INFLATION VIA HIGGS-DILATON POTENTIAL IN TWO TIME PHYSICS

VSOP 24 Mini-seminar

LE MINH NGOC

Department of Theoretical Physics, Faculty of Physics - Engineering Physics University of Science, Vietnam National University - Ho Chi Minh city

Le Minh Ngoc INFLATION VIA HIGGS-DILATON POTENTIAL IN TWO TIME PHYSIC

医下子 医下

Overview

- 1 Big Bang model
- Inflation
- 3 Inflation via Higgs-Dilaton potential in Two-Time physics (2T)

f¶ ▶

A B > A B >

Big Bang Cosmology Two problems of Big Bang model

I. Big Bang model

a. The Cosmological Principle: the universe is homogeneity and isotropy ($\gtrsim 100$ Mpc).

- b. General Relativity
- i. The FLRW metric

$$ds^{2} = -c^{2}dt^{2}$$
(1)
+ $a^{2}(t)\left(\frac{dr^{2}}{1-kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}\right).$

ii. The Einstein equations

$$R_{\mu\nu} = 8\pi G \left(T_{\mu\nu} - \frac{1}{2} T g_{\mu\nu} \right).$$

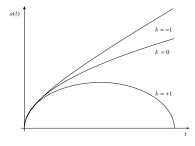


Figure: Universe with the values of curvature constant. Source: V. Mukhanov, *Physical Foundations of Cosmology*,

Cambridge University Press, 2005.

Le Minh Ngoc INFLATION VIA HIGGS-DILATON POTENTIAL IN TWO TIME PHYSIC

Big Bang Cosmology Two problems of Big Bang model

c. Two problems of Big Bang model

The Horizon problem

The ratio between the size of homogeneous region l_i and Big Bang model l_c

$$\frac{l_i}{l_c} \sim 10^{28}.\tag{3}$$

The size of homogeneous universe is larger than the size of Big Bang expansion universe.

The Flatness problem

- Big Bang model: a(t) grows with time \Rightarrow the initial universe is curved.
- At the begining of the universe

$$|\Omega_i - 1| \le 10^{-56}. \tag{4}$$

The initial universe is extremely flat.

The New Inflation The Chaotic Inflation The Hybrid Inflation

(7)

II. INFLATION

An extension of Big Bang model $(10^{-34} \sim 10^{-36}s)$ after Big Bang), accelerated expansion.

a. New inflation

The biquadratic potential

$$V(\varphi) = -\frac{\lambda}{4}\varphi^4 + \frac{m^2}{2}\varphi^2 + V(0).$$

Two Slow-roll conditions

$$\begin{cases} \dot{\varphi}^2 \ll V(\varphi), \\ \ddot{\varphi} \ \ll 3H\dot{\varphi}. \end{cases}$$

Slow-roll parameters

$$\begin{aligned} \varepsilon_V &= \left(\frac{V'}{V}\right)^2 \frac{M_P^2}{2}, \quad \eta_V = M_P^2 \frac{V''}{V}; \\ \varepsilon_H &= -\frac{d\ln H}{d\ln a}, \quad \eta_H = -\frac{d\ln H'}{d\ln a}. \end{aligned}$$

Inflation happens when $\varepsilon, \eta \ll 1$ and ends if $\varepsilon, \eta = 1$.

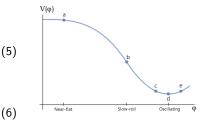


Figure: The potential energy of Slow-roll inflation. Source: P. A. Farago, ΛCDM *Cosmology* + *Chaotic Inflation*, Virgina Commonwealth University VCU Scholars Compass, 2015.

The New Inflation The Chaotic Inflation The Hybrid Inflation

(10)

b. Chaotic inflation

The potential of Chaotic inflation

$$V(\varphi) = \frac{1}{2}m^2\varphi^2.$$
 (8)

The equation of motion and Friedmann equation

$$\begin{cases} \ddot{\varphi} + 3H\dot{\varphi} &= -m^2\varphi, \\ H^2 + \frac{k}{a^2} &= \frac{1}{6}(\dot{\varphi}^2 + m^2\varphi^2). \end{cases}$$

Quasi-exponential expansion

$$a(t) = a_0 \exp\left[\int_0^t H(t)dt\right] \sim a_0 e^{Ht}.$$

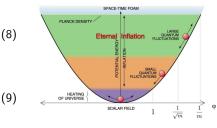


Figure: A simple model of Chaotic Inflation. Source: A. Linde, *Inflationary cosmology*, Lect.Notes Phys.738:1-54 (2008).

The New Inflation The Chaotic Inflation The Hybrid Inflation

c. Hybrid inflation

The potential of two scalar fields

$$V(\varphi, \sigma) = \frac{1}{4\lambda}M^4 + \frac{1}{4}\lambda\sigma^4 + \frac{1}{2}(-M^2 + g^2\varphi^2)\sigma^2 + \frac{1}{2}m^2\varphi^2.$$
 (11)

• $\varphi > \varphi_c$, $(\varphi_c \text{ is the critical value of } \varphi) \sigma = 0$. The equation of motion of φ during inflation

$$3H\dot{\varphi} = -m^2\varphi.$$
 (12)

- $\varphi = \varphi_c$, $\sigma = 0$. Assuming $m^2 \ll \frac{g^2 M^2}{\lambda}$, we have $V(\varphi_c) \simeq \frac{M^4}{4\lambda}$.
- $\varphi < \varphi_c$, symmetry breaking occurs.

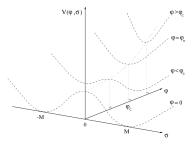


Figure: A simple model of Hybrid Inflation. Source: P. Jiun-Huei Wu, Analytical and Numerical Approaches to Inflationary Cosmology, M. Sc in Astronomy thesis at The University of Sussex (1996).

Two-Time physics (2T) Higgs-Dilaton potential Higgs-Dilaton potential in New Inflation Higgs-Dilaton potential in Chaotic Inflation Higgs-Dilaton potential in Hybrid Inflation

III. INFLATION VIA HIGGS-DILATON POTENTIAL IN TWO-TIME PHYSICS a. Two-Time Physics (2T)

i. Tensor metric in 2T

1T: (d-1) spacelike dimensions and 1 timelike dimension.

$$g_{\mu\nu} = \text{diag}(-1, 1, 1, 1), \qquad \mu, \nu = 0, 1, 2, 3.$$
 (13)

2T: d spacelike dimensions and 2 timelike dimensions.

$$\eta_{MN} = \text{diag}(-1, 1, -1, 1, 1, 1), \qquad M, N = 0', 1', 0, 1, 2, 3.$$
 (14)

This model is based on symplectic group $Sp(2, \mathbf{R})$ which relates to the symmetry between position and momentum.

Two-Time physics (2T) Higgs-Dilaton potential Higgs-Dilaton potential in New Inflation Higgs-Dilaton potential in Chaotic Inflation Higgs-Dilaton potential in Hybrid Inflation

ii. Lagrangian of Standard Model in 2T

$$\begin{pmatrix} u^{L} \\ d^{L} \end{pmatrix}_{\frac{1}{3}}, \begin{pmatrix} u^{R} \end{pmatrix}_{\frac{4}{3}}, \begin{pmatrix} d^{R} \end{pmatrix}_{-\frac{2}{3}}, \begin{pmatrix} \nu^{L} \\ e^{L} \end{pmatrix}_{-1}, \begin{pmatrix} \nu^{R} \\ \nu^{R} \end{pmatrix}_{0}, \begin{pmatrix} e^{R} \end{pmatrix}_{-2} \\ \begin{pmatrix} c^{L} \\ s^{L} \end{pmatrix}_{\frac{1}{3}}, \begin{pmatrix} c^{R} \end{pmatrix}_{\frac{4}{3}}, \begin{pmatrix} s^{R} \\ s^{-\frac{2}{3}}, \begin{pmatrix} \nu^{L} \\ \mu^{L} \end{pmatrix}_{-1}, \begin{pmatrix} \nu^{R} \\ \mu^{L} \end{pmatrix}_{0}, \begin{pmatrix} \mu^{R} \\ \mu^{-\frac{2}{3}} \end{pmatrix}_{-2} \\ \begin{pmatrix} t^{L} \\ b^{L} \end{pmatrix}_{\frac{1}{3}}, \begin{pmatrix} t^{R} \\ \frac{4}{3}, \begin{pmatrix} b^{R} \\ s^{-\frac{2}{3}}, \begin{pmatrix} \nu^{L} \\ \tau^{L} \end{pmatrix}_{-1}, \begin{pmatrix} \nu^{R} \\ \nu^{-\frac{2}{3}}, \begin{pmatrix} \tau^{R} \\ \tau^{-\frac{2}{3}} \end{pmatrix}_{-1} \end{pmatrix}$$

the first generation.

the second generation.

the third generation.

The Lagrangian of Standard Model in 4+2 dimensions

$$L(A, \Psi^{L,R}, H, \Phi) = L(A) + L(A, \Psi^{L,R}) + L(\Psi^{L,R}, H) + L(A, H, \Phi).$$
(15)

L(A): Lagrangian for gauge bosons A; $L(A, \Psi^{L,R})$: Lagrangian interaction between fermions $\Psi^{L,R}$ and gauge bosons A; $L(\Psi^{L,R}, H)$: Yukawa couplings lagrangian; $L(A, H, \Phi)$: Higgs-Dilaton lagrangian (H: Higgs field, Φ : Dilaton field).

Two-Time physics (2T) Higgs-Dilaton potential Higgs-Dilaton potential in New Inflation Higgs-Dilaton potential in Chaotic Inflation Higgs-Dilaton potential in Hybrid Inflation

b. Higgs-Dilaton potential in 2T Lagrangian of Higgs-Dilaton

$$L(A, H, \Phi) = \frac{1}{2}\Phi\partial^{2}\Phi + \frac{1}{2}\left[H^{\dagger}D^{2}H + (D^{2}H)^{\dagger}H\right] - \lambda(H^{\dagger}H - \alpha^{2}\Phi^{2})^{2} - V(\Phi),$$
(16)

The Higgs-Dilaton potential

$$V(H,\Phi) = \lambda (H^{\dagger}H - \alpha^{2}\Phi^{2})^{2} + V(\Phi).$$
(17)

The reduced formulations, using gauge fixing technology

$$\begin{cases} \Phi(X) & \longrightarrow \frac{1}{\kappa}\phi(x), \\ H(X) & \longrightarrow \frac{1}{\kappa}h(x). \end{cases}$$
(18)

The reduced Higgs-Dilaton potential from 2T to 1T

$$V(H,\Phi) \longrightarrow \frac{\lambda}{\kappa^4} (h^2 - \alpha^2 \phi^2)^2 + V(\phi),$$
(19)

Le Minh Ngoc INFLATION VIA HIGGS-DILATON POTENTIAL IN TWO TIME PHYSIC

3 N

Two-Time physics (2T) Higgs-Dilaton potential Higgs-Dilaton potential in New Inflation Higgs-Dilaton potential in Chaotic Inflation Higgs-Dilaton potential in Hybrid Inflation

i. Higgs-Dilaton potential in New Inflation

Dilaton field ϕ plays the role of inflaton in New inflation.

$$V(\phi) = \frac{\lambda}{4} (\phi^2 - \phi_0^2)^2.$$
 (20)

The scalar field and scale factor

$$\begin{cases} \phi = \phi_i \exp\left(-2M_P \sqrt{\frac{\lambda}{3}}t\right), \\ a(t) = a_i \exp\left[-\frac{\phi_i^2}{8M_P^2} \exp\left(-4M_P \sqrt{\frac{\lambda}{3}}t\right) - \frac{\phi_0^2}{2M_P} \sqrt{\frac{\lambda}{3}}t\right]. \end{cases}$$
(21)

The two potential slow-roll parameters

$$\varepsilon_V = 8M_P^2 \frac{\phi^2}{(\phi^2 - \phi_0^2)^2},$$

$$\eta_V = 4M_P^2 \left[\frac{2\phi^2}{(\phi^2 - \phi_0^2)^2} + \frac{1}{\phi^2 - \phi_0^2} \right].$$
(22)

The reduced Dilaton potential satisfies New inflation model.

Two-Time physics (2T) Higgs-Dilaton potential Higgs-Dilaton potential in New Inflation Higgs-Dilaton potential in Chaotic Inflation Higgs-Dilaton potential in Hybrid Inflation

ii. Higgs-Dilaton potential in Chaotic Inflation The quartic potential of Dilaton is

$$V(\phi) = \lambda \phi^4. \tag{23}$$

 $\lambda:$ arbitrary parameter. The inflaton field and scale factor

$$\begin{cases} \phi(t) = \phi_i \exp\left(-4M_P \sqrt{\frac{\lambda}{3}} t\right) \\ a(t) = a_i \exp\left[-\frac{\phi_i^2}{8M_P^2} \exp\left(-8M_P \sqrt{\frac{\lambda}{3}} t\right)\right]. \end{cases}$$
(24)

The initial values of two slow-roll parameters

$$\begin{cases} \varepsilon_i = \frac{1}{1-N}, \\ \eta_i = \frac{3}{2(1-N)}. \end{cases}$$
(25)

The reduced quadratic and quartic Dilaton potential satisfy the Chaotic inflation model.

iii. Higgs-Dilaton potential in Hybrid Inflation

Higgs plays the non-inflation role and Dilaton plays the inflation role. Unitary gauge for Higgs-Dilaton potential in Eq.(17) with electroweak scale v

$$\begin{cases} H^0(x) = \frac{1}{\kappa} \left[v + h(x) \right], \\ \Phi(x) = \frac{1}{\alpha \kappa} \left[v + \alpha \phi(x) \right]. \end{cases}$$
(26)

The 1T Higgs-Dilaton potential

$$V(h,\phi) = \frac{\lambda}{4}h^4 + \lambda vh^3 + \frac{\lambda}{2}(-\alpha^2\phi^2 - 2v\alpha\phi + 2v^2)h^2 - \lambda(v\alpha^2\phi^2 + 2v^2\alpha\phi)h + \frac{\lambda}{4}\alpha^4\phi^4 + \lambda v\alpha^3\phi^3 + \lambda v^2\alpha^2\phi^2.$$
(27)

 \Rightarrow The Higgs-Dilaton potential does not satisfy Hybrid inflationary scenario.

30 10 10

Summary

The reduced Higgs-Dilaton potential satisfies the New and Chaotic inflation and does not fit the Hybrid inflation.

Outlook

For further discuss

- EWPT.
- Put the reduced Higgs-Dilaton potential in other recent inflation models.
- Use other reduced potential in Hybrid inflation.
- Use other higher-dimensional models into Hybrid inflation.

THANKS FOR LISTENING

Le Minh Ngoc INFLATION VIA HIGGS-DILATON POTENTIAL IN TWO TIME PHYSIC

A >

Tensor metric

$$g_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0\\ 0 & \frac{a^2}{1 - kr^2} & 0 & 0\\ 0 & 0 & r^2a^2 & 0\\ 0 & 0 & 0 & r^2a^2\sin^2\theta \end{pmatrix}.$$
 (28)

Energy-momentum tensor

$$T^{\mu\nu} = \begin{pmatrix} \rho & 0 & 0 & 0\\ 0 & p & 0 & 0\\ 0 & 0 & p & 0\\ 0 & 0 & 0 & p \end{pmatrix}.$$
 (29)

Ricci tensor

$$R_{\mu\nu} = \frac{\partial \Gamma_{l\nu}^{l}}{\partial x^{l}} - \frac{\partial \Gamma_{\nu l}^{l}}{\partial x^{\nu}} + \Gamma_{\mu\nu}^{l} \Gamma_{lm}^{m} - \Gamma_{\mu l}^{m} \Gamma_{\nu m}^{l},$$
(30)

where Christoffel symbol Γ is the function of coordinates

$$\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2}g^{\lambda\sigma}(\partial_{\mu}g_{\nu\sigma} + \partial_{\nu}g_{\sigma\mu} - \partial_{\sigma}g_{\mu\nu}).$$
(31)

Le Minh Ngoc INFLATION VIA HIGGS-DILATON POTENTIAL IN TWO TIME PHYSIC

A.

-

B 5

The size of a homogenerous, isotropic region at the initial time

$$l_i \sim c t_0 \frac{a_i}{a_0},\tag{32}$$

and the size of causal region in case if there were no inflation

$$l_c \sim ct_i.$$
 (33)

The Friedman equation

$$\Omega(t) - 1 = \frac{k}{H^2 a^2}.$$
(34)

When $\Omega \sim 1$, $k \sim 0$: the universe is flat. By the definition of the Hubble parameter: $H = \frac{\dot{a}}{a}$, we get

$$\begin{aligned} |\Omega_{i} - 1| &= |\Omega_{0} - 1| \left| \frac{\Omega_{i} - 1}{\Omega_{0} - 1} \right| = |\Omega_{0} - 1| \frac{k}{(Ha)_{i}^{2}} \frac{(Ha)_{0}^{2}}{k} \\ &= |\Omega_{0} - 1| \frac{(Ha)_{0}^{2}}{(Ha)_{i}^{2}} = |\Omega_{0} - 1| \left(\frac{\dot{a}_{0}}{\dot{a}_{i}}\right)^{2} \\ &\leq 10^{-56}. \end{aligned}$$
(35)

Le Minh Ngoc INFLATION VIA HIGGS-DILATON POTENTIAL IN TWO TIME PHYSIC

Gauge fixing technology

The space-time metric in 2T

$$ds^{2} = dX^{M} dX^{N} \eta_{MN} = -2dX^{+'} dX^{-'} + dX^{\mu} dX^{\nu} g_{\mu\nu},$$
(36)

and the lightcone coordinates for extra dimensions are

$$X_{i}^{\pm'} = \frac{1}{\sqrt{2}} (X_{i}^{0'} + X_{i}^{1'}) \Leftrightarrow \begin{cases} X^{2} = 2X^{+'}X^{-'} + X^{\mu}X_{\mu}, \\ X^{M}P_{M} = X^{+'}P^{-'} + X^{-'}P^{+'} + X^{\mu}P_{\mu}. \end{cases}$$
(37)

The components of $\boldsymbol{X}^{\boldsymbol{M}}$ can be parameterized as

$$\begin{cases} X^{+'} = \kappa \\ X^{-'} = \kappa \lambda \\ X^{\mu} = \kappa x^{\mu} \end{cases} \Leftrightarrow \begin{cases} \kappa = X^{+'}, \\ \lambda = \frac{X^{-'}}{X^{+'}}, \\ x^{\mu} = \frac{X^{\mu}}{X^{+'}}. \end{cases}$$
(38)

Then, the field is

$$\Phi(X) = \Phi(\kappa, \lambda, x^{\mu}).$$
(39)

The scalar field follows

$$\left(X.\partial + \frac{d-2}{2}\right)\Phi(X) = (\kappa\partial_{\kappa} + 1)\Phi(\kappa,\lambda,x^{\mu}) = 0,$$
(40)

where $\Phi(X) = \kappa^{-1} \underline{\Phi}(\lambda, x^{\mu})$. To make the field $\Phi(X)$ is independent on λ , we separate Φ into

$$\underline{\Phi}(\lambda, x^{\mu}) = \phi(x) + (2\lambda + x^2)\tilde{\phi}(\lambda, x^{\mu}),$$
(41)

with $\phi(x)=\underline{\Phi}(0,x^{\mu})$ and note that

$$X^{2} = 2X^{+'}X^{-'} + X^{\mu}X_{\mu} = \kappa^{2}(2\lambda + x^{2}),$$
(42)

while $\tilde{\phi}(\lambda, x^{\mu})$ is gauge freedom with respect to 2T gauge symmetry, we choose $\tilde{\phi}(\lambda, x^{\mu}) = 0$, the reduction of scalar field from 2T to 1T

$$\Phi(X) = \kappa^{-1}\phi(x). \tag{43}$$

 $S^T: \text{ transpose matrix of } S; \ \Omega = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}.$