Stochastic and resolvable gravitational waves from ultralight bosons

> Enrico Barausse, Institut d'astrophysique de Paris/CNRS Paris, France

> > based on

R Brito, S Ghosh, EB, E Berti, V Cardoso, I Dvorkin, A Klein, P Pani arXiv:1706.05097 (PRL in press); arXiv:1706.06311 (PRD in press)



- A review of boson condensate formation around spinning BHs and their GW emission
- Astrophysical models for spinning BHs
- Constraints on boson masses in the LISA and LIGO bands by
  - Direct detections
  - Stochastic backgrounds
  - "Holes" in Regge plane



- A review of boson condensate formation around spinning BHs and their GW emission
- Astrophysical models for spinning BHs
- Constraints on boson masses in the LISA and LIGO bands by
  - Direct detections
  - Stochastic backgrounds
  - "Heles" in Regge plane

## Why light bosons?

- Scalars ubiquitous in string theory, inflation, dark matter models
- Useful as toy models for unknown phenomena/ interactions (e.g. modifications of GR)
- Effect of mass term expected to be qualitatively the same as for vector/tensor degrees of freedom

# Self-gravitating scalar configurations

- Scalars can form self-gravitating configurations, especially if complex, massive (to avoid dispersion to infinity) and time dependent (to provide pressure): boson stars, oscillatons
- Around BHs, massive real (complex) scalars can form quasi-stationary (stationary) configurations: boson clouds or condensates, hairy BHs

## BH-boson condensates

• Formation linked to superradiant instabilities/Penrose process (amplifications of scattered waves with  $\omega < m\Omega_H$ 



 BH with high enough spin in a mirror box are superradiance unstable (BH bomb; Zeldovich 71, Press & Teukolsky 72, Cardoso et al 04)



## BH-boson condensates

 Same instability of spinning BH + massive boson (mass acts as "mirror" and allows for bound states), but NOT for fermions. Cf Damour, Deruelle & Ruffini 76



## Instability end point

 BH sheds excess spin (and to a lesser degree mass) into a mostly dipolar rotating boson cloud ...

$$m_s \equiv \mu \hbar, \qquad \omega_R \sim \mu - rac{M^2 \mu^3}{8}$$

$$\Phi = A_0 g(r) \cos(m_\phi \phi - \omega_R t) \sin \theta$$
,



• ... till instability saturates

 $\mu \sim m \Omega_{
m H}$ 

$$au_{
m inst} \sim 0.07 \, \chi^{-1} \left( \frac{M}{10 \, M_{\odot}} \right) \left( \frac{0.1}{M \mu} \right)^9 \, {
m yr} \, ,$$

(for Mµ<<1 and  $\chi$ <<1; max instability for Mµ=0.42)

## GW emission

 Long-lived rotating scalar dipole produces almost monochromatic GWs via quadrupole formula on timescale

$$au_{\rm GW} \sim 6 \times 10^4 \, \chi^{-1} \left( \frac{M}{10 \, M_{\odot}} \right) \left( \frac{0.1}{M \mu} \right)^{15} \, {\rm yr}$$

$$h = \sqrt{rac{2}{5\pi}} rac{GM}{c^2 r} \left(rac{M_S}{M}
ight) A(\chi, f_s M),$$
 rms strain amplitude



## GW ranges



## Indirect probe: BH spins



Problems:

- Systematic errors on measurements,
- Astrophysical intrinsic spin distribution unknown

# Background from isolated spinning BHs

energy emission efficiency

 $f_{\rm ax} \sim \mathcal{O}(1\%)$ 

monochromatic GW in source frame

$$\Delta \ln f \sim 1$$

LISA band massive BHs ~  $10^4\text{--}10^7\ M_{sun},\ m_s\text{--}10^{-16}\text{--}10^{-18}\ eV$ 

$$\begin{split} \rho_{\rm BH} &\sim \mathcal{O}(10^4) M_{\odot}/{\rm Mpc}^3 \\ \Omega_{\rm GW,\,ax} &= (1/\rho_{\rm c}) (d\rho_{\rm GW}/d\ln f) \sim f_{\rm ax} \rho_{\rm BH}/\rho_{\rm c} \\ \Omega_{\rm GW,\,ax}^{\rm LISA} &\sim 10^{-9} \end{split}$$

# Background from isolated spinning BHs

energy emission efficiency

 $f_{\rm ax} \sim \mathcal{O}(1\%)$ 

monochromatic GW in source frame

$$\Delta \ln f \sim 1$$

LIGO/Virgo band stellar-mass BHs ~ 10-50 M<sub>sun</sub>, m<sub>s</sub>~10<sup>-13</sup> - 10<sup>-12</sup> eV  $\Omega_{\rm GW, \, bin} \sim f_{\rm GW} f_{\rm m} \rho_{\rm BH} / \rho_c$   $f_{\rm GW} \sim \mathcal{O}(1\%)$   $f_{\rm m} \sim \mathcal{O}(1\%)$  $\Omega_{\rm GW, \, ax} / \Omega_{\rm GW, \, bin} \sim f_{\rm ax} / (f_{\rm GW} f_{\rm m}) \sim 10^2$ 

 $\Omega_{\rm GW,\,bin} \sim 10^{-9} - 10^{-8} \ \Omega_{\rm GW,\,ax}^{\rm LIGO} \sim 10^{-7} - 10^{-6}$ 

# Background from isolated spinning BHs



### BH spin & mass modeling is crucial

Use state-of-the-art astrophysical models with input from continuum fitting/iron-K $\alpha$  spin measurements

| Object name       | Galaxy type | z      | $L_X[erg s^{-1}]$    | fedd | $\log(M_{\rm bh}[M_{\odot}])$ | spin                          |
|-------------------|-------------|--------|----------------------|------|-------------------------------|-------------------------------|
| 1H0707-495        | -           | 0.0411 | $3.7 \times 10^{43}$ | 1.0  | $6.70\pm0.4$                  | > 0.97                        |
| Mrk1018           | <b>S</b> 0  | 0.043  | $9.0	imes10^{43}$    | 0.01 | 8.15                          | $0.58^{+0.36}_{-0.74}$        |
| NGC4051           | SAB(rs)bc   | 0.0023 | $3.0 \times 10^{42}$ | 0.03 | 6.28                          | > 0.99                        |
| NGC3783           | SB(r)ab     | 0.0097 | $1.8 \times 10^{44}$ | 0.06 | $7.47 \pm 0.08$               | > 0.88                        |
| 1H0419-577        | _           | 0.104  | $1.8 \times 10^{44}$ | 0.04 | $8.18\pm0.05$                 | > 0.89                        |
| 3C120             | S0          | 0.033  | $2.0 \times 10^{44}$ | 0.31 | $7.74^{+0.20}_{-0.22}$        | > 0.95                        |
| MCG-6-30-15       | E/S0        | 0.008  | $1.0 	imes 10^{43}$  | 0.4  | $6.65 \pm 0.17$               | > 0.98                        |
| Ark564            | SB          | 0.0247 | $1.4 	imes 10^{44}$  | 0.11 | < 6.90                        | $0.96^{+0.01}_{-0.03}$        |
| TonS180           | -           | 0.062  | $3.0	imes10^{44}$    | 2.15 | $7.30^{+0.60}_{-0.40}$        | $0.91^{+0.02}_{-0.02}$        |
| RBS1124           | -           | 0.208  | $1.0 \times 10^{45}$ | 0.15 | 8.26                          | > 0.97                        |
| Mrk110            | -           | 0.0355 | $1.8 \times 10^{44}$ | 0.16 | $7.40\pm0.09$                 | > 0.89                        |
| Mrk841            | Е           | 0.0365 | $8.0 \times 10^{43}$ | 0.44 | 7.90                          | > 0.52                        |
| Fairall9          | Sc          | 0.047  | $3.0 \times 10^{44}$ | 0.05 | $8.41 \pm 0.11$               | $0.52^{+0.19}_{-0.15}$        |
| SWIFTJ2127.4+5654 | SEO/a(s)    | 0.0147 | $1.2 	imes 10^{43}$  | 0.18 | $7.18\pm0.07$                 | $0.6 \pm 0.2$                 |
| Mrk79             | SBb         | 0.0022 | $4.7 \times 10^{43}$ | 0.05 | $7.72\pm0.14$                 | $0.7\pm0.1$                   |
| Mrk335            | SOa         | 0.025  | $5.0 \times 10^{43}$ | 0.25 | $7.15\pm0.13$                 | $0.83^{+0.09}_{-0.13}$        |
| Ark120            | Sb/pec      | 0.0327 | $3.0 \times 10^{45}$ | 1.27 | $8.18 \pm 0.12$               | $0.64^{+0.19}_{-0.11}$        |
| Mrk359            | pec         | 0.0174 | $6.0 	imes 10^{42}$  | 0.25 | 6.04                          | $0.66^{+0.30}_{-0.54}$        |
| IRAS13224-3809    | -           | 0.0667 | $7.0 	imes 10^{43}$  | 0.71 | 7.00                          | > 0.987                       |
| NGC1365           | SB(s)b      | 0.0054 | $2.7 	imes 10^{42}$  | 0.06 | $6.60^{+1.40}_{-0.30}$        | $0.97\substack{+0.01\\-0.04}$ |
|                   |             |        |                      |      |                               |                               |

| Binary System | $M/M_{\odot}$    | a                      | Reference                |
|---------------|------------------|------------------------|--------------------------|
| 4U 1543-47    | $9.4 \pm 1.0$    | 0.75 - 0.85            | Shafee et al. (2006)     |
| GRO J1655-40  | $6.30\pm0.27$    | 0.65 - 0.75            | Shafee et al. (2006)     |
| GRS 1915+105  | $14.0\pm4.4$     | > 0.98                 | McClintock et al. (2006) |
| LMC X-3       | 5 - 11           | < 0.26                 | Davis et al. (2006)      |
| M33 X-7       | $15.65 \pm 1.45$ | $0.84 \pm 0.05$        | Liu et al. (2008, 2010)  |
| LMC X-1       | $10.91 \pm 1.41$ | $0.92^{+0.05}_{-0.07}$ | Gou et al. (2009)        |
| XTE J1550-564 | $9.10 \pm 0.61$  | $0.34_{-0.28}^{+0.20}$ | Steiner et al. (2010b)   |

#### Stellar-mass BH spins

Compilations (Reynolds, Brenneman,...) of massive BH spins

## Stochastic background



## Resolved events

Need to account for effect of stochastic background on sensitivity (cf e.g. WD binaries)



most optimistic models

## Resolved events

| $m_s[eV]$  | Search method | Accretion model | Events         |
|------------|---------------|-----------------|----------------|
| $10^{-16}$ | Coherent      | (C.1)           | 75 – 0         |
|            | Semicoherent  |                 | 0              |
|            | Coherent      | (C.2)           | 75 - 0         |
|            | Semicoherent  |                 | 0              |
|            | Coherent      | (C.3)           | 75 - 0         |
|            | Semicoherent  |                 | 0              |
| $10^{-17}$ | Coherent      | (C.1)           | 1329 - 1022    |
|            | Semicoherent  |                 | 39 - 5         |
|            | Coherent      | (C.2)           | 3865 - 1277    |
|            | Semicoherent  |                 | 36 - 4         |
|            | Coherent      | (C.3)           | 5629 - 1429    |
|            | Semicoherent  |                 | <u> 39 – 5</u> |
| $10^{-18}$ | Coherent      | (C.1)           | 17 – 1         |
|            | Semicoherent  |                 | 0              |
|            | Coherent      | (C.2)           | 18 - 1         |
|            | Semicoherent  |                 | 0              |
|            | Coherent      | (C.3)           | 20 - 0         |
|            | Semicoherent  |                 | 0              |

| $m_{s}[\mathrm{eV}]$ | Search method | Events       |
|----------------------|---------------|--------------|
| $10^{-11.5}$         | Coherent      | 21 - 2       |
|                      | Semicoherent  | 1 - 0        |
| $10^{-12}$           | Coherent      | 1837 – 193   |
|                      | Semicoherent  | 50 - 2       |
| $10^{-12.5}$         | Coherent      | 12556 - 1429 |
|                      | Semicoherent  | 205 - 15     |

## Regge plane "holes"



Look for "accumulation" near instability threshold to avoid having to make assumptions on astrophysical model

## Regge plane "holes"



## Conclusions

- Ultralight bosons can induce superradiant instabilities in spinning black holes, tapping their rotational energy to trigger the growth of a bosonic condensate
- Boson condensates emit almost monochromatic GWs
- GWs are LISA/LIGO band if boson's Compton wavelength is Gm/km scale
- Main observable is stochastic background, but resolved sources and Regge plane "holes" also possible
- LIGO rules out already masses ~ a few x 10<sup>-12</sup> eV

# Massive black holes are hosted in (nearly) all galaxies

They power quasars and active galactic nuclei (AGN) that outshine host galaxy



3C 273: 2.6 billion light years away, would shine as bright as Sun if at Proxima Centauri distance



Pictor A: giant jet spanning continuously for over 570,000 light years (red=radio, blue=x-ray)

### What links large and small scale?

 Small to large: BH jets or disk winds transfer kinetic energy to the galaxy and keep it "hot", quenching star formation ("AGN feedback"). Needed to reconcile ACDM bottom-up structure formation with observed "downsizing" of cosmic galaxies





Disk of dust and gas around the massive BH in NGC 7052

Large to small: galaxies provide fuel to BHs to grow ("accretion")

### Galaxies merge...

#### ... so massive BHs must merge too!



Figure from De Lucia & Blaizot 2007





Ferrarese & Merritt 2000 Gebhardt et al. 2000, Gültekin et al (2009)

EB 2012 Figure credits: Lucy Ward

### Semi-analytic galaxy-BH co-evolution

- Evolution of massive BHs difficult to predict because co-evolution with galaxies (c.f. M-σ relation, accretion, jets, feedback, etc)
- Purely numerical simulations impossible due to sheer separation of scales (10<sup>-6</sup> pc to Mpc) and dissipative/nonlinear processes at sub-grid scales
- Semi-analytical model (EB 2012) with 7 free parameters, calibrated vs data at z = 0 and z > 0 (e.g. BH luminosity & mass function, stellar/ baryonic mass function, SF history, M -σ relation, etc)



## Massive BH model's uncertainties

- Seed model: light seeds from PopIII stars (~100 M<sub>sun</sub>) vs heavy seeds from instabilities of protogalactic disks (~10<sup>5</sup> M<sub>sun</sub>)
- No delays between galaxy and BH mergers, or delays depending on environment/presence of gas:
  - 3-body interactions with stars on timescales of 1-10 Gyr
  - Gas-driven planetary-like migration on timescales ≥ 10 Myr
  - Triple massive BH systems on timescales of 0.1-1 Gyr



PopIII=light seeds, delays (but similar results with no delays)

Q3-d= heavy seeds, delays Q3-nod= heavy seeds, no delays

From Klein EB et al 2015

#### ESA proposal's design







PopIII

Q3-d

Q3-nod







## Spin evolution

- Theory (King, Pringle, Volonteri, Berti, ...): main driver of spin evolution is radiatively efficient accretion and NOT mergers:
  - Coherent accretion (gas accretes with fixed L)
  - Chaotic accretion (of clouds with randomly oriented L)
- Neither works... (Sesana, EB, Dotti & Rossi 2014)



### A mix of coherent and chaotic?

- Accretion by clouds of gas, with mass set by minimum of a "typical" cloud mass ~10<sup>4</sup> - 10<sup>5</sup> M<sub>sun</sub>, and "fragmentation" mass scale set by self gravity
- If J<sub>cloud</sub> > 2 J<sub>bh</sub>, Bardeen Petterson effect aligns BH spin to accretion disk: coherent accretion



### A mix of coherent and chaotic?

 If J<sub>cloud</sub> < 2 J<sub>bh</sub>, either alignment or anti-alignment can happen, depending on initial orientation of J<sub>cloud</sub>: spin evolution depends on "isotropy" of J<sub>cloud</sub> distribution



• We just need fraction of clouds with  $J_{bh} \cdot J_{cloud} > 0$ 

#### Linking accretion to galactic morphology (Sesana, EB & Dotti 2014)

- $J_{cloud}$  has "coherent" part (due to rotational velocity v) and "chaotic" part (due to velocity dispersion  $\sigma$ )
- Extract from observations of v / $\sigma$ 
  - for stars in ellipticals and in classical/pseudo-bulges hosted in spirals
  - for gas in spiral disks, on scales > 100 pc





#### Comparison to data

- When comparing to observed sample morphology matters (spins measured for accreting BHs in spirals)
- Ellipticals: accretion linked to stellar dynamics
- Spirals: accretion linked to stellar dynamics ("bulge/ pseudobulge" model) or to gas dynamics ("disk" model)



Sesana, EB, Dotti & Rossi (2014)

### The best model



Sesana, EB, Dotti & Rossi (2014)

We also consider more pessimistic models with spins distributed uniformly between 0 and 1

Data favor hybrid model linking accretion to

- Stellar dynamics in ellipticals and in spirals with a classical bulge
- Gas dynamics in spirals with a pseudo-bulge formed from bar instabilities

### MBH luminosity & mass functions



#### The slope/normalization of the lowmass end of the MBH mass function



## Mergers/accretion

- Treatment of GW emission from bosonic clouds valid for isolated stationary BHs
- Mergers and accretion perturb GW emission, hence we cut GW short at the timescale corresponding to mergers or accretion, whichever shorter
- Impact on our conclusions negligible irrespective of seed model, and even if we assume fEdd=1 for all MBHs at all times,

## Stellar-mass BHs

Extra-galactic BHs (Dvorkin et al 2016, 2017)

- Population synthesis+ semianalytic galaxy evolution model describing production of metals by stars and ISM metallicity
- SFR calibrated to observations
- Analytic fits for BH mass as function of ZAMS mass and metallicity

$$\frac{d\dot{n}_{\rm eg}}{dM} = \int \mathrm{d}\mathcal{M}_{\star}\psi[t - \tau(\mathcal{M}_{\star})]\phi(\mathcal{M}_{\star})\delta[\mathcal{M}_{\star} - g^{-1}(M)]\,,$$

Galactic BH (mostly important for resolved events)

$$\frac{dN_{\rm MW}}{dM} = \int dt \frac{{\rm SFR}(z)}{\mathcal{M}_{\star}} \frac{dp}{d\mathcal{M}_{\star}} \left| \frac{dM}{d\mathcal{M}_{\star}} \right|^{-1}$$

Spins chosen uniformly in [0.8,1], [0.5,1], [0,1], [0,0.5]