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1 Quantum Chromodynamics as a non-Abelian gauge theory

See lectures 1 and 2.

2 Tree level amplitudes

See lecture 3.

3 Higher orders in perturbation theory

Tree level results in QCD are mostly not accurate enough to match the current exper-

imental precision and suffer from large scale uncertainties. When calculating higher

orders, we will encounter singularities: ultraviolet (UV) singularities, and infrared (IR)

singularities due to soft or collinear massless particles. Therefore the introduction of a

regulator is necessary.

Let us first have a look at UV singularities: The expression for the one-loop two-

point function shown below naively would be

k

k + p

p

I2 =

∫ ∞
−∞

d4k

(2π)4

1

[k2 −m2 + iδ][(k + p)2 −m2 + iδ]
. (3.1)

If we are only interested in the behaviour of the integral for |k| → ∞ we can neglect

the masses, transform to polar coordinates and obtain

I2 ∼
∫

dΩ3

∫ ∞
0

d|k| |k|
3

|k|4
. (3.2)

This integral is clearly not well-defined. If we introduce an upper cutoff Λ (and a lower

limit |k|min because we neglected the masses and p2) it is regulated:

I2 ∼
∫ Λ

|k|min

d|k| 1

|k|
∼ log Λ . (3.3)

The integral has a logarithmic UV divergence. The problem with the regulator Λ is

that it is neither Lorentz invariant nor gauge invariant. A regularisation method which

preserves the symmetries is dimensional regularisation.
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3.1 Dimensional regularisation

Dimensional regularisation has been introduced in 1972 by ‘t Hooft and Veltman [1]

(and by Bollini and Giambiagi [2]) as a method to regularise UV divergences in a gauge

invariant way, thus completing the proof of renormalisability.

The idea is to work in D = 4 − 2ε space-time dimensions. This means that the

Lorentz algebra objects (momenta, polarisation vectors, metric tensor) live in a D-

dimensional space. The γ-algebra also has to be extended toD dimensions. Divergences

for D → 4 will appear as poles in 1/ε.

An important feature of dimensional regularisation is that it regulates IR singulari-

ties, i.e. soft and/or collinear divergences due to massless particles, as well. Ultraviolet

divergences occur if the loop momentum k → ∞, so in general the UV behaviour be-

comes better for ε > 0, while the IR behaviour becomes better for ε < 0. Certainly we

cannot have D < 4 and D > 4 at the same time. What is formally done is to first as-

sume the IR divergences are regulated in some other way, e.g. by assuming all external

legs are off-shell or by introducing a small mass for all massless particles. In this case

all poles in 1/ε will be of UV nature and renormalisation can be performed. Then we

can analytically continue to the whole complex D-plane, in particular to Re(D) > 4.

If we now remove the auxiliary IR regulator, the IR divergences will show up as 1/ε

poles. (This is however not done in practice, where all poles just show up as 1/ε poles,

and after UV renormalisation, the remaining ones must be of IR nature. )

The only change to the Feynman rules to be made is to replace the couplings in the

Lagrangian g → gµε, where µ is an arbitrary mass scale. This ensures that each term

in the Lagrangian has the correct mass dimension.

The momentum integration involves
∫

dDk
(2π)D

for each loop, which can also be con-

sidered as an addition to the Feynman rules.

Further, each closed fermion loop and ghost loop needs to be multiplied by a factor

of (−1) due to Fermi statistics.

D-dimensional γ-algebra

Extending the Clifford algebra to D dimensions implies

{γµ, γν} = 2 gµν with gµµ = D , (3.4)

leading for example to γµ 6 pγµ = (2−D) 6 p. However, it is not obvious how to continue

the Dirac matrix γ5 to D dimensions. In 4 dimensions it is defined as

γ5 = i γ0γ1γ2γ3 (3.5)
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which is an intrinsically 4-dimensional definition. In 4 dimensions, γ5 has the algebraic

properties γ2
5 = 1, {γµ, γ5} = 0, Tr (γµγνγργσγ5) = 4iεµνρσ. However, in D dimensions,

the latter two conditions cannot be maintained simultaneously. This can be seen by

considering the expression

εµνρσTr (γτγµγνγργσγ
τγ5)

(remember εµνρσ = 1 if (µνρσ) is an even permutation of (0123), −1 if (µνρσ) is

an odd permutation of (0123) and 0 otherwise). Using the cyclicity of the trace and

{γµ, γ5} = 0 leads to

(D − 4) εµνρσTr (γµγνγργσγ5) = 0. (3.6)

For D 6= 4 we therefore conclude that the trace must be zero, and there is no smooth

limit D → 4 which reproduces the non-zero trace at D = 4.

The most commonly used prescription [1, 3, 4] for γ5 is to define

γ5 =
i

4!
εµ1µ2µ3µ4γ

µ1γµ2γµ3γµ4 , (3.7)

where the Lorentz indices of the “ordinary” γ-matrices will be contracted in D dimen-

sions. Doing so, Ward identities relying on {γ5, γµ} = 0 break down due to an extra

(D− 4)-dimensional contribution. These need to be repaired by so-called “finite renor-

malisation” terms [4]. For practical calculations it can be convenient to split the other

Dirac matrices into a 4-dimensional and a (D − 4)-dimensional part, γµ = γ̄µ + γ̃µ,

where γ̄µ is 4-dimensional and γ̃µ is (D − 4)-dimensional. The definition (3.7) implies

{γµ, γ5} =

{
0 µ ∈ {0, 1, 2, 3}
2γ̃µγ5 otherwise.

The second line above can also be read as [γ5, γ̃
µ] = 0, which can be interpreted as γ5

acting trivially in the non-physical dimensions. There are other prescriptions for γ5,

which maintain {γ(D)
µ , γ5} = 0, but then have to give up the cyclicity of the trace.

3.2 Regularisation schemes

Related to the γ5-problem, it is not uniquely defined how we continue the Dirac-algebra

to D dimensions. The three main schemes are:

• CDR (“Conventional dimensional regularisation”): Both internal and external

gluons (and other vector fields) are all treated as D-dimensional.

• HV (“ ’t Hooft Veltman scheme”): Internal gluons are treated as D-dimensional

but external ones are treated as 4-dimensional.
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CDR HV DRED

internal gluon gµν gµν ḡµν

external gluon gµν ḡµν ḡµν

Table 1: Treatment of internal and external gluons in the different schemes.

• DRED (“Dimensional reduction”): Internal and external gluons are treated as

4-dimensional (but not the loop integrals).

At one loop, CDR and HV are equivalent, as terms of order ε in external momenta

do not play a role. The transition formulae to relate results obtained in one scheme to

another scheme are well known at one loop [5, 6]. The conventions are summarised in

Table 1.

3.3 One-loop integrals

Integration in D dimensions

Consider a generic one-loop diagram with N external legs and N propagators. If k is the

loop momentum, the propagators are qa = k + ra, where ra =
∑a

i=1 pi. If we define all

momenta as incoming, momentum conservation implies
∑N

i=1 pi = 0 and hence rN = 0.

pN−1
pN

p1

p2

If the vertices in the diagram above are non-scalar, this diagram will contain a

Lorentz tensor structure in the numerator, leading to tensor integrals of the form

ID,µ1...µrN (S) =

∫ ∞
−∞

dDk

iπ
D
2

kµ1 . . . kµr∏
i∈S(q2

i −m2
i + iδ)

, (3.8)

but we will first consider the scalar integral only, i.e. the case where the numerator is

equal to one. S is the set of propagator labels, which can be used to characterise the

integral, in our example S = {1, . . . , N}.
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We use the integration measure dDk/iπ
D
2 ≡ dκ to avoid ubiquitous factors of iπ

D
2

which will arise upon momentum integration.

Feynman parameters

To combine products of denominators of the type dνii = [(k + ri)
2 −m2

i + iδ]νi into one

single denominator, we can use the identity

1

dν11 d
ν2
2 . . . dνNN

=
Γ(
∑N

i=1 νi)∏N
i=1 Γ(νi)

∫ ∞
0

N∏
i=1

dzi z
νi−1
i

δ(1−
∑N

j=1 zj)

[z1d1 + z2d2 + . . .+ zNdN ]
∑N
i=1 νi

(3.9)

The integration parameters zi are called Feynman parameters. For generic one-loop

diagrams we have νi = 1 ∀i. The propagator powers νi are also called indices.

An alternative to Feynman parametrisation is the so-called “Schwinger parametri-

sation”, based on

1

Aν
=

1

Γ(ν)

∫ ∞
0

dx xν−1 exp(−xA), Re(A) > 0 . (3.10)

In this case the Gaussian integration formula∫ ∞
−∞

dDrE exp(−α r2
E) =

(π
α

)D
2
, α > 0 (3.11)

is used to integrate over the momenta.

Simple example: one-loop two-point function

For N = 2, the corresponding 2-point integral (“bubble”) is given by

I2 =

∫ ∞
−∞

dκ
1

[k2 −m2 + iδ][(k + p)2 −m2 + iδ]

= Γ(2)

∫ ∞
0

dz1dz2

∫ ∞
−∞

dκ
δ(1− z1 − z2)

[z1 (k2 −m2) + z2 ((k + p)2 −m2) + iδ]2

= Γ(2)

∫ 1

0

dz2

∫ ∞
−∞

dκ
1

[k2 + 2 k ·Q+ A+ iδ]2
(3.12)

Qµ = z2 p
µ , A = z2 p

2 −m2 .

How to do the D-dimensional momentum integration will be shown below for a

general one-loop integral. The procedure also extends to multi-loop integrals and is

completely straightforward. The tricky bit is usually the integration over the Feynman

parameters.
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Momentum integration for scalar one-loop N-point integrals

The one-loop N -point integral with rank r = 0 (“scalar integral”) defined in Eq. (3.8),

after Feynman parametrisation, with all propagator powers νi = 1, is of the following

form

IDN = Γ(N)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)

∫ ∞
−∞

dκ

[
k2 + 2k ·Q+

N∑
i=1

zi (r
2
i −m2

i ) + iδ

]−N

Qµ =
N∑
i=1

zi r
µ
i . (3.13)

Now we perform the shift l = k + Q to eliminate the term linear in k in the square

bracket to arrive at

IDN = Γ(N)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)

∫ ∞
−∞

dDl

iπ
D
2

[
l2 −R2 + iδ

]−N
(3.14)

The general form of R2 is

R2 = Q2 −
N∑
i=1

zi (r
2
i −m2

i )

=
N∑

i,j=1

zi zj ri · rj −
1

2

N∑
i=1

zi (r
2
i −m2

i )
N∑
j=1

zj −
1

2

N∑
j=1

zj (r2
j −m2

j)
N∑
i=1

zi

= −1

2

N∑
i,j=1

zi zj
(
r2
i + r2

j − 2 ri · rj −m2
i −m2

j

)
= −1

2

N∑
i,j=1

zi zj Sij

Sij = (ri − rj)2 −m2
i −m2

j (3.15)

The matrix Sij, sometimes also called Cayley matrix is an important quantity encoding

all the kinematic dependence of the integral. It plays a major role in the algebraic

reduction of tensor integrals or integrals with higher N to simpler objects, as well as

in the analysis of so-called Landau singularities, which are singularities where detS or

a sub-determinant of S is vanishing (see below for more details).

Remember that we are in Minkowski space, where l2 = l20 − ~l2, so temporal and

spatial components are not on equal footing. Note that the poles of the denominator
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in Eq. (3.14) are located at l20 = R2 + ~l2 − iδ ⇒ l±0 ' ±
√
R2 +~l2 ∓ i δ. Thus the iδ

term shifts the poles away from the real axis in the l0-plane.

For the integration over the loop momentum, we better work in Euclidean space

where l2E =
∑D

i=1 l
2
i . Hence we make the transformation l0 → i l4, such that l2 → −l2E =

l24 +~l2, which implies that the integration contour in the complex l0-plane is rotated by

90◦ such that the contour in the complex l4-plane looks as shown below. This is called

Wick rotation. We see that the iδ prescription is exactly such that the contour does

not enclose any poles. Therefore the integral over the closed contour is zero, and we

can use the identity

∞∫
−∞

dl0f(l0) = −
−i∞∫
i∞

dl0f(l0) = i

∞∫
−∞

dl4f(l4) (3.16)

Re l4

Im l4
Our integral now reads

IDN = (−1)NΓ(N)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)

∫ ∞
−∞

dDlE

π
D
2

[
l2E +R2 − iδ

]−N
(3.17)

Now we can introduce polar coordinates in D dimensions to evaluate the momentum

integral.

∫ ∞
−∞

dDl =

∫ ∞
0

dr rD−1

∫
dΩD−1 , r =

√
l2E =

(
4∑
i=1

l2i

) 1
2

(3.18)

∫
dΩD−1 = V (D) =

2π
D
2

Γ(D
2

)
(3.19)

where V (D) is the volume of a unit sphere in D dimensions:

V (D) =

∫ 2π

0

dθ1

∫ π

0

dθ2 sin θ2 . . .

∫ π

0

dθD−1(sin θD−1)D−2 .

Thus we have

IDN = 2(−1)N
Γ(N)

Γ(D
2

)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)

∫ ∞
0

dr rD−1 1

[r2 +R2 − iδ]N
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Substituting r2 = x:∫ ∞
0

dr rD−1 1

[r2 +R2 − iδ]N
=

1

2

∫ ∞
0

dx xD/2−1 1

[x+R2 − iδ]N
(3.20)

Now the x-integral can be identified as the Euler Beta-function B(a, b), defined as

B(a, b) =

∫ ∞
0

dz
za−1

(1 + z)a+b
=

∫ 1

0

dy ya−1(1− y)b−1 =
Γ(a)Γ(b)

Γ(a+ b)
(3.21)

and after normalising with respect to R2 we finally arrive at

IDN = (−1)NΓ(N − D

2
)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)
[
R2 − iδ

]D
2
−N

. (3.22)

The integration over the Feynman parameters remains to be done, but for one-loop

applications, the integrals we need to know explicitly have maximally N = 4 external

legs. Integrals with N > 4 can be expressed in terms of boxes, triangles, bubbles

and tadpoles (in the case of massive propagators). The analytic expressions for these

“master integrals” are well-known. The most complicated analytic functions which can

appear at one loop are dilogarithms.

The generic form of the derivation above makes clear that we do not have to go

through the procedure of Wick rotation explicitly each time. All we need (for scalar

integrals) is to use the following general formula for D-dimensional momentum inte-

gration (in Minkowski space, and after having performed the shift to have a quadratic

form in the denominator):∫
dDl

iπ
D
2

(l2)r

[l2 −R2 + iδ]N
= (−1)N+rΓ(r + D

2
)Γ(N − r − D

2
)

Γ(D
2

)Γ(N)

[
R2 − iδ

]r−N+D
2 (3.23)

Example one-loop two-point function

Applying the above procedure to our two-point function, we obtain

I2 = Γ(2)

∫ 1

0

dz

∫ ∞
−∞

dDl

iπ
D
2

1

[l2 −R2 + iδ]2
(3.24)

R2 = Q2 − A = −p2 z (1− z) +m2 ⇒

I2 = Γ(2− D

2
)

∫ 1

0

dz [−p2 z (1− z) +m2 − iδ ]
D
2
−2 . (3.25)
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For m2 = 0, the result can be expressed in terms of Γ-functions:

I2 =
(
−p2

)D
2
−2

Γ(2−D/2)B(D/2− 1, D/2− 1) , (3.26)

where the B(a, b) is defined in Eq. (3.21). The two-point function has an UV pole

which is contained in

Γ(2−D/2) = Γ(ε) =
1

ε
− γE +O(ε) , (3.27)

where γE is “Euler’s constant”, γE = lim
n→∞

(
n∑
j=1

1
j
− lnn

)
= 0.5772156649 . . ..

Including the factor g2µ2ε which usually comes with the loop, and multiplying by iπ
D
2

(2π)D

for the normalisation conventions, we obtain

g2µ2εI2 = (4π)ε i
g2

(4π)2 Γ(ε)
(
−p2/µ2

)−ε
B(1− ε, 1− ε) . (3.28)

Useful to know:

• As the combination ∆ = 1
ε
− γE + ln(4π) always occurs in combination with a

pole, in the so-called MS subtraction scheme (“modified Minimal Subtraction”),

the whole combination ∆ is subtracted in the renormalisation procedure.

• Scaleless integrals (i.e. integrals containing no dimensionful scale like masses or

external momenta) are zero in dimensional regularisation, more precisely:∫ ∞
−∞

dDk

k2ρ
= iπ V (D) δ(ρ−D/2) . (3.29)

• If we use dimension splitting into 2m integer dimensions and the remaining 2ε-

dimensional space, k2
(D) = k2

(2m) + k̃2
(−2ε), we will encounter additional integrals

with powers of (k̃2)α in the numerator. These are related to integrals in higher

dimensions by∫
dDk

iπ
D
2

(k̃2)α f(kµ, k2) = (−1)α
Γ(α + D

2
− 2)

Γ(D
2
− 2)

∫
dD+2αk

iπ
D
2

+α
f(kµ, k2) . (3.30)

Note that 1/Γ(D
2
− 2) is of order ε. Therefore the integrals with α > 0 only

contribute if the k-integral in 4 − 2ε + 2α dimensions is divergent. In this case

they contribute a part which cannot contain a logarithm or dilogarithm (because

it is the coefficient of an UV pole at one loop), so must be a rational function

of the invariants involved (masses, kinematic invariants sij). Such contributions

form part of the so-called “rational part” of the full amplitude.
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Tensor integrals

If we have loop momenta in the numerator, as in eq. (3.8) for r > 0, the integration

procedure is essentially the same, except for combinatorics and additional Feynman

parameters in the numerator. The substitution k = l−Q introduces terms of the form

(l−Q)µ1 . . . (l−Q)µr into the numerator of eq. (3.14). As the denominator is symmetric

under l → −l, only the terms with even numbers of lµ in the numerator will give a

non-vanishing contribution upon l-integration. Further, we know that integrals where

the Lorentz structure is only carried by loop momenta, but not by external momenta,

can only be proportional to combinations of metric tensors gµν . Therefore we have, as

the tensor-generalisation of eq. (3.23),∫ ∞
−∞

dDl

iπ
D
2

lµ1 . . . lµ2m

[l2 −R2 + iδ]N
= (−1)N

[
(g..)⊗m

]{µ1...µ2m}(
−1

2

)m Γ(N − D+2m
2

)

Γ(N)

(
R2 − iδ

)−N+(D+2m)/2
,

(3.31)

which can be derived for example by taking derivatives of the unintegrated scalar

expression with respect to lµ. (g..)⊗m denotes m occurrences of the metric tensor

and the sum over all possible distributions of the 2m Lorentz indices µi to the metric

tensors is denoted by [· · · ]{µ1···µ2m}. Thus, for a general tensor integral, working out the

numerators containing the combinations of external vectors Qµ, one finds the following

formula:

ID,µ1...µrN =

br/2c∑
m=0

(
−1

2

)m N−1∑
j1,...,jr−2m=1

[
(g..)⊗mr·j1 . . . r

·
jr−2m

]{µ1...µr} ID+2m
N (j1, . . . , jr−2m)

(3.32)

IdN(j1, . . . , jα) = (−1)NΓ(N − d

2
)

∫ N∏
i=1

dzi δ(1−
N∑
l=1

zl) zj1 . . . zjα
(
R2 − iδ

)d/2−N
(3.33)

R2 = −1

2
z · S · z

The distribution of the r Lorentz indices µi to the external vectors rµij is denoted by

[· · · ]{µ1···µr}. These are
(
r

2m

)∏m
k=1(2k − 1) terms. (g..)⊗m denotes m occurrences of

the metric tensor and br/2c is the nearest integer less or equal to r/2. Integrals with

zj1 . . . zjα in eq. (3.33) are associated with external vectors rj1 . . . rjα , stemming from

factors of Qµ in eq. (3.14).

How the higher dimensional integrals ID+2m
N in eq. (3.32), associated with metric

tensors (g..)⊗m, arise, is left as an exercise.
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Form factor representation

A form factor representation of a tensor integral (or a tensor in general) is a represen-

tation where the Lorentz structure has been extracted, each Lorentz tensor multiplying

a scalar quantity, the form factor. Distinguishing A,B,C depending on the presence

of zero, one or two metric tensors, we can write

ID,µ1...µrN (S) =∑
j1···jr∈S

rµ1j1 . . . r
µr
jr
AN,rj1...,jr

(S)

+
∑

j1···jr−2∈S

[
g··r·j1 · · · r

·
jr−2

]{µ1···µr} BN,r
j1...,jr−2

(S)

+
∑

j1···jr−4∈S

[
g··g··r·j1 · · · r

·
jr−4

]{µ1···µr} CN,r
j1...,jr−4

(S) . (3.34)

Example for the distribution of indices:

ID,µ1µ2µ3N (S) =
∑

l1,l2,l3∈S

rµ1l1 rµ2l2 rµ3l3 A
N,3
l1l2l3

(S)

+
∑
l∈S

(gµ1µ2 rµ3l + gµ1µ3 rµ2l + gµ2µ3 rµ1l ) BN,3
l (S) .

Note that we never need more than two metric tensors in a gauge where the rank

r ≤ N . Three metric tensors would be needed for rank six, and with the restriction

r ≤ N , rank six could only be needed for six-point integrals or higher. However, we

can immediately reduce integrals with N > 5 to lower-point ones, because for N ≥ 6

we have the relation

ID,µ1...µrN (S) = −
∑
j∈S

Cµ1j ID,µ2...µrN−1 (S \ {j}) (N ≥ 6) , (3.35)

where Cµl =
∑

k∈S (S−1)kl r
µ
k if S is invertible (and if not, it can be constructed from

the pseudo-inverse [7, 8]). The fact that integrals with N ≥ 6 can be reduced to

lower-point ones so easily (without introducing higher dimensional integrals) is related

to the fact that in 4 space-time dimensions, we can have maximally 4 independent

external momenta, the additional external momenta must be linearly dependent on the

4 ones picked to span Minkowski space. (Note that for N = 5 we can eliminate one

external momentum by momentum conservation, to be left with 4 independent ones

in 4 dimensions.) In D dimensions there is a subtlety, this is why the case N = 5 is
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special:

ID5 (S) =
∑
j∈S

bj
(
ID4 (S \ {j})− (4−D) ID+2

5 (S)
)
, (3.36)

with bj =
∑

k∈S (S−1)kj. As 4−D = 2ε and ID+2
5 is always finite, the second term can

be dropped for one-loop applications. Similar for pentagon tensor integrals [7].

Historically, tensor integrals occurring in one-loop amplitudes were reduced to

scalar integrals using so-called Passarino-Veltman reduction [9]. It is based on the fact

that at one loop, scalar products of loop momenta with external momenta can always

be expressed as combinations of propagators. The problem with Passarino-Veltman

reduction is that it introduces powers of inverse Gram determinants 1/(detG)r for the

reduction of a rank r tensor integral. This can lead to numerical instabilities upon

phase space integration in kinematic regions where detG→ 0.

Example for Passarino-Veltman reduction:

Consider a rank one three-point integral

ID,µ3 (S) =

∫ ∞
−∞

dk̄
kµ

[k2 + iδ][(k + p1)2 + iδ][(k + p1 + p2)2 + iδ]
= A1 r

µ
1 + A2 r

µ
2

r1 = p1 , r2 = p1 + p2 .

Contracting with r1 and r2 and using the identities

k · ri =
1

2

[
(k + ri)

2 − k2 − r2
i

]
, i ∈ {1, 2}

we obtain, after cancellation of numerators(
2 r1 · r1 2 r1 · r2

2 r2 · r1 2 r2 · r2

)(
A1

A2

)
=

(
R1

R2

)
(3.37)

R1 = ID2 (r2)− ID2 (r2 − r1)− r2
1I3(r1, r2)

R2 = ID2 (r1)− ID2 (r2 − r1)− r2
2I3(r1, r2) .

We see that the solution involves the inverse of the Gram matrix Gij = 2 ri · rj.

Libraries where the scalar integrals and tensor one-loop form factors can be ob-

tained numerically:

• LoopTools [10, 11]

• OneLoop [12]

13



• golem95 [13–15]

• Collier [16]

• Package-X [17]

Scalar integrals only: QCDLoop [18, 19].

The calculation of one-loop amplitudes with many external legs is most efficiently

done using “unitarity-cut-inspired” methods, for a review see Ref. [20]. One of the

advantages is that it allows (numerical) reduction at integrand level (rather than integral

level), which helps to avoid the generation of spurious terms which blow up intermediate

expressions before gauge cancellations come into action.

3.4 Renormalisation

We have seen already how UV divergences can arise and how to regularize them. The

procedure to absorb the divergences into a re-definition of parameters and fields is

called renormalisation. How to deal with the finite parts defines the renormalisation

scheme. Physical observables cannot depend on the chosen renormalisation scheme

(but remember that for example the top quark mass is not an observable, so the value

for the top quark mass is scheme dependent).

As QCD is renormalisable, the renormalisation procedure does not change the

structure of the interactions present at tree level. The renormalised Lagrangian is

obtained by rewriting the “bare” Lagrangian in terms of renormalised fields as

L(A0, q0, η0,m0, g0, λ0) = L(A, q, η,m, gµε, λ) + Lc(A, q, η,m, gµε, λ) , (3.38)

where Lc defines the counterterms. The bare and renormalised quantities are related

by

Aµ = Z
− 1

2
3 Aµ0 , λ = Z−1

3 λ0, q = Z
− 1

2
2 q0, m = Z−1

m m0, η = Z̃
− 1

2
3 η0, ;

g0 = gµε Zg = gµε
Z1

Z
3
2
3

= gµε
Z̃1

Z̃3Z
1
2
3

= gµε
ZF

1

Z2

= gµε
Z

1
2
4

Z3

. (3.39)

In Eq. (3.39), the renormalisation constants Z1, Z
F
1 , Z̃1, Z4 refer to the 3-gluon vertex,

quark-gluon-vertex, ghost-gluon vertex and 4-gluon vertex, respectively. The counter-
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term Lagrangian thus naively is given by

Lc = −1

4
(Z3 − 1) (∂µAν − ∂νAµ)2 + i(Z2 − 1) q̄ 6 ∂q

− (Z2Zm − 1) q̄ m q + (Z̃3 − 1) ∂µη
†∂µη

+
g

2
µε(Z1 − 1) fabc

(
∂µA

a
ν − ∂νAaµ

)
AµbA

ν
c + (Z̃1 − 1)igµε ∂µη

†Aµη

− (ZF
1 − 1) gµε q̄Aµ q − g2

4
µ2ε(Z4 − 1) fabcfadeAµbA

ν
cA

µ
dA

ν
e . (3.40)

However, not all the constants are independent. Otherwise we would have a problem

with the renormalisation of the strong coupling constant in Eq. (3.39), because it would

lead to different values for Zg. Fortunately, we can exploit the Slavnov-Taylor identities

Z1

Z3

=
Z̃1

Z̃3

=
ZF

1

Z2

=
Z4

Z1

, (3.41)

which are generalisations of the Ward Identity ZF
1 = Z2 for QED.

3.5 The running coupling and the QCD beta function

We mentioned already that the strong coupling constant, defined as αs = g2
s/(4π),

is not really a constant. Where does the running of the coupling come from? It is

closely linked to renormalisation, as it introduces another scale into the game, the

renormalisation scale µ.

Let us look at a physical observable, for example the R-ratio already introduced in

Section 1,

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
. (3.42)

We assume that the energy s exchanged in the scattering process is much larger than

ΛQCD, where ΛQCD ' 300 MeV is the energy scale below which non-perturbative effects

start to dominate, the mass scale of hadronic physics.

At leading order in perturbation theory, we have to calculate the diagram in Fig. 1

(we restrict ourselves to photon exchange), we know the result already:

Figure 1: Leading order diagram for e+e− → ff̄ .
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R(s) = Nc

∑
f

Q2
f θ(s− 4m2

f ) , (3.43)

where Qf is the electromagnetic charge of fermion f . However, we have quantum

corrections where virtual gluons are exchanged, example diagrams are shown in Figs. 2a

and 2b, where Fig. 2a shows corrections of order αs (NLO), and Fig. 2b shows example

diagrams for O(α2
s) (NNLO) corrections. The perturbative expansion for R can be

written as

R(s) = KQCD(s)R0 , R0 = Nc

∑
f

Q2
f θ(s− 4m2

f ) ,

KQCD(s) = 1 +
αs(µ

2)

π
+
∑
n≥2

Cn

(
s

µ2

) (
αs(µ

2)

π

)n
. (3.44)

The higher the order in αs the harder is the calculation. Meanwhile we know the Cn
up to order α4

s [21, 22].

(a) 1-loop diagram contributing to e+e− →
ff̄ .

(b) 2-loop diagram example contributing to

e+e− → ff̄ .

However, if we try to calculate the loop in Fig. 2a, we will encounter ultraviolet

divergences. How to deal with them has been discussed in Section 3.1. We have to

absorb the divergences in the bare coupling α0
s. For the sake of the argument we

introduce an arbitrary cutoff scale ΛUV for the upper integration boundary (for more

complicated calculations dimensional regularisation should be used). If we carried

through the calculation, we would see that the dependence on the cutoff cancels at

order αs, which is a consequence of the Ward Identities in QED. However, if we go one

order higher in αs, calculating diagrams like the one in Fig. 2b, the cutoff-dependence

does not cancel anymore. We obtain

KQCD(s) = 1 +
αs
π

+
(αs
π

)2
[
c+ b0π log

Λ2
UV

s

]
+O(α3

s) . (3.45)

It looks like our result is infinite, as we should take the limit ΛUV →∞. However, we

did not claim that αs is the coupling we measure. It is the “bare” coupling, α0
s, which

appears in Eq. (3.45), and we can absorb the infinity in the bare coupling to arrive at
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the renormalised coupling, which is the one we measure.

In our case, this looks as follows. Define

αs(µ) = α0
s + b0 log

Λ2
UV

µ2
α2
s , (3.46)

then replace α0
s by αs(µ) and drop consistently all terms of order α3

s. This leads to

Kren
QCD(αs(µ), µ2/s) = 1 +

αs(µ)

π
+

(
αs(µ)

π

)2 [
c+ b0π log

µ2

s

]
+O(α3

s) . (3.47)

Kren
QCD is finite, but now it depends on the scale µ, both explicitly and through αs(µ).

However, the hadronic R-ratio is a physical quantity and therefore cannot depend on

the arbitrary scale µ. The dependence of KQCD on µ is an artefact of the truncation

of the perturbative series after the order α2
s.

Renormalisation group and asymptotic freedom

Since the measured hadronic R-ratio Rren = R0K
ren
QCD cannot depend µ, we know

µ2 d

dµ2
Rren(αs(µ), µ2/Q2) = 0 =

(
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

)
Rren(αs(µ), µ2/Q2) .

(3.48)

Equation (3.48) is called renormalisation group equation (RGE). Introducing the ab-

breviations

t = ln
Q2

µ2
, β(αs) = µ2∂αs

∂µ2
, (3.49)

the RGE becomes (
− ∂

∂ t
+ β(αs)

∂

∂αs

)
R = 0 . (3.50)

This first order partial differential equation can be solved by implicitly defining a func-

tion αs(Q
2), the running coupling, by

t =

∫ αs(Q2)

αs

dx

β(x)
, with αs ≡ αs(µ

2) , (3.51)

where
∂αs
(
Q2
)

∂ t
= β

(
αs
(
Q2
))
. (3.52)

It is now straightforward to prove that the value of R for µ2 = Q2, R(1, αs(Q
2)), solves

Eq. (3.50).
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Thus we have shown that the scale dependence in R enters only through αs(Q
2),

and that we can predict the scale dependence of R by solving Eq. (3.51), resp. the one

of αs(Q
2) by Eq. (3.52).

One can solve Eq. (3.52) perturbatively using an expansion of the β-function

β(αs) = −b0α
2
s

[
1 +

∞∑
n=1

bn α
n
s

]
, b0 =

1

4π

(
11

3
CA −

4

3
TRNf

)
. (3.53)

The first five coefficients are known [23], where the five-loop β-function has been cal-

culated only very recently [24–27].

If αs(Q
2) is small we can truncate the series. The solution at leading-order (LO)

accuracy is

Q2 ∂αs
∂ Q2

=
∂αs
∂ t

= −b0α
2
s ⇒ − 1

αs(Q2)
+

1

αs(µ2)
= −b0 t

⇒αs(Q2) =
αs(µ

2)

1 + b0 t αs(µ2)
. (3.54)

Eq. (3.54) implies that

αs(Q
2)

Q2→∞−→ 1

b0t

Q2→∞−→ 0 . (3.55)

Now we see the behaviour leading to asymptotic freedom: the larger Q2, the smaller

the coupling, so at very high energies (small distances), the quarks and gluons can

be treated as if they were free particles. The behaviour of αs as a function of Q2 is

illustrated in Fig. 3 including recent measurements.

Note that b0 > 0 for Nf < 11/2CA (see Eq. (3.53)), so b0 is positive for QCD

(while it is negative for QED). It can be proven that, in 4 space-time dimensions, only

non-Abelian gauge theories can be asymptotically free. For the discovery of asymptotic

freedom in QCD [28, 29], Gross, Politzer and Wilczek got the Nobel Prize in 2004.

In the derivation of the RGE above, we have assumed that the observable R does

not depend on other mass scales like quark masses. However, the renormalisation group

equations can be easily extended to include mass renormalisation, which will lead to

running quark masses:(
µ2 ∂

∂µ2
+ β(αs)

∂

∂αs
− γm(αs)m

∂

∂ m

)
R

(
Q2

µ2
, αs,

m

Q

)
= 0 , (3.56)

where γm is called the mass anomalous dimension and the minus sign before γm is a

convention. In a perturbative expansion we can write the mass anomalous dimension

as γm(αs) = c0 αs (1 +
∑

n cnα
n
s ) . The coefficients are known up to c4 [30, 31].
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Figure 3: The running coupling αs(Q
2). Figure from arXiv:1609.05331.

The β-function in D dimensions

As we saw already, the running of αs is a consequence of the renormalisation scale

independence of physical observables. The bare coupling g0 knows nothing about our

choice of µ. Therefore we must have

dg0

dµ
= 0 . (3.57)

Using the definition

g0 = gµε Zg (3.58)

we obtain

µ2ε

(
εZgαs + 2αs

dZg
dt

+ Zg
dαs
dt

)
= 0 , (3.59)

where d
dt

= µ2 d
dµ2

= d
d lnµ2

. Zg depends upon µ only through αs (at least in the MS

scheme). Using β(αs) = dαs
dt

we obtain

β(αs) + 2αs
1

Zg

dZg
dαs

β(αs) = −ε αs . (3.60)

Now we expand Zg as

Zg = 1− 1

ε

b0

2
αs +O(α2

s) (3.61)

and obtain

β(αs) = −ε αs
1

1− b0αs
ε

= −b0 α
2
s +O(α3

s, ε) . (3.62)
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This means that the β-function can be obtained from the coefficient of the single pole

of Zg. In fact, in the MS scheme, this remains even true beyond one-loop.

Scale uncertainties

From the perturbative solution of the RGE we can derive how a physical quantity

O(N)(µ), expanded in αs as O(N)(µ) =
∑N

n cn(µ)αs(µ
2)n and truncated at order N in

perturbation theory, changes with the renormalisation scale µ:

d

d log(µ2)
O(N)(µ) ∼ O(αs(µ

2)N+1) . (3.63)

Therefore it is clear that, the more higher order coefficients cn we can calculate, the

less our result will depend on the unphysical scale µ2. An example is shown in Fig. 4.

Figure 4: Example H → gg for

the reduction of the scale depen-

dence at higher orders. Figure

from Ref. [22].

In hadronic collisions there is another scale,

the factorisation scale µF , which needs to be taken

into account when assessing the uncertainty of the

theoretical prediction.

3.6 NLO calculations and infrared singu-

larities

3.6.1 Structure of NLO calculations

Next-to-leading order calculations consist of sev-

eral parts, which can be classified as virtual cor-

rections (containing usually one loop), real correc-

tions (radiation of extra particles relative to lead-

ing order) and subtraction terms. In the follow-

ing we will assume that the virtual corrections al-

ready include UV renormalisation, such that the

subtraction terms only concern the subtraction of

the infrared (IR, soft and collinear) singularities.

We will consider “NLO” as next-to-leading order

in an expansion in the strong coupling constant,

even though the general structure is very similar

for electroweak corrections. The real and virtual contributions to the simple example

γ∗ → qq̄ are shown in Fig. 5.

IfM0 is the leading order amplitude (also called Born amplitude) andMvirt,Mreal

are the virtual and real amplitudes as shown in Fig. 5, the corresponding cross section
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+ + virtual

+ real

Figure 5: The real and virtual contributions to γ∗ → qq̄ at order αs.

is given by

σNLO =

∫
dφ2 |M0|2︸ ︷︷ ︸
σLO

+

∫
R

dφ3 |Mreal|2 +

∫
V

dφ2 2Re (MvirtM∗
0) . (3.64)

The sum of the integrals
∫
R

and
∫
V

above is finite. However, this is not true for the

individual contributions. The real part contains divergences due to soft and collinear

radiation of massless particles. While Mreal itself is a tree level amplitude and thus

finite, the divergences show up upon integration over the phase space dΦ3. In
∫
V

, the

phase space is the same as for the Born amplitude, but the loop integrals contained in

Mvirt contain IR singularities.

Let us anticipate the answer, which we will (partly) calculate later. We find:

σR = σBornH(ε)CF
αs
2π

(
2

ε2
+

3

ε
+

19

2
− π2

)
, (3.65)

σV = σBornH(ε)CF
αs
2π

(
− 2

ε2
− 3

ε
− 8 + π2

)
,

where H(ε) = 1 + O(ε), and the exact form is irrelevant here, because the poles in

ε all cancel! This must be the case according to the KLN (Kinoshita-Lee-Nauenberg)

theorem [32, 33]. It says that IR singularities must cancel when summing the transition

rate over all degenerate (initial and final) states. In our example, we do not have initial

state singularities. However, in the final state we can have massless quarks accompanied

by soft and/or collinear gluons (resp. just one extra gluon at order αs). Such a state

cannot be distinguished from just a quark state, and therefore is degenerate. Only when
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summing over all the final state multiplicities (at each order in αs), the divergences

cancel. Another way of stating this is looking at the squared amplitude at order αs
and considering all cuts, see Fig. 6 (contributions which are zero for massless quarks

are not shown). The KLN theorem states that the sum of all cuts leading to physical

final states is free of IR poles.

+ + +

Figure 6: The sum over cuts of the amplitude squared shown above is finite according

to the KLN theorem.

Remember from eq. (2.14) that the general formula to obtain a cross section from

the amplitude is given by

dσ =
S

flux
Σ |M|2 dΦ . (3.66)

Note that the flux factor for two massless initial state particles (e.g. in e+e− →
hadrons) is just 4 p1 · p2 = 2 ŝ.

The cancellations between
∫
R

and
∫
V

in Eq. (3.64) are highly non-trivial, because

the phase space integrals contain a different number of particles in the final state.

If we want to calculate a prediction for a certain observable, we need to multiply

the amplitude by a measurement function J(p1 . . . pn) containing for example a jet

definition, acting on the n particles in the final state. Schematically, the structure of

the cross section then is the following. Let us consider the case where we have an IR

pole if the variable x, denoting for example the energy of an extra gluon in the real

radiation part, goes to zero. If we define

Bn =

∫
dφn |M0|2 =

∫
dφnBn

Vn =

∫
dφn 2Re (MvirtM∗

0) =

∫
dφn

Vn
ε

Rn =

∫
dφn+1 |Mreal|2 =

∫
dφn

∫ 1

0

dx x−1−εRn(x) (3.67)

and a measurement function J(p1 . . . pn, x) we have

σNLO =

∫
dφn

{(
Bn +

Vn
ε

)
J(p1 . . . pn, 0) +

∫ 1

0

dx x−1−εRn(x) J(p1 . . . pn, x)

}
.

(3.68)
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The cancellation of the pole in Vn
ε

by the integral over Rn(x) will only work if

lim
x→0

J(p1 . . . pn, x) = J(p1 . . . pn, 0) . (3.69)

This is a non-trivial condition for the definition of an observable, for example a jet

algorithm, and is called infrared safety. Note that the measurement function is also

important if we define differential cross sections dσ/dX (also called distributions),

for example the transverse momentum distribution dσ/dpT of one of the final state

particles. In this case we have J(p1 . . . pn) = δ(X−χn(pi)), where χn(pi) is the definition

of the observable, based on n partons. Again, infrared safety requires χn+1(pi)→ χn if

one of the pi becomes soft or two of the momenta become collinear to each other, see

below.

3.6.2 Soft gluon emission and collinear singularities

For this part please have a look at the Monte Carlo lectures by Johannes Bellm.

3.6.3 Phase space integrals in D dimensions

The general formula for a 1→ n particle phase space dΦn with Q→ p1 . . . pn is given

by

dΦ1→n = (2π)n−D(n−1)
[ n∏
j=1

dDpjδ(p
2
j −m2

j)Θ(Ej)
]
δ
(
Q−

n∑
j=1

pj

)
. (3.70)

In the following we will stick to the massless case mj = 0. We use

dDpjδ(p
2
j)Θ(Ej) = dEjd

D−1~pjδ(E
2
j − ~p2

j)Θ(Ej) =
1

2Ej
dD−1~pj

∣∣∣
Ej=|~pj |

(3.71)

for j = 1, . . . , n− 1 to arrive at

dΦ1→n = (2π)n−D(n−1)21−n
n−1∏
j=1

dD−1~pj
|~pj|

δ
(

(Q−
n−1∑
j=1

pj)
2
)
, (3.72)

where we have used the last δ-function in Eq. (3.70) to eliminate pn. We further use

dD−1~p

|~p|
f(|~p|) = dΩD−2 d|~p| |~p|D−3 f(|~p|) , (3.73)∫

dΩD−2 =

∫
dΩD−3

∫ π

0

dθ(sin θ)D−3 =

∫ π

0

dθ1(sin θ1)D−3

∫ π

0

dθ2(sin θ2)D−4 . . .

∫ 2π

0

dθ∫
SD−2

dΩD−2 = V (D − 1) =
2 π

D−1
2

Γ(D−1
2

)
,
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to obtain

dΦ1→n = (2π)n−D(n−1)21−ndΩD−2

n−1∏
j=1

d|~pj| |~pj|D−3δ
(

(Q−
n−1∑
j=1

pj)
2
)
. (3.74)

Example 1→ 2:

For n = 2 the momenta can be parametrised by

Q = (E,~0(D−1)) , p1 = E1 (1,~0(D−2), 1) , p2 = Q− p1 . (3.75)

Integrating out the δ-distribution leads to

dΦ1→2 = (2π)2−D 21−D (Q2)D/2−2 dΩD−2 . (3.76)

Example 1→ 3:

For n = 3 one can choose a coordinate frame such that

Q = (E,~0(D−1))

p1 = E1 (1,~0(D−2), 1)

p2 = E2 (1,~0(D−3), sin θ, cos θ)

p3 = Q− p2 − p1 , (3.77)

leading to

dΦ1→3 =
1

4
(2π)3−2D dE1dE2dθ1 (E1E2 sin θ)D−3 dΩD−2 dΩD−3

Θ(E1) Θ(E2) Θ(E − E1 − E2) δ((Q− p1 − p2)2) . (3.78)

In the following a parametrisation in terms of the Mandelstam variables sij = 2 pi · pj
will be useful, therefore we make the transformation E1, E2, θ → s12, s23, s13. To work

with dimensionless variables we define y1 = s12/Q
2, y2 = s13/Q

2, y3 = s23/Q
2 which

leads to

dΦ1→3 = (2π)3−2D 2−1−D(Q2)D−3 dΩD−2 dΩD−3 (y1 y2 y3)D/2−2

dy1 dy2 dy3 Θ(y1) Θ(y2) Θ(y3) δ(1− y1 − y2 − y3) . (3.79)

Now we are in the position to calculate the full real radiation contribution. The matrix

element (for one quark flavour with charge Qf ) in the variables defined above, where

p3 in our case is the gluon, is given by

|M|2real = CF e
2Q2

fg
2
s 8 (1− ε)

{
2

y2y3

+
−2 + (1− ε)y3

y2

+
−2 + (1− ε)y2

y3

− 2ε

}
.

(3.80)
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In our variables, soft singularities mean gluon momentum p3 → 0 and therefore both

y2 and y3 → 0. While p3 ‖ p1 means y2 → 0 and p3 ‖ p2 means y3 → 0. Combined

with the factors (y2 y3)D/2−2 from the phase space it is clear that the first term in the

bracket of Eq. (3.80) will lead to a 1/ε2 pole, coming from the region in phase space

where soft and collinear limits coincide. To eliminate the δ-distribution, we make the

substitutions

y1 = 1− z1, y2 = z1z2, y3 = z1(1− z2) , det J = z1

to arrive at∫
dΦ3|M|2real = αCF

αs
π
Q2
f H̃(ε) (Q2)1−2ε

∫ 1

0

dz1

∫ 1

0

dz2 z
−2ε
1

(
z2(1− z1)(1− z2)

)−ε
{

2

z1z2(1− z2)
+
−2 + (1− ε)z1(1− z2)

z2

+
−2 + (1− ε)z1z2

1− z2

− 2εz1

}
.

(3.81)

The integrals can be expressed in terms of Euler Beta-functions and lead to the result

quoted in Eq. (3.65).

3.6.4 Jet cross sections

Jets can be pictured as clusters of particles (usually hadrons) which are close to each

other in phase space, resp. in the detector. Fig. 7 illustrates what happens between

the partonic interaction and the hadrons seen in the detector.

Figure 7: Parton branching and hadronisation in e+e− annihilation to hadrons. Figure

by Fabio Maltoni.

Historically, one of the first suggestions to define jet cross sections was by Sterman

and Weinberg [34]. In their definition, a final state is classified as two-jet-like if all

but a fraction ε of the total available energy E is contained in two cones of opening

angle δ. The two-jet cross section is then obtained by integrating the matrix elements

25



for the various quark and gluon final states over the appropriate region of phase space

determined by ε and δ.

δ

δ

Figure 8: Two jet cones according to the definition of Sterman and Weinberg.

Let us have a look at the different contributions to the 2-jet cross section at O(αs),

see Fig. 9.

(a) The Born contribution σ0. As we have only two partons, this is always a 2-jet

configuration, no matter what the values for ε and δ are.

(b) The virtual contribution

σV = −σ0CF
αs
2π

4

∫ E

0

dk0

k0

d cos θ

(1− cos θ)(1 + cos θ)
.

(c) The soft contribution (k0 < εE):

σsoft = σ0CF
αs
2π

4

∫ εE

0

dk0

k0

d cos θ

(1− cos θ)(1 + cos θ)
.

(d) The collinear contribution (k0 > εE, θ < δ):

σcoll = σ0CF
αs
2π

4

∫ E

εE

dk0

k0

(∫ δ

0

+

∫ π

π−δ

)
d cos θ

(1− cos θ)(1 + cos θ)
.

Summing up all these contributions leads to

σ2 jet = σ0

(
1− CF

αs
2π

4

∫ E

εE

dk0

k0

∫ π−δ

δ

d cos θ

(1− cos2 θ)

)
= σ0

(
1− 4CF

αs
2π

ln ε ln δ
)
. (3.82)

Of course the two-jet cross section depends on the values for ε and δ. If they are
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Figure 9: Different configurations contributing to the 2-jet cross section at O(αs).

very large, even extra radiation at a relatively large angle θ < δ will be “clustered”

into the jet cone and almost all events will be classified as 2-jet events. Note that the

partonic 3-jet cross section at O(αs) is given by σ3 jet = σtotal
NLO − σ2 jet, because from

the theory point of view, we cannot have more that 3 partons at NLO in the process

e+e− → hadrons. In the experiment of course we can have more jets, which come

from parton branchings (“parton shower”) before the process of hadronisation. Fig. 10

shows that it is not obvious how many events are identified as 2-jet (or 3-jet, 4-jet, . . . )

events after parton showering and hadronisation. This depends on the jet algorithm

used to identify the jets. It is clear from Fig. 10 that a lot of information is lost when

projecting a complex hadronic track structure onto an n-jet event. Modern techniques

also identify a jet substructure, in particular for highly energetic jets. This can give

valuable information on the underlying partonic event (e.g. distinguishing a gluon from

a quark, a b-quark from a light quark, etc).

The Sterman-Weinberg jet definition based on cones is not very practical to analyse

multijet final states. A better alternative is for example the following:

1. starting from n particles, for all pairs i and j calculate (pi + pj)
2.

2. If min(pi +pj)
2 < ycut Q2 then define a new “pseudo-particle” pJ = pi+pj, which
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Figure 10: Projections to a 2-jet event at various stages of the theoretical description.

Figure by Gavin Salam.

decreases n → n − 1. Q is the center-of-mass energy, ycut is the jet resolution

parameter.

3. if n = 1 stop, else repeat the step above.

It is evident that a large value of ycut will ultimately result in the clustering all particles

into only two jets, while higher jet multiplicities will become more and more frequent

as ycut is lowered. After this algorithm all partons are clustered into jets. With the

above definition one finds at O(αs):

σ2 jet = σ0

(
1− CF

αs
π

ln2 ycut

)
. (3.83)

Algorithms which are particularly useful for hadronic initial staes are for example

the so-called Durham-kT algorithm [35] or the anti-kT algorithm [36] (see also [37] for

a summary of different jet algoritms).

The Durham-kT -jet algorithm clusters particles into jets by computing the distance

measure

yij,D =
2 min(E2

i , E
2
j )(1− cos θij)

Q2
(3.84)

for each pair (i, j) of particles. Q is the center-of-mass energy. The pair with the

lowest yij,D is replaced by a pseudo-particle whose four-momentum is given by the sum

of the four-momenta of particles i and j (’E’ recombination scheme). This procedure is

repeated as long as pairs with invariant mass below the predefined resolution parameter

yij,D < ycut are found. Once the clustering is terminated, the remaining (pseudo)-

particles are the jets.
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Figure 11: Jet rates as a function of the jet resolution parameter ycut (upper figure)

and higer order corrections to the 3-jet rate from Ref. [38] (lower figure).
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Fig. 11 (a) shows the jet rates (normalised to the total hadronic cross section) as a

function of ycut, compared to ALEPH data. Fig. 11 (b) shows corrections up to NNLO

to the 3-jet rate as a function of ycut. Note that for small values of ycut the 2-jet rate

diverges ∼ − log2(ycut) because only three partons are present at LO.

At the LHC, the most commonly used jet algorithm is the anti-kT algorithm [36].

The anti-kT algorithm is similar to the Durham-kT algorithm, but introduces a different

distance measure:

yij,a =
1

8
Q2 min

(
1

E2
i

,
1

E2
j

)
(1− cos θij) (3.85)

Since very recently, methods based on Deep Learning are applied to identify jets, and

seem to be quite successful.

Figure 12: Jet areas as a result of (a) the Durham-kT algorithm, (b) the anti-kT
algorithm. Figures from Ref. [36].

Of course, jets are not the only observables one can define based on hadronic tracks

in the detector. Another very useful observable is thrust, which describes how “pencil-

like” an event looks like. Thrust is an example of so-called event-shape observables.

Thrust T is defined by

T = max
~n

∑m
i=1 |~pi · ~n|∑m
i=1 |~pi|

, (3.86)

where ~n is a three-vector (the direction of the thrust axis) such that T is maximal.

The particle three-momenta ~pi are defined in the e+e− centre-of-mass frame. T is an

example of a jet function J(p1, . . . , pm). It is infrared safe because neither pj → 0, nor

replacing pi with zpi + (1− z)pi change T .
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Figure 13: The thrust event shape ranges from “pencil-like” to “spherical”. Figure:

Fabio Maltoni.

3.7 Parton distribution functions

Parton distribution functions (PDFs) will be introduced in the MC lecture by Johannes

Bellm.
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