

Compte rendu LISA: AIV/T

Nicoleta Dinu Jaeger - ARTEMIS/OCA

This Compte rendu is based on various reflections meetings between :

- APC, ARTEMIS and PASO/CNES (France)
- Payload Coordination Team (PCT) (ESA/ESTEC)
 - H. Halloin & N. Dinu Jaeger members, in charge of AIV/T aspects

Outline

- State-of-the-art of LISA payload subsystems
- Status of actual reflections on AIV/T activities
- Short and long term AIV/T activities

LISA mission goals

- The goal of the mission is to detect Gravitational Waves (GW) at low frequencies
 - range from 10⁻⁵ Hz to 0.1 Hz
- Laser heterodyne interferometry used to detect minute distance variations between free flying Test Masses (TM)
- Spacecraft (S/C) required to "shield" the TM from external perturbations (drag free control), internal perturbations to be minimized (EMC, mass balance, thermal ...)
- Three arms required to determine origin and polarization (redundancy)
- Each arm measurement broken into three legs:

Measurements to be performed are in the picometer range (1 pm = 10⁻¹² m)

Nicoleta Dinu Jaeger - LISA France - 12/10/2017

LISA sensitivity and performance requirement

Sensitivity curve for LISA 3-arm configuration

- 10-16 Galactic Background MBHBs at z = 3 $\frac{10^7}{10^7}M_{\odot}$ 10⁻¹⁷ Verification Binaries Characteristic Strain 10-16 10-16 **EMRI** Harmonics LIGO-type BHBs hour $10^{6} M_{\odot}$ GW150914 Gal. Bin. (SNR > 7) $10^{5} M_{\odot}$ 10⁻¹⁹ 10⁻²⁰ Observatory Characteristic Strain 10⁻²¹ 10⁻⁴ 10^{-3} 10^{-2} 10^{-5} 10^{-1} 10^{0} Frequency (Hz)
- LISA top key parameters performance requirements:
 - 1. Stray acceleration of TM

•
$$S_a^{1/2} \le 3 \cdot 10^{-15} \frac{m \cdot s^{-2}}{\sqrt{Hz}} \cdot \sqrt{1 + \left(\frac{0.4mHz}{f}\right)^2} \cdot \sqrt{1 + \left(\frac{f}{8mHz}\right)^4}$$
; 100 µHz $\le f \le 0.1$ Hz

- •Mostly applies to GRS that comprises the TM and the surrounding sensing and actuation hardware
- 2. Laser interferometer readout noise

•
$$S_{IFO}^{1/2} \le 10 \cdot 10^{-12} \frac{m}{\sqrt{Hz}} \cdot \sqrt{1 + \left(\frac{2mHz}{f}\right)^4}$$
; 100 µHz $\le f \le 0.1$ Hz

•Mostly concerns the interferometric measurement system: telescope, optical bench, phase measurement system, laser, clock and TDI

3. Arm length response

- •Partial cancelation of the signal because GW period become shorter than the arm length
- •Achievable by optimization of:
 - •GRS from LPF with two TM per S/C (46 mm cubic, 2 kg Au-Pt TM)
 - •Armlength: 2.5 million km
 - •Telescope with 30 cm diameter
 - •Laser power: 2W end-of-life out of delivery fiber to the OB

LISA Payload elements on each S/C

Nicoleta Dinu Jaeger – LISA France – 12/10/2017

EADS Astrium & CDF/ESTEC drawings

MOSA = Moving Optical Sub-Assembly

- Telescope (T) + Optical Bench (OB) + Gravitational Reference Sensor (GRS) mounted on a mechanical structure

- Additional subsystems (i.e. laser, phasemeter, diagnostics) are required for performance validation

Optical Bench (UK)

Main functionality

- Combine laser beams from telescope (far S/C, RX beam), local laser (original TX beam or reflected to TM) and adjacent OB (backlink fiber, LO beam) to allow three distinct interferences:
 - Inter-S/C interferometer (i.e. "science" interferometer (TX and RX))
 - Test-mass interferometer (TX reflected on TM and LO)
 - Reference interferometer (TX and LO)

• Concept design: double side

- A: contains all optical elements for interferometer measurements, opt. interfaces
- B: contains all interferometers read-outs

OB state-of-the-art

- Bonding technology and ~10 $\mu m\,$ alignment accuracy (LPF heritage, TRL9)
- Fiber injectors, automatic OB manufacturing, photoreceivers ...(TRL 4-5) Nicoleta Dinu Jaeger – LISA France – 12/10/2017

Telescope (NASA)

Main functionality

- Simultaneously transmit and receive beam light with efficient optical power transfer
 - High transmitted optical power: 1.26 W
 - Low received optical power: ${\sim}500~\text{pW}$

• Concept design: Off-axis Cassegrain telescope (4 mirrors)

- 300 mm diameter of primary mirror (M1)
- 2.24 mm pupil diameter on optical bench
- 134x magnification

Alternative design by ESA (ITT TAS-I + TAS-F, ARTEMIS/OCA, APC, LMA)

Telescope state-of-the-art (TRL 4)

- design under development

Gravitational Reference Sensor (Italy)

Main Functionalities

- Enable TM/SC control at roughly 2.5 nm/VHz level and 200 nrad/VHz level (using y, z, θ capacitive readouts)
- Force actuation at nN / 10 pNm level (all degrees of freedom excepting x)
- Shield the TM and limit stray forces, allowing TM to be at ~ 3 fm/s²/VHz level (GRS + payload + S/C)
- Allow TM to be used as a mirror for <10 pm/VHz IFO readout

Concept design

• TM + surrounding hardware (electrode housing, vacuum enclosure, caging mechanism, charge management) + electronics

MOSA mounting structure (ESA/Prime?)

Main Functionalities

- Load taking device for three subsystems: T + OB + GRS
 - Telescope: mass ~ 9.3 kg; dimensions: length ~ 800 mm; height ~ 400 mm;
 - OB: mass ~ 17.5 kg; dimensions: ϕ ~ 450 mm x 200 mm;
 - GRS: mass ~ 19.7 kg; ϕ ~ 200 mm
- Assure mechanical interface between T, OB and GRS
 - Isostatic interface with the OB, stable and minimizing OB distortion
 - Thermal balancing
 - OB ~ 20°C; Telescope: M2 ~ -80°C, M1 ~20°C
 - Optical path length stability between Telescope and OB at the few nm/VHz level
- Assure mechanical interface with LCA/SC mechanical structure

Material characteristics

- High stiffness, low mass, low distortion
- Material of very low coefficient of thermal expansion (CTE)
- Concept design
 - Under development: ASTRIUM & NASA/GSFC proposals

MOSA mounting structure state-of-the-art (TRL ?)

- Under development

Nicoleta Dinu Jaeger – LISA France – 12/10/2017

Laser Assembly (NASA)

Main functionality

- Deliver CW laser source
 - 1064 nm & 2W for laser interferometry
 - Frequency and amplitude stabilized
- Concept design
 - 2x Laser Assemblies (LA)/payload
 - Each LA is associated to one OB and points towards corresponding far S/C; it contains:
 - 2x Master Oscillator Power Amplifier (MOPA) for full redundancy
 - Master Oscillator (MO)
 - Phase modulator
 - Power Amplifier (PA)
 - 1x Laser Control Unit (LCU):
 - laser drive electronics
 - frequency control electronics
 - modulation control electronics
 - power control electronics
 - 1x Frequency Reference Unit
 - 1x Laser Pre-stabilization (LPS) subsystem
 - Self contained unit providing feedback signal to LCU
 - Frequency stabilization of MOPA lasers

Laser state-of-the-art

- Fiber Amplifier & Master oscillator (ELC type): TRL 4
- Frequency Reference Unit: TRL 8 (Grace-FO heritage)

Phasemeter (Germany)

Functionalities

- Delivers primary measurements of the mission
 - Longitudinal measurements for inter-S/C, TM, and reference IFO
 - Attitude measurements using differential wavefront sensing
 - S/C w.r.t. incoming wavefront
 - TM w.r.t. local S/C
 - These are phases: conversion to length/angle may be done elsewhere (payload processing)
- Auxiliary functions
 - Pseudo random code for ranging
 - Data transfer over optical link
 - Clock noise transfer
 - Pilot tone

Concept design

- Frequency Distribution System (FDS)
- Photodiodes Back-end Electronics (PD-BEE)
- PM core: ADCs, FPGA, Processing algorithm

PM state-of-the-art

- Core functionality: TRL 8, Grace-FO heritage
- LISA specific functions (clock transfer, jitter calibration etc.): TRL 4
- To be determined: nr. of channels, exact bandwidth...

M Hewitson, LISA PM Description, Payload Phase 0 PM1, ESTEC, Sept 28th 2017

Diagnostics (Spain)

Main functionality

- Monitor disturbances perturbing either test mass geodesic motion or metrology subsystem
 - Radiation monitor
 - Magnetic diagnostics
 - Temperature diagnostics

Concept design

- Magnetic diagnostics
 - Fluxgate magnetometers outside of thermal shield (LPF heritage)
 - Alternative solution: Anisotropic magneto-resistors (AMR)
 - compact, avoiding effects of back actions
- Temperature diagnostics
 - Telescope
 - T stability requirement: 100 nK/VHz
 - 7 T sensors (3 near M1, 2 near M2, 2 near M3/M4)
 - Possible heaters? (to keep the telescope close to room T)
 - Optical Bench
 - T stability requirement: 100 nK/VHz
 - ~15 sensors, at hot spots locations (ex: PDs, Constellation Acquisition Sensor etc)
 - GRS
 - T stability requirement: 10 $\mu\text{K}/\text{VHz}$
 - T sensors and heaters located inside of vacuum enclosure and near optical window
 - MOSA structure
 - T sensors monitoring the axial/transversal gradients

Lisa Pathfinder Magnetic Diagnostics system Courtesy of M. Nofrarias (IEEC-CSIC)

Diagnostic system state-of-the-art

- LPF heritage (TRL 9)
- LISA adaptation for T and magnetometer sensors to be done

AIV/T Assemblage, Integration, Verification and Test

Proposal of Consortium (France) AIV/T perimeter

Consortium is responsible for delivering integrated/tested/validated MOSA

- Assembly and integration of Telescope + OB + GRS on MOSA mounting structure
 - Temperature Diagnostics elements mounted on units prior to delivery for MOSA integration
- Functional tests and performance validation
 - Phasemeter (PM) and Laser Assembly (LA) are required

MOSA Model Philosophy

- Elegant BreadBoard (EBB) [TBC]
 - Demonstrates mechanical/optical/electrical interfaces
 - Uses representative assemblies, but not flight
- Structural/Thermal Model (STM)
 - Validates mechanical interface, mechanical charge and thermal comportment
 - Uses dummy assemblies/units
- (Engineering) Qualification Model (E)QM
 - Validates MOSA conception and its AIV/T process
 - Uses flight representative assemblies/units
 - Submitted to qualification tests (i.e. vibrations)
- 6 Flight Models (FM)
 - Idem as (E)QM
 - Submitted to acceptance tests (verification of technical conformity)

Assumptions

- Consortium members & ESA partners (Prime or NASA) responsibility will delivery
 - Various subsystems models, from EBB, STM to FMs
 - Consortium: OB (UK), GRS (Italy), Diagnostics (Spain), Phasemeter (Germany)
 - ESA: Laser Assembly (NASA), Telescope (NASA), MOSA mounting structure (Prime)
 - For each subsystem:
 - Flight electrical/optical harness
 - Attached to MOSA connectors « bracket » at MOSA integration site
 - Test harness from bracket to GSE during performance validation
 - Unit test benches to the MOSA integrator with operators for training
 - Associated hardware simulators (e.g. SCOE: Special Check-Out Equipment)
 - Numerical models (behavioral and performance/noise models)
 - User manuals, interface definition, metrology and unit tests reports and data, etc.....

Nicoleta Dinu Jaeger – LISA France – 12/10/2017

AIV/T Flow

- Main integration steps
 - 0. Reception of all providers units at MOSA integration site
 - Acceptance tests (I/F verifications, command/control function tests etc.) to be defined by units providers together with MOSA integrator
 - 1. OB + MOSA structure = Optical Bench Assembly (OBA)
 - Integration and alignment checks
 - Functional tests
 - 2. OBA + Telescope = Telescope & Optical Bench Assembly (TOBA)
 - Integration and alignment checks
 - Functional and performance tests (Phasemeter and Laser Assembly are required)
 - 3. TOBA + GRS Head = Telescope, Optical Bench & Inertial Sensor (TOBIAS)
 - Integration and alignment checks
 - 4. TOBIAS + other equip. (therm. shield) = Moving optical Sub-Assembly (MOSA)
 - Integration
 - Qualification or acceptance tests
 - 5. Delivery to P/L integrator
 - MOSA integrator gives support to higher level tests and integration
- Proposed process
 - 2 MOSAs in the integration facility at a time, at different integration & test stages

Short and long term AIV/T activities

- Short term (November 2017)
 - Redaction of an AIV/T chapter (our actual status of reflections), into the Payload Description Document (PDD) as a baseline document for Phase A
- Long term (during phase A, 2018-2019)
 - Identification of integration constraints at each integration step
 - Optical
 - Electrical
 - Mechanical
 - Thermal
 - Definition of functional and performance tests
 - What tests to do and why
 - Identification of GSE
 - Facilites
 - Equipment/ functionality needed to do each of those tests
 - What other units are needed
 - Where/when should/could they be done
 - MOSA AIV/T cost evaluation

Long term Planning

Phase A long term activities

- Already started, but still much more work is required
- Some examples in the next slides

Telescope Optical Bench Assembly (TOBA) (1)

Integration constraints

- TOBA size: $\Phi \sim$ 50 cm, length \sim 100 cm (\sim 250 cm if FF-OGSE & TM simulator are considered), mass \sim 27 kg
- Alignment accuracy
 - Telescope w.r.t. OB: via a 2.24 mm pupil, real, located on the bench critical alignment
 - ± 20 μm lateral, ± 100 μm longitudinal, ± 10 μrad
- Thermal stability
 - 100 nK/vHz
- Contamination
 - Stray light
- EM, vibrations
 - No specific constraint

Tests on TOBA (list under progress)

- Mechanical, optical & thermal I/F verification between OBA & Telescope
- OB internal alignment using PD
 - Verify that internal alignment of all beams on the OB is still o.k. after Telescope integration
- Heterodyne efficiency
- Metrology axes alignments (PD/PD, PD/PAA, PD:CAS, PD/TEL etc.)
- Calibration of PD signal w.r.t. TM movements
- TX beam and PAAM (RX vs TX) characterization (offsets, calibrations, dynamic range, beam quality)
- CAS/RX beam calibration, constellation acquisition
- Contamination & stray level
- Data link generation and reception (weak light, doppler etc.)
- Science and TM IFO performance tests (measurements @ f>0.1 Hz, lower freq. by modeling)

Telescope Optical Bench Assembly (TOBA) (2)

Required GSE (list under progress)

- Facilities [France]
 - Clean room: large surface (50-100 m²); ISO 5 (class 100) over restricted area
 - µm precision 3D Coordination Measurement Machine (CMM)
 - MOSA MGSE
 - support TOBA/TOBIAS + FFOGSE during integration; isostatic mounts with different MOSA possible orientations
 - Vacuum chamber: $\Phi \sim 1 \text{ m}$, 2-3 m long (it should accept also Telescope, FF-OGSE & GSE)
- GSE for tests
 - Super RoB [UK]
 - Simple, battery powered, readout spot position from individual PD and check the alignment stability
 - Own laser system
 - FF-OGSE [NASA]
 - Simulates the characteristics (direction low intensity, truncated Gaussian beam shape, waveform quality etc.) of the laser beam coming from the far S/C and entering the telescope
 - Monitor the quality of the beam going out from the OB to the telescope
 - TM optical simulator [Italy]
 - Mirror with 3 tunable dof (1 translation and 2 rotations) simulating the TM movements
 - Data handling/ Payload computer SCOE [Spain?]
 - Backlink simulator [France?]
 - Simulates the exchange of the laser beams between the 2xOB of the same S/C
 - TX OGSE (included in Super RoB? or GSE laser source [France?] (FM for perf. & data link tests)
 - GSE phasemeter and Freq. Distribution [France?] (FM for perf. & data link tests)
 - Data logger [France]
 - ...???

LISA AIV/T France

- Meeting at APC on 22/09/2017
- 10 participating laboratories showing their interest in participating at AIV/T MOSA activities
 - APC
 - ARTEMIS
 - 3 IRFU Départements
 - Département Astrophysique
 - Département électronique et computing (DEDIP)
 - Département d'Ingénierie des Systèmes (DIS)
 - LAM
 - LESIA
 - LMA
 - LPC-CAEN
 - SYRTE

All interested laboratories are welcomed to join us

Additional slides

MOPA Functional Diagram – Master Laser

Courtesy of A. Yu (NASA GSFC), L. Mondin (ESA-ESTEC), B. Shortt (ESA-ESTEC)

Optical Bench Assembly (OBA) (1)

Integration constraints

- OB size: $\Phi \sim 50$ cm, thickness ~ 20 cm, mass ~ 17.5 kg
- Alignment accuracy
 - $\pm 10-20 \ \mu m, \pm 1 \ mrad \ [TBC]$
- Thermal stability
 - 100 nK/VHz
- Contamination
 - MOSA mounting structure material
 - Stray light
- EM, vibrations
 - No specific constraints

Tests on OBA

- Mechanical & thermal I/F verification between OB and MOSA mounting structure
- OB internal alignment using PD
 - Verify that internal alignment of all beams on the OB is still o.k. after OB integration on MOSA structure
- Long term deformation tests [TBC]
- Tests under vacuum or temperature variation [TBC]

•

Optical Bench Assembly (OBA) (2)

Required GSE

- Facilities [France]
 - Clean room: large surface (50-100 m²); ISO 5 (class 100) over restricted area
 - µm precision 3D Coordination Measurement Machine (CMM)
 - MOSA MGSE
 - support OBA/TOBA/TOBIAS during integration; isostatic mounts with different MOSA possible orientations
 - Vacuum chamber: $\Phi \sim 2 \text{ m}$, 2-3 m long (it should accept also Telescope & FF-OGSE)
- GSE for tests
 - Hyper RoB [UK]
 - Simple, battery powered, readout spot position from individual PD and check the alignment stability
 - Own laser system
 - Includes Optical Telescope Simulator
 - Simulating the laser beam entering from Tel to the OB and monitor and record the properties of the beam sent from OB to Telescope
 - Data logger [France]
 - ..???

- maintains instrument/mission scientific oversight in the consortium
- aids in interface definition between consortium provided equipment (CPE) and prime
- provide technical support to CPE industrial teams (where appropriate)
- provides support to system engineering teams, including ESA's system engineering office
- maintain oversight of technology development

