
Beyond the Standard Model: Exercises

24th Vietnam School of Physics: Particles and Cosmology, 2018
For questions or to report errors, please email felix.bruemmer@umontpellier.fr

Problem 1: Custodial symmetry

1. Show that the Lie algebras of the groups SO(4) and SU(2) � SU(2) are iso-
morphic.
Hint: Show �rst that any unitary transformation ULV U

y
R of the matrix

V = iva�a corresponds to a rotation of the four coe�cients (va). (Here UL

and UR are any SU(2) matrices, �1;2;3 are the Pauli matrices and �4 = �i1.)
2. Being a complex doublet, the Standard Model Higgs �eld has four real degrees

of freedom. Show that the Higgs potential

V (�) = �

�
�y�� v2

2

�2

is invariant under an SO(4) symmetry which rotates them. Show that the
action of this symmetry can also be expressed as the SU(2)L � SU(2)R trans-
formation

H ! ULHU y
R

where UL and UR are two SU(2) matrices and where

H =

�
��0 �+
���+ �0

�
:

3. As you know from the Standard Model lectures, the Higgs �eld takes a vacuum
expectation value

h�i =
� h�+i
h�0i

�
=

�
0
vp
2

�
:

What is the subgroup Hc of SU(2)L � SU(2)R which is left unbroken after
spontaneous symmetry breaking? This Hc symmetry is called custodial sym-

metry.

4. We have introduced custodial symmetry as a symmetry of the Higgs potential
only. Indeed it is not a symmetry of the entire Lagrangian. Can one assign a
Hc representation to the would-be Goldstone bosons of electroweak symmetry
breaking? What can be concluded from this for the gauge �elds W i

�? Which
of the Standard Model couplings break Hc explicitly?

5. Recall from the Standard Model lectures that the Z boson is the linear com-
bination

Z� = � sin �w B� + cos �wW
3
� :

We de�ne the � parameter by

� =
m2

W

m2
Z cos

2 �w
:

Argue that the Standard Model (tree-level) relation � = 1 can be understood
as a consequence of custodial symmetry.



Remarks: In the literature one frequently encounters the equivalent T parameter

T =
1

�EM
(�� 1)

which is normalized to be 0 at the tree level in the Standard Model. Experimental
bounds on the T parameter, as well as on similar parameters measuring deviations
from Standard Model predictions for the electroweak sector, provide strong con-
straints on new physics; in this case, on any e�ects violating custodial symmetry.

Solution

1. Since detUL = detUR = 1 one has detV 0 = det(ULV U
y
R) = detV =P

a(i v
a)2 det�a =

P
a(v

a)2, hence jvj2 = jv0j2 and so we have a map
SU(2) � SU(2) ! SO(4). This is a group homomorphism, but not an iso-
morphism since its kernel � Id is nontrivial | in fact, on the group level, one
has SO(4) ' (SU(2)�SU(2))=Z2. Here we will only show that the Lie algebas
are isomorphic, by demonstrating that this map has full rank when linearized
about the identity. To this end we explicitly construct the rotation matrix Oab

corresponding to (UL; U
y
R):

i �av0a = i UL�
aU y

Rv
a

) tr
�
UL�

aU y
R�

yb
�
va = tr

�
�a�y

b
�
v0a = 2 v0b

) Oab =
1

2
tr
�
�y

a
UL�

bU y
R

�
:

Linearizing UL = 1+ i
2
�i�i + : : :, U y

R = 1� i
2
�j�j + : : : (where (�i) and (�j)

contain the six real SU(2)� SU(2) parameters for i; j = 1; 2; 3) gives

Oab = �ab +
i

4
tr
�
�y

a
�i�b

�
�i � i

4
tr
�
�y

a
�b�j

�
�j + : : :

To explicitly �nd the SO(4) generators one can use the following identities
(which are easily checked when taking into account that the Pauli matrices
satisfy the SU(2) and Cli�ord algebras):

tr
�
�4�i�j

�
= � 2i �ij

tr
�
�y

4
�i�j

�
= 2i �ij

tr
�
�y

4
�i�4

�
= tr

�
�y

4
�4�i

�
= tr�i = 0

tr
�
�i�j�k

�
= 2i�ijk :

This gives e.g. for ~� = ~� = (1; 0; 0)

1

4
tr
�
�y

a
�i�b

�
�i � 1

4
tr
�
�y

a
�b�j

�
�j =

0
BB@

0 0 0 �i
0 0 0 0
0 0 0 0
i 0 0 0

1
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or for for ~� = �~� = (1; 0; 0)

1

4
tr
�
�y

a
�i�b

�
�i � 1

4
tr
�
�y

a
�b�j

�
�j =

0
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0 0 0 0
0 0 �i 0
0 i 0 0
0 0 0 0

1
CCA :



It is readily veri�ed that other combinations of basis vectors for ~� and ~� lead
to the four remaining SO(4) generators.

2. With � = (�+; �0) = (�1+i �2; ��3+i�4), SO(4) and SU(2)�SU(2) invariance
become manifest in writing

�y� =
X
a

(�a)2 = detH

and one checks that H = i�a�a as in part 1.

3. One has

hHi = 1p
2

�
v 0
0 v

�
which is left invariant under hHi ! ULhHiU y

R i� UL = UR. Hence the unbro-
ken subgroup is the diagonal subgroup Hc = SU(2)diag.

4. The would-be Goldstone bosons �1;2;4 form a triplet under Hc, and theW
i
� also

from a triplet. Custodial symmetry is explicitly broken by the hypercharge
gauge coupling and Yukawa couplings.

5. The fact that (W a
� ) forms a triplet implies that the mass terms for all its

components are the same,

L = �1

2
m2

W

�
(W 1

�)
2 + (W 2

�)
2 + (W 3

�)
2
�
+ : : :

Given the Z boson as a linear combination of W 3
� and B� (the orthogonal

combination forming the massless photon) it follows that m2
Z cos

2 �w = m2
W .

Problem 2: The SMEFT

1. Show that the only dimension-5 operator in the Standard Model EFT is the
Weinberg operator

L5 =
�ij
�
��`i`j + h:c:

Here �ij are some dimensionless coe�cients, � is a scale, � is the Standard
Model Higgs doublet and `i (i = 1; 2; 3) are the lepton doublets.

2. Show that the dimension-6 operator

L6 � �

�2

���yD��
��2

violates the custodial symmetry of Exercise 1. Calculate the correction to the
� parameter induced by � 6= 0.

Solution

1. The building blocks for any candidate operator are the SM fermion �elds, the
Higgs, the covariant derivative, the �eld strengths and their duals. By dimen-
sional analysis and Lorentz invariance, any candidate operator can contain
either no fermions or two fermions.



� No fermions: All objects constructed out of �eld strengths, dual �eld
strengths and D�s with all Lorentz indices contracted have even dimen-
sions. Therefore all candidate dimension-5 operator must contain an odd
total power of � and �y, and thus cannot be gauge invariant (seen most
easily by noting that the hypercharges cannot add up to 0).

� Two fermions

{ and a �eld strength, a dual �eld strength or two covariant derivatives:
by Lorentz invariance this would need to involve a bilinear of either
left-handed or right-handed spinors. None of these is neutral under
hypercharge, which would again be required to form a gauge-invariant
object.

{ and a covariant derivative and a Higgs: note that by Lorentz invari-
ance this needs to involve a left-handed and a right-handed fermion
whose hypercharges need to sum up to �1

2
. No such bilinear exists

in the Standard Model.

{ and two Higgs �elds: we need two fermions of the same chirality whose
hypercharges should sum up to �1 or 0. The only possibility is the
Weinberg operator, which is also invariant under SU(3)c � SU(2)L.

2. Replacing � ! h�i gives

L6 � �

�2

�����
�
0

vp
2

� 
1

2
g0B� +

1

2
g
X
i

�iW i
�
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0
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=
�

8�2
v4
��g0B� � gW 3

�

��2
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�

8�2
v4
�
g02 + g2

�
Z2
�

=
1

2

�v2

�2
(m

(SM)
Z )2Z2

�

hence this operator gives a contribution to the Z mass without a�ecting the
W mass, which shows that it breaks the custodial symmetry. The resulting
contribution to the � parameter is

�� = ��v
2

�2

Problem 3: Supersymmetry

1. Deduce from the supersymmetry algebra

fQ�; Q
y
_�
g = 2��

� _�
P� ; [P�; Q�] = [P�; Q

y
_�
] = fQ�; Q�g = fQy

_�; Q
y
_�
g = 0

that all the masses of the states forming a supermultiplet are the same, up to
supersymmetry-breaking terms.

2. Supersymmetry allows for Yukawa terms (scalar-fermion-fermion interactions)
of the type

LYuk = '  0 + h:c:



where  and  0 are left-handed spinors and ' is any complex scalar �eld
forming a chiral supermultiplet together with a left-handed spinor. It does not
allow for Yukawa terms of the type '�  0 + h:c: with '� the superpartner of
a right-handed spinor.
Find all Yukawa couplings between the MSSM Higgs and matter �elds and
their superpartners which are allowed by gauge invariance and supersymmetry.
Give an argument why a supersymmetric extension of the Standard Model
needs at least two Higgs doublets.

3. Among the MSSM Yukawa terms which you found in the previous exercise,
identify the subset containing an even number of superpartners. These Yukawa
terms are therefore allowed by a discrete R parity symmetry which acts as
(SM �eld) ! (SM �eld) and (superpartner) ! ({ superpartner). Show that
the terms allowed by R parity are precisely those which respect baryon and
lepton number conservation.

Solution

1. Given an eigenstate of P 2 with eigenvalue m2, any state obtained by acting
with Q or Qy is also an eigenstate with the same eigenvalue. This follows
immediately from the fact that P� commutes with Q and Qy.

2. The only gauge invariant combinations are terms of the form

LYuk = �uq�u+ �dq �d+ �d`�e+ h:c:

+ ~̀̀ �e+ ~̀q �d+ ~�u �d �d+ h:c:

(suppressing indices and couplings; note that the last term has the color indices
contracted with an � symbol) as well as terms trivially related to these by re-
placing the scalar �eld with its fermionic superpartner and one of the fermions
with its scalar superpartner. One needs at least two Higgs doublets since with
only �u or �d one cannot give masses to both up-type and down-type quarks.

3. All terms in the �rst line (as well as the terms related to them as described
above) are even under R-parity. One may assign lepton number L = +1 to
` and its superpartner, and L = �1 to �e and its superpartner, and similarly
baryon number B = �1

3
to (anti)quark super�elds. Then demanding that each

term be neutral under B and L is equivalent to demanding each term to be
R-parity even.

Problem 4: The abelian pseudo-Goldstone Higgs

The subject of this exercise is a toy model which is at least qualitatively similar to the
minimal composite Higgs model but less cumbersome. We take G=H = SO(3)=SO(2)
rather than SO(5)=SO(4); this means of course that the resulting pseudo-Goldstone
Higgs �eld is at best associated with a U(1) gauge group rather than with the full
SU(2)L � U(1)Y of the Standard Model. We also use a perturbative sigma model
potential rather than strong gauge dynamics to model spontaneous symmetry break-
ing. The Lagrangian is

L =
1

2
@��

A@��A � �2

8

�
�A�A � f 2

�2
where �A (A = 1; 2; 3) are scalar �elds.



1. Give explicit matrix expressions for a basis fTAg of hermitian SO(3) genera-
tors, chosen such that the generators T 1;2;3 generate rotations around the (x1,
x2, x3) axes respectively, and normalized such as to satisfy trTATB = 2 �AB.

The potential is evidently minimized for any �A satisfying �A�A = f 2. Without
loss of generality we can choose

h~�i =
0
@ 0

0
f

1
A

in the above basis. The 
uctuations around this vacuum are conveniently parame-
terized by the �eld rede�nition

~�(x) = U(�1(x);�2(x))

0
@ 0

0
f + �(x)

1
A ; U(�1(x);�2(x)) = exp

�
i
�a(x)T

a

f

�
:

Here a = 1; 2 and �1 and �2 are the Goldstone bosons corresponding to 
uctuations
along the SO(3)=SO(2) ' S2 manifold, while � is the orthogonal mode.

2. Show that

~� = (f + �)

0
BBB@

sin
�
�
f

�
�2

�

sin
�
�
f

�
�1

�

cos
�
�
f

�
1
CCCA :

where �(x) �p�a(x)�a(x).

3. Obtain the Lagrangian in terms of the �elds � and �a. Rewrite it in terms of
� and the complex �eld � = �1�i�2p

2
.

4. The Lagrangian which you have obtained should make the unbroken U(1) '
SO(2) symmetry manifest. Gauge this symmetry by replacing derivatives of �
by covariant derivatives. This constitutes an explicit breaking of G, which will
induce a potential for � through loop corrections and eventually contribute to
� taking a vacuum expectation value h�i = vp

2
. Taking v as given, calculate

the relation between v, the U(1) gauge coupling e, and the mass of the U(1)
gauge boson. Moreover, calculate the couplings between the physical Higgs
boson h(x) (de�ned by �(x) = 1p

2
(v + h(x)) in unitary gauge) and the gauge

�eld. Compare your results with an ordinary abelian Higgs model.

Solution

1. The generators in this basis are

T 1 =

0
@ 0 0 0

0 0 �i
0 i 0

1
A ; T 2 =

0
@ 0 0 �i

0 0 0
i 0 0

1
A ; T 3 =

0
@ 0 �i 0

i 0 0
0 0 0

1
A :



2. By explicit calculation one shows that

i�aT
a =

0
@ 0 0 �2

0 0 �1

��2 ��1 0

1
A

(i�aT
a)2 = �

0
@ �2

2 �1�2 0
�1�2 �2

1 0
0 0 �2

1
A

(i�aT
a)2n = (�)n�2n

0
B@

�2

2

�2

�1�2

�2 0
�1�2

�2

�2

1

�2 0
0 0 1

1
CA (by induction)

(i�aT
a)2n+1 = (�)n�2n+1

0
@ 0 0 �2

�

0 0 �1

�

��2

�
��1

�
0

1
A :

By splitting the exponential series in the de�nition of U into its even and odd
parts

U(~�) = exp

�
i
�aT

a

f

�
=

1X
n=0

1

(2n)!

�
i
�aT

a

f

�2n

+
1X
n=0

1

(2n+ 1)!

�
i
�aT

a

f

�2n+1

and inserting the results for (i�aT
a)2n and (i�aT

a)2n+1 one obtains the desired
result.

3. Writing �A(x) = (f + �(x))XA(x) one has

~X2 = sin2
�

f

�
�2
2

�2
+
�2
1

�2

�
| {z }

=1

+cos2
�

f
= 1

and in particular

0 =
1

2
@�( ~X

2) = ~X � @� ~X :

Noting that ~�2 = (f + �)2 ~X2 = (f + �)2 the potential becomes

�2

8

�
~�2 � f 2

�
= (f + �)2 � f 2)2 =

�2

8
(�2 + 2�f)2 :

The kinetic term is

1

2
@��

A@��A =
1

2

�
(@��) ~X + (f + �)@� ~X

�2
=

1

2

�
(@��)

2 + (f + �)2(@� ~X)2
�
:

To simplify this further, note that

@� ~X =

0
B@ c�

@��
f

�2

�
+ s�

@��2

�
� s�

�2@��
�2

c�
@��
f

�1

�
+ s�

@��1

�
� s�

�1@��
�2

s�
@��
f

1
CA



where s� � sin � and c� � cos � with � � �
f
. By substition one obtains

L =
1

2
@��@

��

+
1

2
(f + �)2

�
sin2

�
�

f

�
(@��1)

2 + (@��2)
2

�2
+

1

4�4

�
�2

f 2
� sin2

�

f

��
@��

2
�2�

� �2

8
(�2 + 2�f)2 :

We �nally substitute � = �1+i�2p
2

which yields

L =
1

2
@��@

��

+
1

2
(f + �)2

 
sin2

 p
2j�j
f

!
j@��j2
j�j2 +

1

4 j�j4
 
2 j�j2
f 2

� sin2
p
2j�j
f

!�
@�j�j2

�2!

� �2

8
(�2 + 2�f)2 :

Note that, despite its appearance at �rst sight, the Lagrangian is not singular
at j�j = 0. As expected the potential does not depend on the Goldstone modes,
whose interactions are instead governed by an in�nite number of derivative
terms.

4. We replace @�� ! (@�� ieA�)� and � = 1p
2
(v+h(x)). The photon mass term

is 1
2
m2

AA�A
� where

m2
A = e2 f 2 sin2

v

f
= e2v2

 
1� 1

3

�
v

f

�2

+ : : :

!

and the Higgs-photon-photon and Higgs-Higgs-photon-photon vertices are
ghAAhA�A

� + 1
2
ghhAAhhA�A

� where

ghAA = e2v

�
1� 2

3

�
v

f

2
�
+ : : :

�
; ghhAA = e2

 
1� 2

�
v

f

�2

+ : : :

!

The respective leading terms in these expansions correspond to the abelian
Higgs model. The corrections are controlled by the parameter v=f . The situa-
tion is similar in the minimal composite Higgs model, where the same param-
eter controls the deviations of the Higgs couplings from the Standard Model.

Problem 5: Minimal non-supersymmetric SU(5) grand uni�cation

Let � be a scalar �eld transforming in the 24-dimensional adjoint representation of
SU(5), written as a traceless Hermitian 5� 5 matrix. Assuming a parity symmetry
for simplicity, one may write down the following potential for �:

V = �m2 tr �� +
�

4
(tr ��)2 +

�

4
tr���� :

1. Verify that this potential is invariant under SU(5) gauge transformations act-
ing as � ! U�U y.



2. Find the extrema of the potential assuming that � � 0 and � � 0. Find a
condition on � and � such that the ground state of the theory breaks SU(5) !
SU(3)� SU(2)� U(1) rather than SU(5) ! SU(4)� U(1).
Hint: It is convenient to assume that � is diagonal (which can always be
achieved by a gauge transformation).

3. Assuming that the SM Higgs doublet is embedded in a 5-dimensional funda-
mental representation �, write down the terms involving � and � which can
contribute to the SM Higgs mass term after GUT symmetry breaking.

Solution

1. This follws immediately from the cyclic invariance of the trace and U yU = 1.

2. We write � = v diag (�1; �2; �3; �4; �5) where the �i are real numbers satisfying
the constraint

P
i �i = 0. We therefore need to solve

d

d�i
V̂ =

d

d�
V̂ = 0

where V̂ is the potential with a Lagrange multiplier term added,

V̂ = �m
2

2

X
i

�2i +
�

4

 X
i

�2i

!2

+
�

4

X
i

�4i + �
X
i

�i :

This implies that

�m2�i + ��i
X
j

�2j + ��3i + � = 0 :

Taking the trace of this equation and using
P

i �i = 0 yields that

� = ��
5

X
i

�3i ;

hence

�m2�i + ��i
X
j

�2j + ��3i �
�

5

X
j

�3j = 0 :

For each �i this is a cubic equation with at most three real roots. The only
solution where all of the �i are given by the same root is that of unbroken
SU(5) symmetry, �i = 0 8 i. We �rst discuss the SU(5) ! SU(4) � U(1)
and SU(5) ! SU(3)� SU(2)�U(1) solutions in more detail, where only two
distinct roots appear.

(a) Three of the �i can take one value and the other two another. Traceless-
ness then implies that we can set

h�i = v3

0
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2
2

2
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�3

1
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and therefore X
i

�2i = 30 v23 ;
X
i

�3i = �30 v33

Replacing either �i ! 2 v3 or �i ! �3 v3 yields

v23 =
m2

30� + 7�
:

The potential at this point is

V = � 15m4

60� + 14 �
:

(b) Four of the �i can take one value and the remaining �i another. By
tracelessness

h�i = v4

0
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1
1

1
1

�4

1
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which implies X
i

�2i = 20 v24 ;
X
i

�3i = �60 v34

Both �i = v4 and �i = �4 v4 then lead to

v24 =
m2

20� + 13�
:

The potential at this point is

V = � 15m4

60� + 39 �
:

In conclusion, if � is strictly positive then the SU(5) ! SU(3)�SU(2)�U(1)
breaking minimum will be energetically preferred, independently of the value
of �. If � = 0 then both minima are degenerate.

Other critical points can have three di�erent �i. They can be analyzed similarly
but are more cumbersome to deal with.

3. The terms contributing to the Higgs mass at the tree level are

L � �

2
�y�2�� 1

2
m2�y� :

As in the supersymmetric theory discussed in the lectures, a severe �ne-tuning
of parameters is needed to make sure that the doublet mass is of the order of
the electroweak scale (another manifestation of the hierarchy problem).


