Phi, Q]}{\delta \Phi} = \Delta\Gamma_{k}[\Phi, Q; R_{k}] \qquad \text{[Ellwanger '94]}$$
$$\lim_{k \to 0} \Delta\Gamma_{k}[\Phi, Q; R_{k}] = 0 \text{ if } \Gamma_{k} \text{ fulfills above equation}$$

- functional derivatives \Rightarrow modified Slavnov-Taylor identities (mSTIs):
 - \blacktriangleright nontrivial counter terms for vertices to recover degenerate α 's
 - mass term $m_k^2 \delta_{\mu\nu}$ for gluon required @ k > 0

[Ellwanger '94], [Ellwanger,Hirsch,Weber '96]

• e.g. QED: photon mass term fixed by massless photon at $k \to 0$

Vertex counter terms

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

•
$$\alpha_{\bar{c}cA} = \frac{1}{4\pi} \frac{\lambda_{\bar{c}cA}(\bar{p})^2}{Z_c^2(\bar{p})Z_A(\bar{p})}, \ \alpha_{A^3} = \frac{1}{4\pi} \frac{\lambda_{A^3}(\bar{p})^2}{Z_A^3(\bar{p})}, \ \alpha_{A^4} = \frac{1}{4\pi} \frac{\lambda_{A^4}(\bar{p})}{Z_A^2(\bar{p})}$$

• initial dressings at Λ such that degeneracy in α_X at $1 \ll \mu \ll \Lambda \ {\rm GeV}$

Vertex counter terms

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

•
$$\alpha_{\bar{c}cA} = \frac{1}{4\pi} \frac{\lambda_{\bar{c}cA}(\bar{p})^2}{Z_c^2(\bar{p})Z_A(\bar{p})}, \ \alpha_{A^3} = \frac{1}{4\pi} \frac{\lambda_{A^3}(\bar{p})^2}{Z_A^3(\bar{p})}, \ \alpha_{A^4} = \frac{1}{4\pi} \frac{\lambda_{A^4}(\bar{p})}{Z_A^2(\bar{p})}$$

• initial dressings at Λ such that degeneracy in α_X at $1 \ll \mu \ll \Lambda ~{\rm GeV}$

Vertex counter terms

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

•
$$\alpha_{\bar{c}cA} = \frac{1}{4\pi} \frac{\lambda_{\bar{c}cA}(\bar{p})^2}{Z_c^2(\bar{p})Z_A(\bar{p})}, \ \alpha_{A^3} = \frac{1}{4\pi} \frac{\lambda_{A^3}(\bar{p})^2}{Z_A^3(\bar{p})}, \ \alpha_{A^4} = \frac{1}{4\pi} \frac{\lambda_{A^4}(\bar{p})}{Z_A^2(\bar{p})}$$

• initial dressings at Λ such that degeneracy in α_X at $1 \ll \mu \ll \Lambda ~{\rm GeV}$

• degeneracy @ $p \neq \mu$: nontrivial check of STI/BRST-symmetry

M. Mitter (BNL)

• satisfactory numerical solution of mSTI for gluon basically hopeless: $m_{\Lambda} = O(\Lambda^2)$

• satisfactory numerical solution of mSTI for gluon basically hopeless: $m_{\Lambda} = O(\Lambda^2)$

- satisfactory numerical solution of mSTI for gluon basically hopeless: $m_{\Lambda} = O(\Lambda^2)$
- must exist at least one "correct" value for gluon mass term (if we believe in FRG)

- satisfactory numerical solution of mSTI for gluon basically hopeless: $m_{\Lambda} = O(\Lambda^2)$
- must exist at least one "correct" value for gluon mass term (if we believe in FRG)
- most naive thing we can do: try all values for gluon mass term $m_k^2 \delta_{\mu\nu}$

- satisfactory numerical solution of mSTI for gluon basically hopeless: $m_{\Lambda} = O(\Lambda^2)$
- must exist at least one "correct" value for gluon mass term (if we believe in FRG)
- most naive thing we can do: try all values for gluon mass term $m_k^2 \delta_{\mu
 u}$

• regular vertices
$$\Rightarrow \Gamma_{AA}^{L}[\Phi=0](p=0) = \Gamma_{AA}^{T}[\Phi=0](p=0)$$

- regular vertices $\Rightarrow \Gamma_{AA}^{L}[\Phi = 0](p = 0) = \Gamma_{AA}^{T}[\Phi = 0](p = 0)$
- STI for gluon propagator: $\Gamma^L_{AA}[\Phi=0](p=0)=0$

- regular vertices $\Rightarrow \Gamma_{AA}^{L}[\Phi = 0](p = 0) = \Gamma_{AA}^{T}[\Phi = 0](p = 0)$
- STI for gluon propagator: $\Gamma^L_{AA}[\Phi=0](p=0)=0$
- regular vertices \Rightarrow no gluon mass gap @ $\Phi = 0$

cf. [Cornwall '82]

- regular vertices $\Rightarrow \Gamma_{AA}^{L}[\Phi = 0](p = 0) = \Gamma_{AA}^{T}[\Phi = 0](p = 0)$
- STI for gluon propagator: $\Gamma^L_{AA}[\Phi=0](p=0)=0$
- regular vertices \Rightarrow no gluon mass gap @ $\Phi=0$

cf. [Cornwall '82]

- nature: ∃ gluon mass gap
 ⇒ at least one wrong assumption:
 - ► ∃ irregular vertex
 - ▶ Φ ≠ 0
 - STI not applicable (in the IR)

- regular vertices $\Rightarrow \Gamma_{AA}^{L}[\Phi = 0](p = 0) = \Gamma_{AA}^{T}[\Phi = 0](p = 0)$
- STI for gluon propagator: $\Gamma^L_{AA}[\Phi=0](p=0)=0$
- regular vertices \Rightarrow no gluon mass gap @ $\Phi=0$

cf. [Cornwall '82]

- nature: ∃ gluon mass gap
 ⇒ at least one wrong assumption:
 - ► ∃ irregular vertex
 - ▶ Φ ≠ 0
 - STI not applicable (in the IR)
- STI for three-gluon vertex: gluon mass gap (scaling or decoupling) $\Rightarrow \Gamma_{AAA}$ or $\Gamma_{A\bar{c}c}$ irregular

- regular vertices $\Rightarrow \Gamma_{AA}^{L}[\Phi = 0](p = 0) = \Gamma_{AA}^{T}[\Phi = 0](p = 0)$
- STI for gluon propagator: $\Gamma^L_{AA}[\Phi=0](p=0)=0$
- regular vertices \Rightarrow no gluon mass gap @ $\Phi = 0$

cf. [Cornwall '82]

- nature: ∃ gluon mass gap
 ⇒ at least one wrong assumption:
 - ► ∃ irregular vertex
 - ▶ Φ ≠ 0
 - STI not applicable (in the IR)
- STI for three-gluon vertex: gluon mass gap (scaling or decoupling) $\Rightarrow \Gamma_{AAA}$ or $\Gamma_{A\bar{c}c}$ irregular

 $\implies \exists$ irregular vertices <u>or</u> STIs not valid @ small p

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

• reminder: vary gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

 $\Rightarrow \mathsf{Landau-pole\ regime\ } \overset{\mathsf{scal.\ sol.\ }}{\longrightarrow} \text{ ``Higgs-like''\ regime\ }$

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

• reminder: vary gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

 \Rightarrow Landau-pole regime $\stackrel{\text{scal. sol. ``Higgs-like''}}{\longrightarrow}$ "Higgs-like" regime

• numerical FRG result:

all m^2_{Λ} except $m^2_{\Lambda, {
m scaling}} \Rightarrow$ regular vertices

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

• reminder: vary gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

 \Rightarrow Landau-pole regime $\stackrel{\text{scal. sol.}}{\longrightarrow}$ "Higgs-like" regime

• numerical FRG result:

all m^2_{Λ} except $m^2_{\Lambda, scaling} \Rightarrow$ regular vertices

• at least one of the following is correct:

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

• reminder: vary gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

 \Rightarrow Landau-pole regime $\stackrel{\text{scal. sol.}}{\longrightarrow}$ "Higgs-like" regime

• numerical FRG result:

all m^2_{Λ} except $m^2_{\Lambda,\text{scaling}}$ \Rightarrow regular vertices

• at least one of the following is correct:

► scaling is a valid solution (⇒ irregularities)

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

• reminder: vary gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

 \Rightarrow Landau-pole regime $\stackrel{\text{scal. sol.}}{\longrightarrow}$ "Higgs-like" regime

• numerical FRG result:

all m^2_{Λ} except $m^2_{\Lambda, {
m scaling}} \Rightarrow$ regular vertices

- at least one of the following is correct:
 - ► scaling is a valid solution (⇒ irregularities)

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

• reminder: vary gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

 \Rightarrow Landau-pole regime $\stackrel{\text{scal. sol.}}{\longrightarrow}$ "Higgs-like" regime

• numerical FRG result:

all m^2_{Λ} except $m^2_{\Lambda, {
m scaling}} \Rightarrow$ regular vertices

- at least one of the following is correct:
 - ► scaling is a valid solution (⇒ irregularities)
 - $\Phi \neq 0$: can imply irregularities \Rightarrow scaling only artefact of $\Phi = 0$

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

• reminder: vary gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

 \Rightarrow Landau-pole regime $\stackrel{\text{scal. sol.}}{\longrightarrow}$ "Higgs-like" regime

• numerical FRG result:

all m^2_{Λ} except $m^2_{\Lambda, {
m scaling}} \Rightarrow$ regular vertices

- at least one of the following is correct:
 - ► scaling is a valid solution (⇒ irregularities)
 - $\Phi \neq 0$: can imply irregularities \Rightarrow scaling only artefact of $\Phi = 0$

cf. [Eichhorn, Gies, Pawlowski, '11]

STI not valid @ small p: how to determine m_{Λ}^2 ?

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

• reminder: vary gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

 \Rightarrow Landau-pole regime $\stackrel{\text{scal. sol.}}{\longrightarrow}$ "Higgs-like" regime

• numerical FRG result:

all m^2_{Λ} except $m^2_{\Lambda, {
m scaling}} \Rightarrow$ regular vertices

- at least one of the following is correct:
 - ► scaling is a valid solution (⇒ irregularities)
 - $\Phi \neq 0$: can imply irregularities \Rightarrow scaling only artefact of $\Phi = 0$

- STI not valid @ small p: how to determine m_{Λ}^2 ?
- truncation artefact or FRG "wrong"

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

• reminder: vary gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

 \Rightarrow Landau-pole regime $\stackrel{\text{scal. sol.}}{\longrightarrow}$ "Higgs-like" regime

• numerical FRG result:

all m^2_{Λ} except $m^2_{\Lambda, {
m scaling}} \Rightarrow$ regular vertices

- at least one of the following is correct:
 - ► scaling is a valid solution (⇒ irregularities)
 - $\Phi \neq 0$: can imply irregularities \Rightarrow scaling only artefact of $\Phi = 0$

- STI not valid @ small p: how to determine m_{Λ}^2 ?
- truncation artefact or FRG "wrong"

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

• reminder: vary gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

 \Rightarrow Landau-pole regime $\stackrel{\text{scal. sol.}}{\longrightarrow}$ "Higgs-like" regime

• numerical FRG result:

all m^2_{Λ} except $m^2_{\Lambda, {
m scaling}} \Rightarrow$ regular vertices

- at least one of the following is correct:
 - ► scaling is a valid solution (⇒ irregularities)
 - $\Phi \neq 0$: can imply irregularities \Rightarrow scaling only artefact of $\Phi = 0$

- STI not valid @ small p: how to determine m_{Λ}^2 ?
- truncation artefact or FRG "wrong"
- "what about the lattice solution?"

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

• reminder: vary gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

 \Rightarrow Landau-pole regime $\stackrel{\text{scal. sol.}}{\longrightarrow}$ "Higgs-like" regime

• numerical FRG result:

all m^2_{Λ} except $m^2_{\Lambda, {
m scaling}} \Rightarrow$ regular vertices

• at least one of the following is correct:

- ► scaling is a valid solution (⇒ irregularities)
- $\Phi \neq 0$: can imply irregularities \Rightarrow scaling only artefact of $\Phi = 0$

- STI not valid @ small p: how to determine m_{Λ}^2 ?
- truncation artefact or FRG "wrong"
- "what about the lattice solution?" nonperturbative gauge fixing (cf. Axel Maas) vs. $\Phi \neq 0$?

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

• reminder: vary gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

 \Rightarrow Landau-pole regime $\stackrel{\text{scal. sol.}}{\longrightarrow}$ "Higgs-like" regime

• numerical FRG result:

all m^2_{Λ} except $m^2_{\Lambda, {
m scaling}} \Rightarrow$ regular vertices

- at least one of the following is correct:
 - ► scaling is a valid solution (⇒ irregularities)
 - $\Phi \neq 0$: can imply irregularities \Rightarrow scaling only artefact of $\Phi = 0$

- STI not valid @ small p: how to determine m_{Λ}^2 ?
- truncation artefact or FRG "wrong"
- "what about the lattice solution?" nonperturbative gauge fixing (cf. Axel Maas) vs. $\Phi \neq 0$? irregularities vs. BRST/STI @ small p?

• reminder: vary gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

 \Rightarrow Landau-pole regime $\stackrel{\text{scal. sol.}}{\longrightarrow}$ "Higgs-like" regime

• numerical FRG result:

all m^2_{Λ} except $m^2_{\Lambda,\text{scaling}}$ \Rightarrow regular vertices

• at least one of the following is correct:

- ► scaling is a valid solution (⇒ irregularities)
- $\Phi \neq 0$: can imply irregularities \Rightarrow scaling only artefact of $\Phi = 0$

cf. [Eichhorn, Gies, Pawlowski, '11]

- ▶ STI not valid @ small *p*: how to determine m_{Λ}^2 ?
- truncation artefact or FRG "wrong"
- "what about the lattice solution?" nonperturbative gauge fixing (cf. Axel Maas) vs. $\Phi \neq 0$? irregularities vs. BRST/STI @ small p?

• my guess: "spont. breaking" $\Phi \neq 0$ but scaling fixes m_{Λ}^2

cf. $\mathcal{T}\,>$ 0 talk of Jan

M. Mitter (BNL)

Numerical propagators

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

• reminder: FRG "decoupling" not consistent with STI @ small p

Numerical propagators

• reminder: FRG "decoupling" not consistent with STI @ small p

•
$$\Gamma_{AA}^{(2)}(p) \propto Z_A(p) p^2 \left(\delta^{\mu\nu} - p^{\mu} p^{\nu} / p^2 \right)$$
 • $\Gamma_{AA}^{(2)}(p) \propto Z_A(p) p^2 \left(\delta^{\mu\nu} - p^{\mu} p^{\nu} / p^2 \right)$

lattice data: A. Sternbeck, E. M. Ilgenfritz, M. Muller-Preussker, A. Schiller, and I. L. Bogolubsky, PoS LAT2006, 076.

Numerical correlators I

• reminder: FRG "decoupling" not consistent with STI @ small p

• $\Gamma^{(3)}_{A\bar{c}c}(\bar{p})$

• $\Gamma^{(2)}_{\bar{c}c}(p) \propto Z_c(p) p^2$

vertex lattice data: [A. Cucchieri, A. Maas, T. Mendes '06 '08], [A. Maas, in preparation]

prop. lattice data: A. Sternbeck, E. M. Ilgenfritz, M. Muller-Preussker, A. Schiller, and I. L. Bogolubsky, PoS LAT2006, 076. DSE data: [M. Huber, L. v. Smekal, '13], [M. Huber, private communications]

Numerical correlators II

• $\Gamma^{(4)}_{AAAA}(\bar{p})$

- reminder: "FRG decoupling" not consistent with STI @ small p
 - Γ⁽³⁾_{AAA}(p̄)

vertex lattice data: [A. Cucchieri, A. Maas, T. Mendes '06 '08], [A. Maas, in preparation] DSE data: [A. Blum, M. Huber, MM, L. v. Smekal, '14], [A. Cyrol, M. Huber, L. v. Smekal, '15]

Running couplings: FRG vs. DSE [Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

Running couplings: FRG vs. DSE (rescaled)

[Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

- [42] [A. Cyrol, M. Huber, L. v. Smekal, '15],
- [47] [M. Huber, L. v. Smekal, '13], [92] [M. Huber, private communications]
- [50] [A. Blum, M. Huber, MM, L. v. Smekal, '14]
- [91] [R. Williams, '14], [93] [R. Williams, private communications]

M. Mitter (BNL)

Correlators of QCI

- YM correlators with FRG:
 - coupled set of "flow equations" for dressing functions $\lambda(\{p_i\})$

- YM correlators with FRG:
 - coupled set of "flow equations" for dressing functions $\lambda(\{p_i\})$
 - initial values have to fulfill mSTI \Rightarrow gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$

- YM correlators with FRG:
 - coupled set of "flow equations" for dressing functions $\lambda(\{p_i\})$
 - ▶ initial values have to fulfill mSTI \Rightarrow gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$
 - m_{Λ}^2 dependence of "results"

- YM correlators with FRG:
 - coupled set of "flow equations" for dressing functions $\lambda(\{p_i\})$
 - initial values have to fulfill mSTI \Rightarrow gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$
 - m_{Λ}^2 dependence of "results"
 - mass gap, irregularities and scaling (at $\Phi = 0$)

- YM correlators with FRG:
 - coupled set of "flow equations" for dressing functions $\lambda(\{p_i\})$
 - ▶ initial values have to fulfill mSTI \Rightarrow gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$
 - m_{Λ}^2 dependence of "results"
 - mass gap, irregularities and scaling (at $\Phi = 0$)
 - numerical correlators and consistent vertex running (vs. DSE)

- YM correlators with FRG:
 - coupled set of "flow equations" for dressing functions $\lambda(\{p_i\})$
 - ▶ initial values have to fulfill mSTI \Rightarrow gluon mass term $m_{\Lambda}^2 \delta_{\mu\nu}$
 - m_{Λ}^2 dependence of "results"
 - mass gap, irregularities and scaling (at $\Phi = 0$)
 - numerical correlators and consistent vertex running (vs. DSE)

- further applications:
 - QCD phase structure
 - other strongly-interacting theories