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Lattice two- and three-point Green's function

Tree-level Symanzik gauge action

The gauge fields are to be nonperturbatively obtained from lattice QCD simulations 
and applied then to get the gluon Green's functions   



  

The gluon propagator

Quenched lattice gluon propagators for different large volumes!

Duarte, Oliveira, Silva 
PRD94(2016)014502



  

The gluon propagator

Quenched lattice gluon propagators for different beta and similar volume!

Duarte, Oliveira, Silva 
PRD94(2016)014502
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The gluon propagator

ArXiv:1704.02053 (PRD): Essentially, a scale setting problem!!

Duarte, Oliveira, Silva 
PRD94(2016)014502

?



  

The gluon propagator

Unquenched lattice gluon propagators!

Ayala et al.  
PRD86(2012)074512



  

The gluon propagator

Unquenched lattice gluon propagators!
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The gluon propagator

Unquenched lattice gluon propagators!

Ayala et al.  
PRD86(2012)074512



  

The ghost propagator

Unquenched lattice ghost propagators!

Ayala et al.  
PRD86(2012)074512



  

The vertex and the three-gluon Green's function

In Landau gauge and for particular kinematical configurations, transversality and 
Bose symmetry make possible a simple tensorial decomposition of the gluon 
Green's function   

Γαμ ν(q , r , p) = ΓT
sym(q2) λαμν

tree (q , r , p) + ΓS
sym(q2) λαμν

S (q , r , p)

Gαμ ν(q , r , p) = T
sym(q2) λαμ ν

tree (q , r , p) + S sym(q2) λαμν
S (q , r , p)

Symmetric configuration:
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The vertex and the three-gluon Green's function

Γαμ ν(q , r , p) = ΓT
sym(q2) λαμν

tree (q , r , p) + ΓS
sym(q2) λαμ ν

S (q , r , p)

Gαμ ν(q , r , p) = T
sym(q2) λαμ ν

tree (q , r , p) + S sym(q2) λαμ ν
S (q , r , p)

Asymmetric configuration:

W αμ ν= λαμ ν
tree + λαμ ν

S /2

q→ 0 ; r2= p2=− p⋅r

In Landau gauge and for particular kinematical configurations, transversality and 
Bose symmetry make possible a simple tensorial decomposition of the gluon 
Green's function   



  

The vertex and the three-gluon Green's function

After the required projection and the appropriate renormalization, one can define a 
QCD coupling from the Green's functions, and relate it to the 1PI vertex form factor, 
in both symmetric...

Symmetric configuration:

  MOM renormalization prescription:

g sym(μ2)ΓT , R
sym (q2 ;μ2) =

g sym(q2)

[q2Δ R(q
2 ;μ2)]3/2



  

The vertex and the three-gluon Green's function

  MOM renormalization prescription:

g asym(μ2)ΓT , R
asym(q2 ;μ2) =

g asym(q2)

[q2Δ R(q2 ;μ2)]
3 /2

Asymmetric configuration:

q→ 0 ; r2= p2=− p⋅r

After the required projection and the appropriate renormalization, one can define a 
QCD coupling from the Green's functions, and relate it to the 1PI vertex form factor, 
in both symmetric and asymmetric kinematical configurations.



  

Multi-instanton background

f(z) is a shape function [f(0)=1] that might be eventually obtained by minimization of the 
action per particle for some statistical ensemble of instantons (classical background). 

yi=x− zi

Then:

ρi
ημ ν , R(i)

aα
`t Hooft symbols and color rotation matrices

instanton radius

The classical gauge field can be effectively accounted for by an independent pseudo-particule 
sum ansatz approach in both large- and low-distance regimes. 

D. Diakonov, V. Petrov; Nucl.Phys.B45386(1992)236

Boucaud et al.; Phys.Rev.D70(2004)114503

The classical gauge field solution from a multi-instanton ensemble can be cast as the so-
called ratio ansatz [E.V. Shuryak; Nucl.Phys.B302(1988)574] 



  

Multi-instanton background

g 0
mG(m)(k 2) = 1

N
W a1…am
μ1…μm 〈g 0 Aμ1

a1(k 1)…g0 Aμm
am(km)〉

G(2)(k 2)=Δ (k 2) ; G(3)(k 2)=T sym(k 2)
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o ( z∞ )

The asymptotic behavior at both the large- and low-momentum limits appears to be 
driven by the fourth power of the momentum, the result relying on a very general ground, 
irrespective of the details of the profile and its breaking of the scale independence.    

Instanton density



  

Multi-instanton background

αsym(k 2) = k 6
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The asymptotic behavior at both the large- and low-momentum limits appears to be 
driven by the fourth power of the momentum, the result relying on a very general ground, 
irrespective of the details of the profile and its breaking of the scale independence. 
This is consistent with the low-momentum behavior obtained from the lattice gluon 
correlation functions!!!    



  

Multi-instanton background

αsym(k 2) = k 6

4π
[G(3) (k 2)]2

[G(2)(k 2)]3
= k 4

18π n
〈ρ9 I 3(k ρ)〉2

〈ρ6 I 2(k ρ)〉3

The asymptotic behavior at both the large- and low-momentum limits appears to be 
driven by the fourth power of the momentum, the result relying on a very general ground, 
irrespective of the details of the profile and its breaking of the scale independence. 
This is consistent with the low-momentum behavior obtained from the lattice gluon 
correlation functions!!!    

The large-momentum limit in 
the field of a multi-instanton 
solution appears here hidden 
by the quantum UV 
fluctuations!!! 



  

The Wilson flow smoothing procedure

The Wilson flow has been proven to be an useful tool to deprive the lattice gauge fields 
from their short-distance (UV) quantum fluctuations.

The Wilson flow               of an SU(N) gauge field is defined byBμ(t , x) [M. Luescher; 
JHEP02(2010)071]

∂t Bμ= DνGνμ

where                 is the so-called flow time and t = a2 τ

Gμν = ∂μ Bν−∂ν Bμ+ [Bμ , Bν ]
Dμ= ∂μ+ [Bμ ,⋅ ]

with the initial condition                           . Bμ (0, x) = Aμ (x)

Then, the expansion in terms of            gives at tree-level:Aμ(x)

Bμ(t , x) =∫d 4 y K (t ; x− y) Aμ(x)

K (t ; x)= e−x
2/4t

(4π t )2
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The Wilson flow smoothing procedure

The Wilson flow has been proven to be an useful tool to deprive the lattice gauge fields 
from their short-distance (UV) quantum fluctuations.

α(k 2) = k 4

18π n
×

β=4.20



  

The Wilson flow smoothing procedure

The Wilson flow has been proven to be an useful tool to deprive the lattice gauge fields 
from their short-distance (UV) quantum fluctuations. 
The main features observed in the gluon correlations obtained with lattice flown gauge 
fields can be well described within the multi-instanton approach framework. 

α(k 2) = k 4

18π n
×

δρ2 /ρ2= 0.014 → σ p /ρ≃√2 ln (2)δρ2 /ρ2= 0.14

Fairly consistent with lattice estimates made by applying direct 
instanton detection:                                  σ p /ρ∼0.17−0.22 [D.A. Smith, M.J. Teper; PRD58(1998)014505]

β=4.20



  

The Wilson flow smoothing procedure

The Wilson flow has been proven to be an useful tool to deprive the lattice gauge fields 
from their short-distance (UV) quantum fluctuations. 
The main features observed in the gluon correlations obtained with lattice flown gauge 
fields can be well described within the multi-instanton approach framework. 

β=1.95

α(k 2) = k 4

18π n
×

δρ2 /ρ2= 0.013 → σ p /ρ≃√2 ln (2)δρ2 /ρ2= 0.13



  

The zero-crossing of the three-gluon vertex

g i(μ2)ΓT , R
i (q2 ;μ2) =

g i(q2)

[q2ΔR(q2 ;μ2)]
3 /2

i=sym ,asym .

g sym(q2) = q3
T sym(q2)
[Δ(q2)]3 /2

gasym(q2) = q3
T asym(q2)

Δ(0)[Δ(q2)]1 /2

Let's then focus (again) on the symmetric case: the form factor appears to change its sign at very deep IR 
momenta and show then a zero-crossing. This appears to happen below ~0.2 GeV.  
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M. Tissier, N. Wschebor, PRD84(2011)045018
A.C Aguilar et al.; PRD89(2014)05008
A. Blum et al.; PRD89(2014)061703
G. Eichmann et al.; PRD89(2014)105014
A.K. Cyrol et al.; arXiv:1605.01856[hep-ph]
A. Cucchieri, A. Maas, T. Mendes; 
PRD74(2006)014503;PRD77(2008)094510 
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The zero-crossing of the three-gluon vertex

g i(μ2)ΓT , R
i (q2 ;μ2)=

g i(q2)

[q2Δ R(q2 ;μ2)]
3/2
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g sym(q2) = q3
T sym(q2)
[Δ (q2)]3 /2

g asym(q2) = q3
T asym(q2)

Δ (0)[Δ (q2)]1 /2

Zero-crossing?

Let's consider now the asymmetric case: the results are much noisier (surely because of the zero-
momentum gluon field in the correlation function), although there appear to be strong indications for the 
happening of the zero-crossing.  

M. Tissier, N. Wschebor, PRD84(2011)045018
A.C Aguilar et al.; PRD89(2014)05008
A. Blum et al.; PRD89(2014)061703
G. Eichmann et al.; PRD89(2014)105014
A.K. Cyrol et al.; arXiv:1605.01856[hep-ph]
A. Cucchieri, A. Maas, T. Mendes; 
PRD74(2006)014503;PRD77(2008)094510 
   



  

After leg amputation, the 1PI form factor for the tree-level tensor shows clearly the zero-crossing. Tthe 
trend is the same for both Wilson and tlSym actions and symmetric and asymmetric configuarions. 
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After leg amputation, the 1PI form factor for the tree-level tensor shows clearly the zero-crossing. Tthe 
trend is the same for both Wilson and tlSym actions and symmetric and asymmetric configurations. 



  

The zero-crossing of the three-gluon vertex A.C Aguilar et al.; PRD89(2014)05008

DSE-based explanation:

In PT-BFM 
truncation: 



  

The zero-crossing of the three-gluon vertex A.C Aguilar et al.; PRD89(2014)05008
Ph. Boucaud et al.; PRD95(2017)114503

DSE-based explanation:

In PT-BFM 
truncation: 

A logarithmic divergent contribution at vanishing momentum, pulling down the 1PI 
form factor and generating a zero crossing, can be understood with a DSE 
analysis.



  

The zero-crossing of the three-gluon vertex

We can thus perform a fit, only over a deep IR domain, of our data to the DSE-based formula 
and describe the behaviour of the 1PI form factor.   

A.C Aguilar et al.; PRD89(2014)05008

i = symmetric

Ph. Boucaud et al.; PRD95(2017)114503



  

The zero-crossing of the three-gluon vertex

We can thus perform a fit, only over a deep IR domain, of our data to the DSE-based formula 
and describe the behaviour of the 1PI form factor.   

A.C Aguilar et al.; PRD89(2014)05008

Consistent with 
direct large-volume 
lattice evaluations of 
the gluon and ghost 
two-point Green 
functions. 

i = symmetric

gR
i (μ2)c FR(0,μ2)

Ph. Boucaud et al.; PRD95(2017)114503
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The zero-crossing of the three-gluon vertex

We can thus perform a fit, only over a deep IR domain, of our data to the DSE-based formula 
and describe the behaviour of the 1PI form factor.   

A.C Aguilar et al.; PRD89(2014)05008

Consistent with 
direct large-volume 
lattice evaluations of 
the gluon and ghost 
two-point Green 
functions. 

i = asymmetric

gR
i (μ2)c FR(0,μ2)

Ph. Boucaud et al.; PRD95(2017)114503



  

The three-gluon running coupling:

ETMC Nf=2+1+1

A final remark on some work in progress: the UV domain gives direct access to 
the strong running coupling in a particular scheme that can be properly translated 
to MS. combining different Green's functions, a reliable prediction can be 
obtained!!!

ΛMS
N f=4=314MeV ΛMS

N f=4

ΛMOM
N f=4=0.463



Quark's gap equation

Use Rainbow-Ladder truncation: 
One-gluon exchange effective kernel + Tree-level quark-gluon vertex
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Quark's gap equation

Use Rainbow-Ladder truncation: 
One-gluon exchange effective kernel + Tree-level quark-gluon vertex



Quark's gap equation

4 π I (k2) 1

k2 (δμ ν−kμk νk2 )

Beyond Rainbow-Ladder truncation: 
One-gluon exchange effective kernel + Tree-level quark-gluon vertex

Γμ = Γμ
BC + Γμ

ACM

Model parameters: 

Λ = 0.234 GeV
ζ = 0.55 GeV
ω ∈ [0.4,0 .6 ] GeV

Fixed by the pion decay constant

● Ball-Chiu vertex [PRD(22)1980]
● Anomalous Chromomagnetic vertex

Consistent with both linear and 
transverse STI
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One-gluon exchange effective kernel + Tree-level quark-gluon vertex
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One-gluon exchange effective kernel + Tree-level quark-gluon vertex



Quark's gap equation: RGI interaction



Quark's gap equation: RGI interaction

D. Binosi, Quandri, PRD88(2013)



Quark's gap equation: RGI interaction

A.C Aguilar, D. Binosi, J. Papavassiliou, J. R-Q, PRD90(2009)
D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, PLb742(2015)
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       in perturbation



QCD effective charge

Let us now carefully examine the RG Interaction:  

D. Binosi, J. R-Q, C.D. Roberts, PRD95(2017)114009

αT (k
2) = lim

a→0
g2(a)k2Δ(k2; a)F2(k2 ; a)

A running strong coupling in a particular scheme (Taylor), well-known           
       in perturbation and easy-to-handle in Lattice QCD
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QCD effective charge

Let us now carefully examine the RG Interaction:  

D. Binosi, J. R-Q, C.D. Roberts, PRD95(2017)114009

Zero-momentum freezing!
Re-setting of the physical scale for lQCD
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A divergent ghost-loop contribution to the gluon vacuum 
polarization in its DSE
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QCD effective charge

Let us now carefully examine the RG Interaction:  

D. Binosi, J. R-Q, C.D. Roberts, PRD95(2017)114009

A divergent ghost-loop contribution to the gluon vacuum 
polarization in its DSE, which can be manifestly traced 
back from the zero-crossing of the three-gluon vertex 

A.C. Aguilar et al,. PRD89(2014)05008
A.K. Cyrol et al. PRD94(2016)054005
Ph. Boucaud et al,. PRD95(2017)114503
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Let us now carefully examine the RG Interaction:  

D. Binosi, J. R-Q, C.D. Roberts, PRD95(2017)114009

D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, PLB 742 (2015) 



QCD effective charge

Let us first carefully examine the RG Interaction:  

D. Binosi, J. R-Q, C.D. Roberts, PRD95(2017)114009
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D. Binosi, C. Mezrag, J. Papavassiliou, J.R-Q, C.D. Roberts, arXiv:1612.04835 

●Parameter free
completely determined from 2-points sector

●No Landau pole
physical coupling showing an IR fixed point

●Smoothly connects IR and UV domains
no explicit matching procedure

●Essentially non-perturbative result
continuum/lattice results plus setting of single 

mass scale (from the gluon) 

●Ghost gluon dynamics critical
enhancement at intermediate momenta
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Thank you!
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