Cosmology and Dark Matter

Quy Nhon 20

24th Vietnam School of Physics Aug 22-25, 2018 Changbom Park (Korea Institute for Advanced Study)

Students in groups

- 1) Đạt, Hậu, Nakorn, NT Tien, Thông
- 2) Te-Chuan, Arifin, NM Anh, Thu Vân, VPN Hòa
- 3) Purusottam, NT Thắm, Phạm Hiếu, Trần Đức, TQ Lộc, Wararat
- 4) Amit, Đàm Nam, Hoàng Thịnh, LM Ngọc, Natthawin, Trí Dũng
- 5) Nivedita, Ka Long, NA Thư, Ngô Lộc, Phan Vũ, TV Ngọc

Definition of the universe and cosmology

Uniform Space

Uniform space

Some concepts of modern cosmology

Homogeneous space

- cosmological principle

--- Horizon and size of the universe

Uniform expansion

– Hubble's law

Accelerating expansion

-- cosmological constant / dark energy

Horizon (Big Bang Surface)

Traveling in simulated universes

A flight along the past light-cone [John Dubinski]

Time evolution in a fixed space

[John Dubinski]

Space travel at a fixed time [John Dubinski]

Some important parameters, quantities, equations, solutions

Expansion parameter/scale factor a(t) - proper/comoving distancesHubble parameter Density parameters Ω_m Power spectrum P(k), C_l

FRW metric Friedmann equations Solutions of Fes. - Radiation/matter-dominated era

Metric of homogeneous isotropic universes

A uniform S²
$$r = R\chi$$
,
 $d\ell^2 = R^2 d\chi^2 + R^2 \sin^2 \chi d\theta^2 = dr^2 + R^2 \sin^2(r/R) d\theta^2$
 $x = R \sin(r/R)$ is the angular diameter distance. S3 has
 $ds^2 = c^2 dt^2 - d\ell^2 = c^2 dt^2 - [dr^2 + R^2 \sin^2(r/R)(d\theta^2 + \sin^2\theta d\phi^2)]$
 $= c^2 dt^2 - a(t)^2 [dx^2 + R_0 \sin^2(x/R_0)(d\theta^2 + \sin^2\theta d\phi^2)]$
 $= c^2 dt^2 - a(t)^2 [\frac{dx'^2}{1 - x'^2/R_0^2} + x'^2(d\theta^2 + \sin^2\theta d\phi^2)]$

where

$$x' = R_0 \sin(x/R_0)$$
 is the comoving angular diameter distance.
proper distance $r = a(t)x$.
 $a(t) =$ expansion parameter,
 $x =$ comoving distance,

& $R = aR_0$.

A uniform hyperbolic space

$$ds^{2} = c^{2}dt^{2} - a^{2}[d\chi^{2} + \sinh^{2}\chi(d\theta^{2} + \sin^{2}\theta d\phi^{2})]$$

Friedmann Equations

$$\begin{split} ds^2 &= dt^2 - a^2(t) [\frac{dr^2}{1 - kr^2} + r^2(d\theta^2 + \sin^2\theta d\phi^2)] \\ R^i_j &= \frac{1}{2} g^i_j R - \Lambda g^i_j = 8\pi G T^i_j \end{split}$$

$$\begin{split} & \ddot{\frac{a}{a}} = -\frac{4\pi G}{3}(\rho + \frac{3P}{c^2}) + \frac{\Lambda}{3} \\ & \dot{(\frac{a}{a})^2} = \frac{8\pi G}{3}\rho - \frac{c^2}{R_0^2 a^2} + \frac{\Lambda}{3} \end{split}$$

Gaussian Random Fields

- -- Field, random field, homogeneous Gaussian random field
- -- Numerical exercise Making realizations of smoothed Gaussian random density fields

[tasks]

- -- Plot the contour plots of slices of the density fields for SCDM and HDM models
- -- Calculate number of over-density peaks above density threshold levels, number of under-density peaks below density threshold levels.

Rotational curve of galaxies

-- SDSS4 MaNGA

-- <u>https://github.com/astrohchung/manga_rc_tuto</u>

[tasks] - Find mass profile of two galaxies

History of modern cosmology

-- 100 years of development of modern cosmology -- Special time of the human history

-- Future of the universe

100 Years of Modern Cosmology

History of the universe backward in time

- present epoch age, geometry & expansion of space, density, matter composition astronomical objects. 4 forces. elementary particles
 We are at a very special time in the history of mankind!
- low-z, intermediate-z, high-z universe
- reionization epoch
- dark era
- decoupling: between matter and radiation
- radiation-matter density equality: growth of density fluctuations
- nucleosynthesis
- baryosynthesis
- inflation
- Planck epoch: generation of adiabatic, Gaussian, scale-invariant density fluctuations

Type la supernovae, a standard candle

Classification of Supernovae

Some Early Observations of supernovae that are **identified**

Year	Name	Observers
185	SN185	Chinese
1006	SN1006	Chinese, Islamic
1054	SN1054 (Crab)	Chinese etc.
1572	SN1572 (Tycho Brahe)	European
1604	SN1604(Kepler)	European, Korean

SN1604

Classification of SN

Classification of SN

Type la SN

Thermonuclear explosion of white dwarf composed of C/O atoms

Almost constant maximum brightness of type Ia SN → standard candle

Light curve

 σ ~ 0.15 in magnitude (~7% in distance)

Ω , z dependence of the apparent magnitude of a standard candle

Composition of matter \rightarrow expansion scenario \rightarrow magnitude of type Ia SNe

$$\begin{split} \mathbf{m}(z) - \mathbf{M}_{\mathrm{B}} &= -5\log(\mathbf{H}_{0}) + 25 + 5\log[\mathbf{H}_{0}\mathbf{D}_{\mathrm{L}}(z, \mathbf{\Omega}_{\mathrm{m}}, \mathbf{\Omega}_{\mathrm{DE}}, \mathbf{w})] + \mathbf{K}_{\mathrm{Bx}} + \mathbf{A} \\ d_{L} &= cH_{0}^{-1}(1+z)\int_{0}^{z} dz [(1+z)^{3}(\mathbf{\Omega}_{M}) + (1-\mathbf{\Omega}_{M})(1+z)^{3(1+w)}]^{-1/2} \end{split}$$

The data are strongly inconsistent with a Λ =0 flat cosmology, the simplest inflationary universe model.

→ Accelerating universe! NP2011

→ Dark energy? New gravitational law?

Riess et al. (1998) High-z Supernova Search Team (10 SN Ia)

Cosmic Microwave Background Radiation

Experiments

Cosmic Background Explorer (COBE)

FIRAS : CMB Spectrum

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0

5

10

Waves / centimeter

15

Intensity, 10^{-4} ergs / cm² sr sec cm⁻¹

DMR : CMB Anisotropy

Power Spectrum

$$h(t) = \int \widetilde{h}(\omega) e^{-i\omega t} dt$$
$$P(\omega) = \left\langle \left| \widetilde{h}(\omega) \right|^2 \right\rangle$$

$$\frac{\Delta T}{T}(\theta,\phi) = \sum_{l=0}^{\infty} a_{lm} Y_{lm}(\theta,\phi)$$
$$C_l = \frac{1}{2l+1} \left\langle \left| a_{lm} \right|^2 \right\rangle$$

Maps

Power Spectra

Decoupling surface

 $\begin{array}{l} Baryonic \; \lambda_{Jb} \; 2200 Mpc \gg \; Horizon \; r_{Hdec} \; 320 Mpc \\ \\ > Sound \; horizon \; \lambda_s \; 270 Mpc \end{array}$

>Width Δr 44Mpc

> Photon Diffusion λ_D 14Mpc

Shape of T Power Spectrum

Planck Surveyor 2018

Growth of structures

Linear evolution of density fluctuations Linear perturbation theory

Solutions : $\delta \sim a(t)$ [Einstein-de Sitter universe]

Formation of nonlinear objects

Spherical collapse Dark matter halos

Dark matter halos

Hierarchical growth of dark matter halos through mergers Radial density profiles (spherically symmetric)

$$\rho(r) = \frac{\rho_0}{(r/r_s)^{\alpha} (1 + r/r_s)^{3-\alpha}}$$

: cusped. α =1 NFW profile

$$\rho(r) = \rho_e \text{exp}\left[-d_n((r/r_e)^{1/n} - 1)\right]$$

: cored. Einasto profile

Dark Matter and Dark Energy

Dark matter

Dynamical mass and visible mass of bound astronomical systems Invisible but has attractive gravitational force

Dark energy

Accelerating universe Invisible and repulsive gravitational force

Evidence for dark matter

DM in galaxies (E and dwarfs)
Doppler shift of emission lines (HI, CO, Ha). v/r=GM(r)/r^2. v ~ cont. & M(r) ~ r
disk+halo model for S - DM halo dominated & rising v(R) for faint S,
disk dominated & decreasing v(R) for massive S.
stars+dark matter+hot gas model for E: increasing M(R). need DM to be bound

Local Group: M31 and MW \rightarrow dynamical mass ~ 3.5x10¹²M_sun. total visible mass ~ 2x10¹¹ M_sun

Dwarf spheroidals (dSph): r~100pc & σ ~10km/s. rising v(R) & dominated by DM Ultra-faint dwarfs (UFDs): r~100pc, M~10³M_{\odot}. M_{halo} > 100 M_{baryon}. most DM dominated objects in the universe!

missing mass in the Coma cluster

33Fritz Zwicky: ~1000 galaxies in Coma \rightarrow dispersion 10x larger than expected from visible mass. virial theorem \rightarrow 160x more missing mass, which is dark Today: Coma - 85%DM, 14% hot ICM, 1% stars

CGCG 247-010 (z=0.031306)

RA=213.10341, DEC=44.46090, MJD=53108, Plate=1394, Fiber=331

RA=116.78260, DEC=43.31405, MJD=51885, Plate= 434, Fiber=326

Andromeda IX (dSph)

Draco (dSph)

M/L ~ 93

M/L ~ 330

Evidence for dark matter

DM in groups and clusters derived from visible light and X-rays groups: visible matter+DM+hot gas. $M_{grav} > 3M_{baryon}$ clusters: visible matter+DM+hot ICM. DM represents 85%

merging clusters

galaxies, intracluster hot gas(ram pressure, emit X-rays), DM get separated

- → separation of gravitational potential from radiating plasma. strongly-lensed images+weak lensed background sources
- \rightarrow total mass ~ galaxies but not agree with X-ray emitting gas Mass CF of galaxies and dark halos

Abundance matching btw DM halo mass function & stellar mass function of galaxies

СМВ

DM feels attractive self-gravity, baryon self-gravity and pressure position and amplitude of the first peak --> Omega_m ~ 0.3 & there must be DE if no DM, too large CMB anisotropy needed to form galaxies

Virgo : optical

Virgo : X-ray

Figure 20. The A1758N merger from B. Ragozzine & al. [63]. The blue contours represent the weak lensing mass reconstruction made from a background galaxy density of 24.0 galaxies/arcmin². The outer blue contour begins at surface mass density $\kappa = 0.07$ and each contour increases in steps of 0.045 up to $\kappa = 0.34$. The red contours follow the X-ray gas mass obtained in the Chandra exposure. The NW cluster's BCG aligns with the X-ray gas and the weak lensing peak. The SE cluster's BCG and weak lensing peak are well separated from the X-ray gas, which has a bright peak near the midpoint of the two weak lensing peaks.

Roles of dark matter in cosmology and astrophysics

- Matter contents of the universe

Geometrically flat universe baryon, dark matter, dark energy; photon, neutrino, leptons, magnetic field

- Epoch of structure formation

CMB anisotropy and density fluctuation at t_{dec} and at the present epoch

Large-scale structures in the universe and galaxy formation
 shape of power spectrum
 Top-down vs bottom-up scenarios for structure formation

Some Cosmological Tests

Homogeneity and Isotropy

A basic assumption of the standard cosmology through the cosmological principle.

\rightarrow LSS observations:

The universe approaches homogeneity and isotropy as the scale increases.

 $d_c = 0.62 d_{bar} = 5.6 h^{-1}Mpc$ $\delta_{th} = n_{th}/n_{bar} - 1 = 3.2$

Top 4 high-density and top 3 low-density LSSs from SDSS DR7 Main galaxies (d_{bar}=9h⁻¹Mpc)

300

500

Top 4 high-density and top 3 low-density LSSs from mock DR7 surveys (d_{bar}=9h⁻¹Mpc) in HR2

Amplitude of the initial density fluctuations

- Power spectrum on large scales
- (first measured by Park+1992)
- → the initial conditions and their evolution, also useful as a cosmic ruler (i.e. BAO feature, shape of PS).

Gaussianity of the primordial density fluctuations

A major prediction of simple inflationary scenarios.

On large scales galaxy distribution \rightarrow roughly in the linear regime \rightarrow simple relation with matter field \rightarrow remembers the primordial

properties

I SS observations: consistent with "initially Gaussian" density fluctuations.

> SDSS DR10 CMASS: G=488 ±14 (2.9%) for $R_G = 21h^{-1}Mpc$ $\Lambda CDM+HGC model$ (blue=observation) [Parihar et al. 2014]

Expansion history a(t)

determined by various cosmological parameters (such as Ω_m , Ω_K , Ω_X , & DE w in FRW cosmologies; gravitational law), & can be measured from r(z)

$$H(z) = \sqrt{\frac{\Omega_m h^2}{1 - \Omega_X}} \sqrt{\Omega_m (1 + z)^3 + \Omega_X \exp\left[3\int_0^z \frac{1 + w(z)}{1 + z} dz\right]} \qquad D_A(z) = \frac{c}{1 + z} \int_0^z \frac{dz}{H(z)}$$

- Geometric methods like BAO method or AP test - shape of PS

Geometric methods using LSS

$$r_{\parallel} = rac{c\Delta z}{H(z)}$$

 $r_{\perp} = (1+z)D_A(z)\Delta heta$ (=r d $heta$)

where
$$D_A(z) = \frac{c}{1+z} \int_0^z \frac{dz}{H(z)}$$

 $\mathbf{H}(\mathbf{z}) = \sqrt{\frac{\Omega_m h^2}{1-\Omega_X}} \sqrt{\Omega_m (1+z)^3 + \Omega_X \exp\left[3\int_0^z \frac{1+w(z)}{1+z} dz\right]}$

Standard rulers (Actual objects or Features in PS/CF) \rightarrow measure $\Delta z \& \Delta \theta \rightarrow H(z) \& D_A(z) \rightarrow \Omega_m, \Omega_\Lambda, w$

BAO

Acoustic oscillation amplitude : depends on Ω_b oscillation scale = comoving sound horizon 's' at t_{dec} k_A = 2π/s depends strongly on Ω_m, weakly on Ω_b not on DE → Curvature of space, Baryonic mass

Nearby SN 1994D (Ia)

SNe Ia are thermonuclear explosions of C+O WD

[J.Frieman 05]

Expansion History of the Universe

Growth of structures

Abundance of massive objects or large-scale distribution of galaxies tells about the initial conditions and expansion history of the universe.

Galaxy formation and environmental effects

Galaxy properties & distribution depend on initial density fluctuations, background cosmology, & galaxy formation process.

Large-scale environmental effects on galaxy properties

- Morphology-density relation
- Morphology-radius relation (clusters)
- Environmental dependence of LF, color, SFR, vel. disp., size
- Alignment of galaxies and groups

3D HI distribution : 21cm tomography

Spin T: $\delta T \sim (1+\delta)x_H (T_S - T_{CMB})/T_S^* (1+z)^{0.5} mK$

Power spectrum of 21cm fluctuations

$$P_{\Delta T}(\mathbf{k}) = \tilde{T}_b^2 \left\{ \left[\bar{x}_{\mathrm{H}}^2 P_{\delta\delta} - 2\bar{x}_{\mathrm{H}} P_{\mathrm{x}\delta} + P_{\mathrm{xx}} \right] \right. \\ \left. + 2\mu^2 \left[\bar{x}_{\mathrm{H}}^2 P_{\delta\delta} - \bar{x}_{\mathrm{H}} P_{\mathrm{x}\delta} \right] + \mu^4 \bar{x}_{\mathrm{H}}^2 P_{\delta\delta} \right\}$$

 $P_{\rm xx} = \bar{x}_{\rm i}^2 P_{\delta_x \delta_x}$ and $P_{\rm x\delta} = \bar{x}_{\rm i} P_{\delta_x \delta}$ are the ionization power spectrum and the density-ionization power spectrum

Only projected mass along the line of sight

But tomography possible

Shear map expected in SCDM

- **•** Statistical measure of shear pattern, ~1% distortion.
- **Radial distances**, **r**(**z**), **depends on geometry of Universe**.
- **Dark Matter pattern & growth depends cosmological parameters.**

2D weak lensing : shear-shear correlation. average over redshift

2.5D: 2D in slices & cross-correlations (tomography)

<u>3D : shear field at points in 3D</u>

Properties of non-linear structures

Dark energy modifies structure formation in subtle ways SIMULATED CLUSTERS OF GALAXIES IN DIFFERENT DARK ENERGY COSMOLOGIES

Dolag et al. (2004)

Cosmological challenges in the 2020's

DM/DE property of space history of expansion primordial fluctuations new gravitational law? structure formation Reionization epoch Dark ages

The night sky and the universe are not unchanging

 \rightarrow

Large Synoptic Survey Telescope will take 2M images of the night sky every 35 sec for 10 years using a 8.4m telescope.

- 1. 10 year movie of the night sky
- (20TB/night, 60PB total)
- 2. Era of copied nature. No more need to go out and watch the sky (similarly to the google Earth)

Era of 3d data cubes with spectral images

