

Experimental Methods and Physics at the LHC

Shin-Shan Eiko Yu
Department of Physics, National Central University,
Taiwan

24th Vietnam School of Physics: Particles and Cosmology

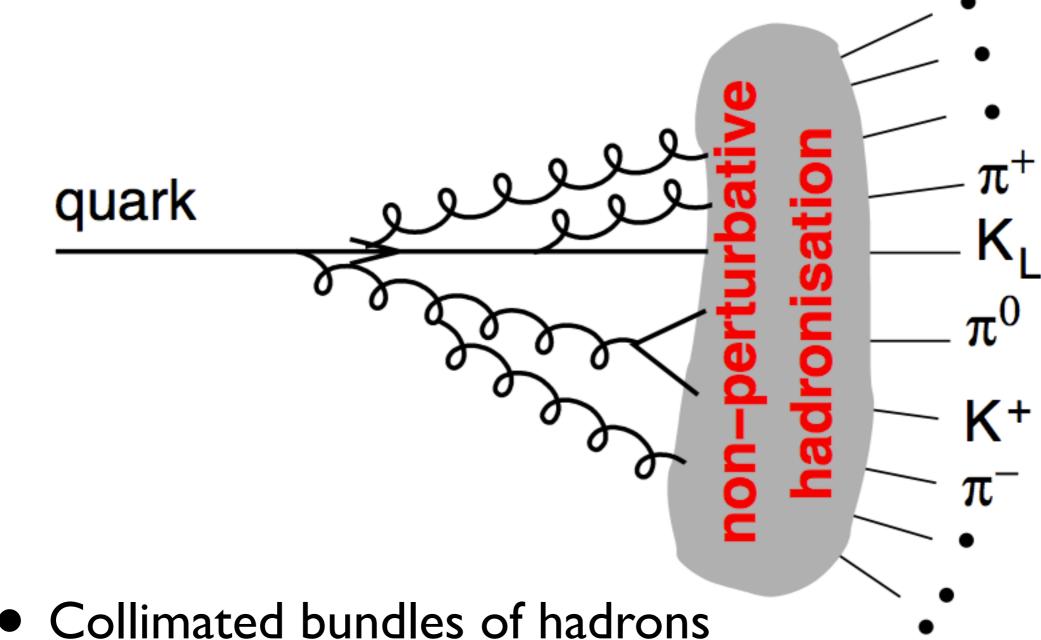
Jets and Jet-related Measurements

Useful Links and Disclaimer

- Jet lectures by Gavin Salam
 - https://gsalam.web.cern.ch/gsalam/teaching/ PhD-courses.html
- A lot of the material/ideas in this lecture are borrowed from his slides

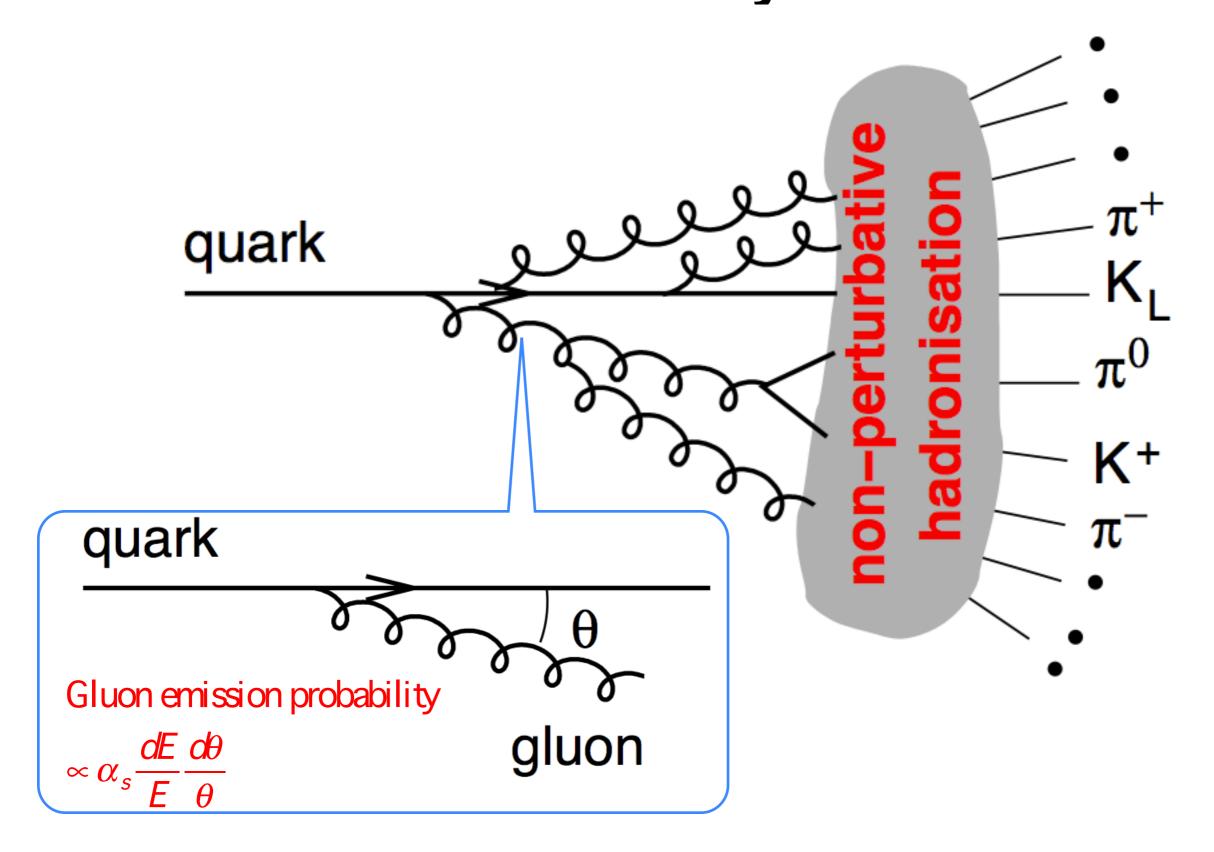
What Is a Jet?

What Is a Jet?



- - quarks or gluons that undergo soft and collinear showering, and then hadronization

What Is a Jet?



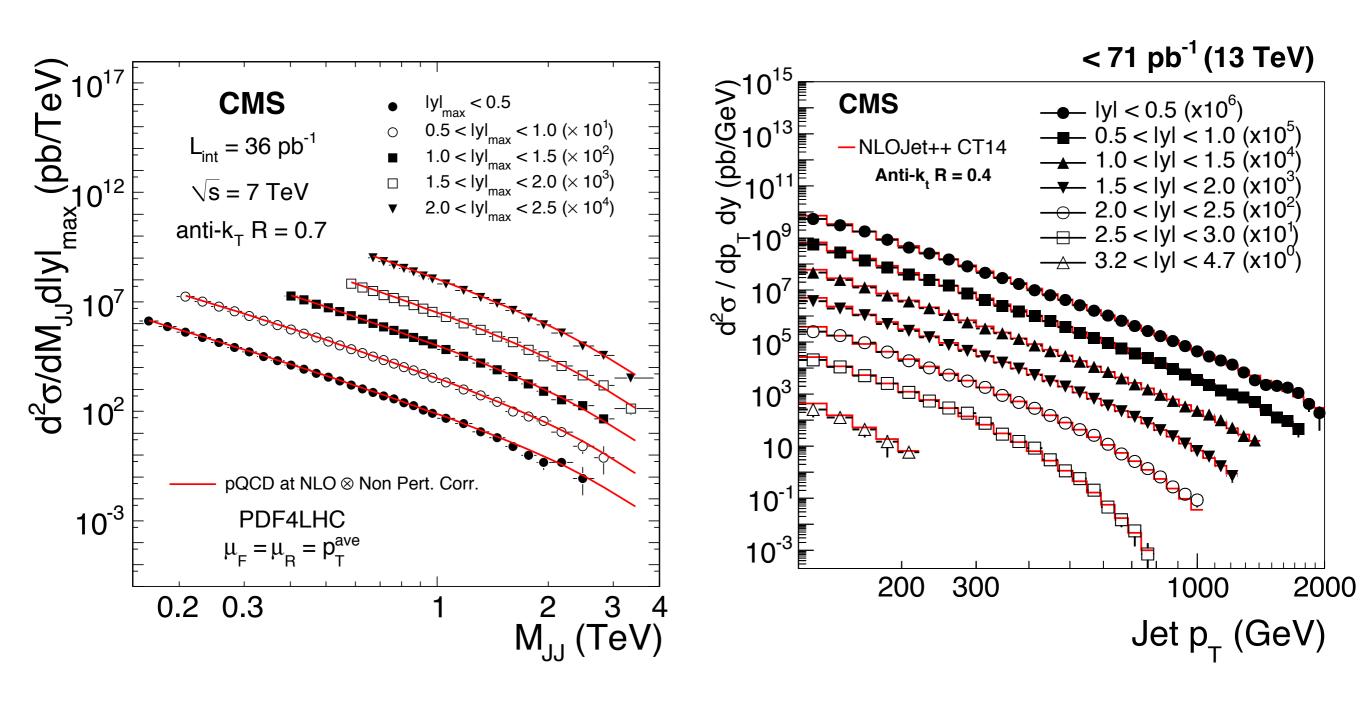
Differential cross sections of jets provide precision test of QCD

- Differential cross sections of jets provide precision test of QCD
- Appear as the decay products of BSM heavy particles or of the SM bosons that BSM particles decay to

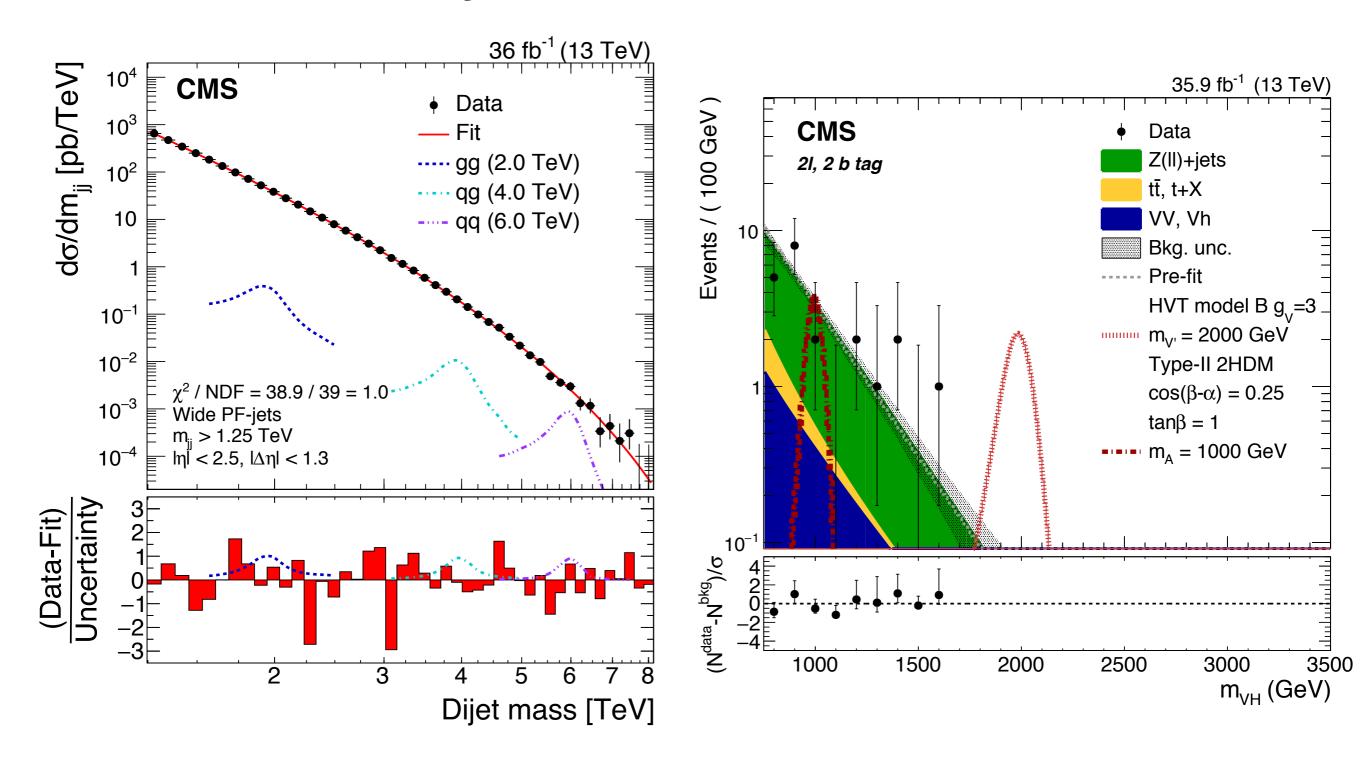
- Differential cross sections of jets provide precision test of QCD
- Appear as the decay products of BSM heavy particles or of the SM bosons that BSM particles decay to
 - Dijet resonance search

- Differential cross sections of jets provide precision test of QCD
- Appear as the decay products of BSM heavy particles or of the SM bosons that BSM particles decay to
 - Dijet resonance search
 - W-jet, Z-jet, Higgs-jet

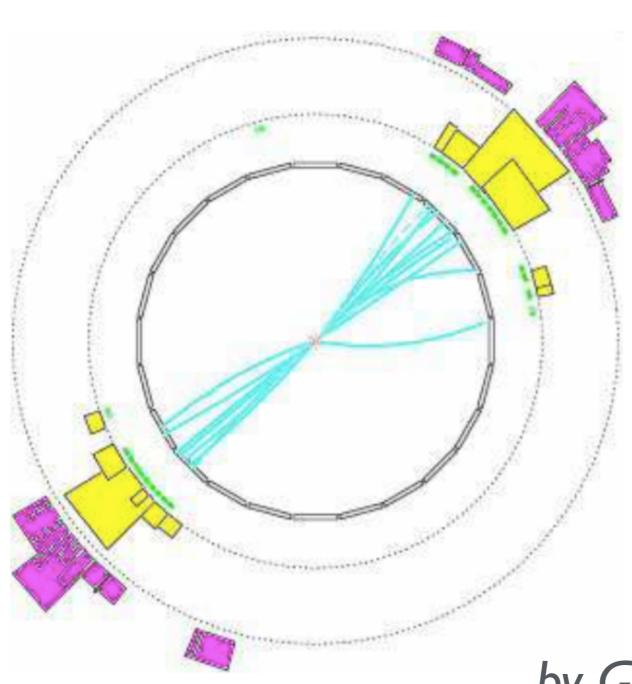
LHC Jet Cross Section



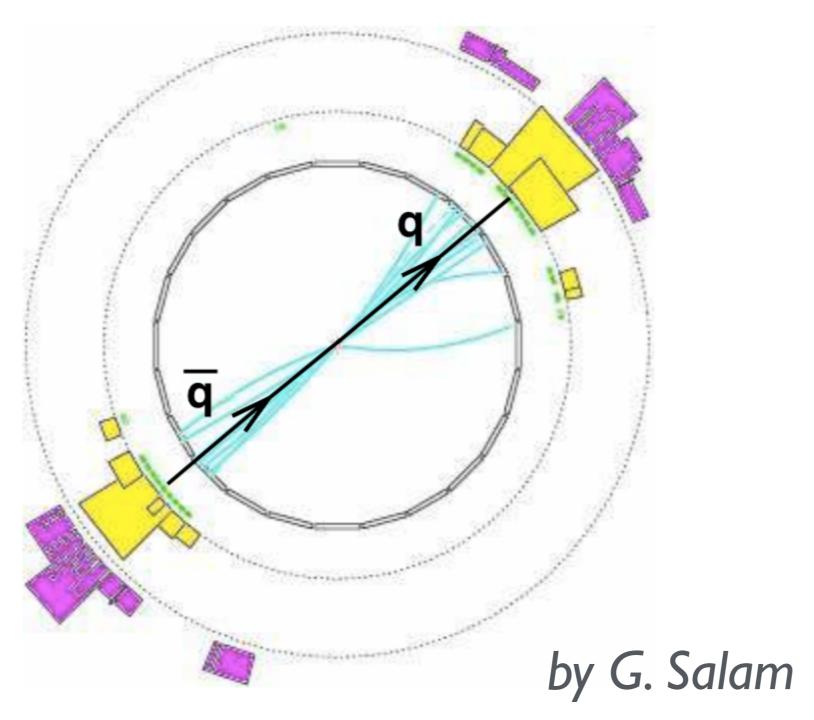
LHC Jet-related Searches

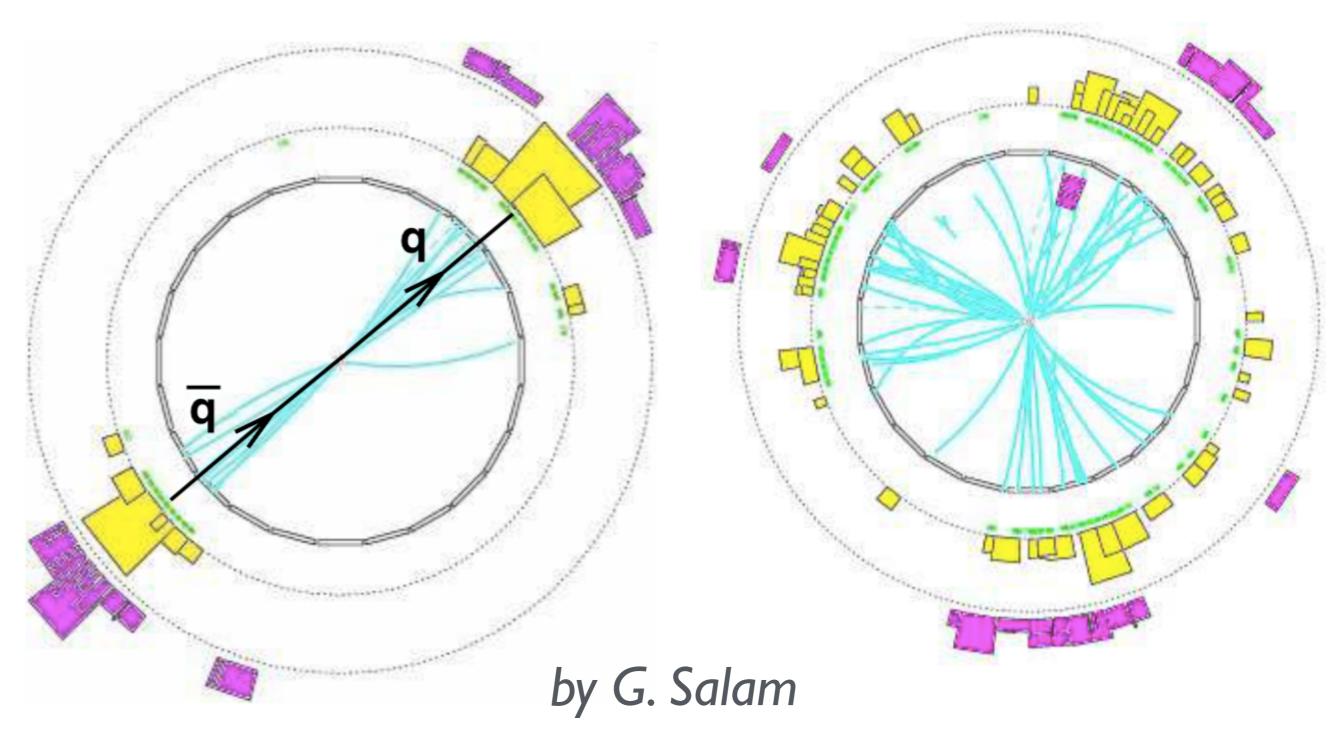


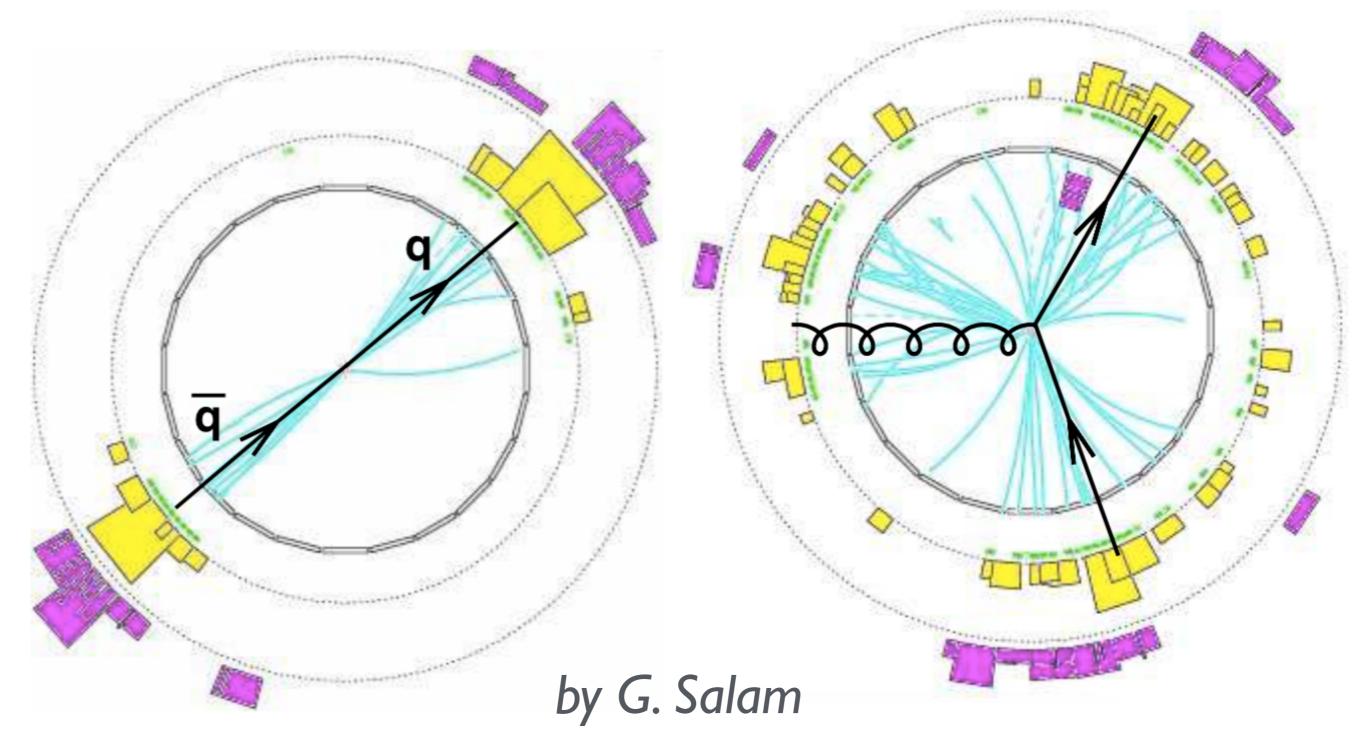
by G. Salam

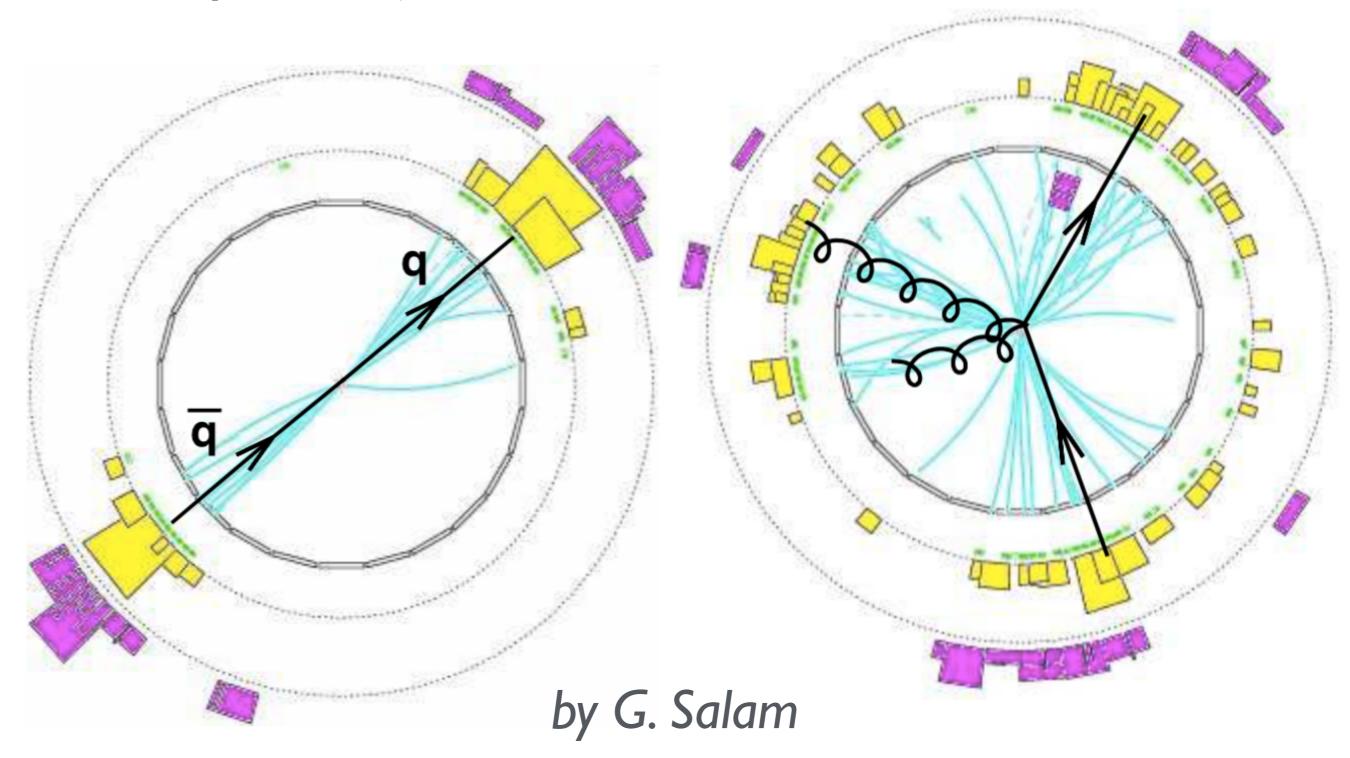


by G. Salam









• Jets can be reconstructed from

- Jets can be reconstructed from
 - hadrons (true-level or generator-level)

- Jets can be reconstructed from
 - hadrons (true-level or generator-level)
 - calorimeter cells or tracks

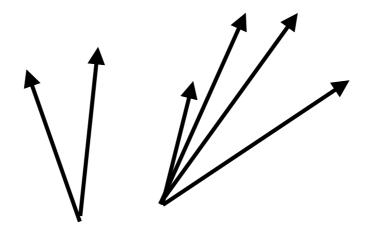
- Jets can be reconstructed from
 - hadrons (true-level or generator-level)
 - calorimeter cells or tracks
 - particle-flow objects (electrons, muons, photons, charged hadrons, neutral hadrons)

- Jets can be reconstructed from
 - hadrons (true-level or generator-level)
 - calorimeter cells or tracks
 - particle-flow objects (electrons, muons, photons, charged hadrons, neutral hadrons)
- Must be collinear and infrared safe

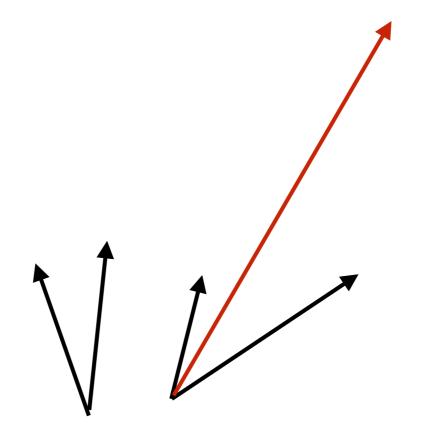
- Jets can be reconstructed from
 - hadrons (true-level or generator-level)
 - calorimeter cells or tracks
 - particle-flow objects (electrons, muons, photons, charged hadrons, neutral hadrons)
- Must be collinear and infrared safe
 - collinear: angle between emitting gluons and original parton is much smaller than I

- Jets can be reconstructed from
 - hadrons (true-level or generator-level)
 - calorimeter cells or tracks
 - particle-flow objects (electrons, muons, photons, charged hadrons, neutral hadrons)
- Must be collinear and infrared safe
 - collinear: angle between emitting gluons and original parton is much smaller than I
 - infrared: ratio of gluon to parton energy is much smaller than I

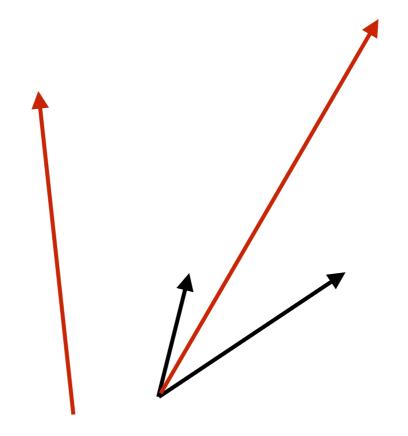
 How do we decide if two particles should be combined and clustered into one jet?



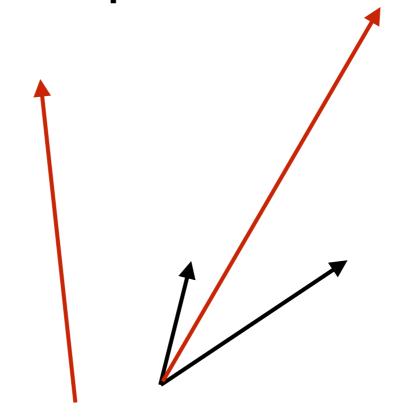
 How do we decide if two particles should be combined and clustered into one jet?



 How do we decide if two particles should be combined and clustered into one jet?

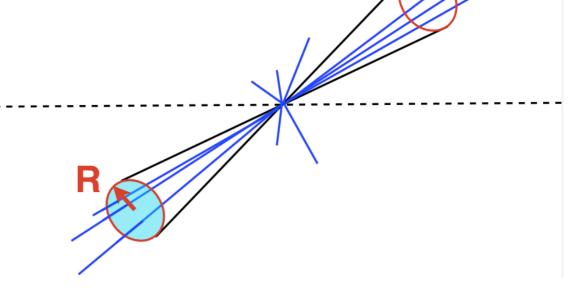


- How do we decide if two particles should be combined and clustered into one jet?
- When do we stop?



Jet Algorithms

- Sequential recombination
 - most widely used at LHC and HERA
 - successively undoes QCD branching
- Cone
 - most widely used at Tevatron
 - directed energy flow



kt Algorithm in ete Machines

- QCD branching probability grows with decreasing gluon energy and decreasing angle between emitted gluon and mother parton
- In e⁺e⁻ machines, the k_t algorithm is defined as:

kt Algorithm in ete Machines

1. Calculate (or update) distances between all particles i and j:

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{Q^2}$$

- 2. Find smallest of y_{ij}
 - If $> y_{cut}$, stop clustering
 - ▶ Otherwise recombine i and j, and repeat from step 1

Catani, Dokshitzer, Olsson, Turnock & Webber '91

by G. Salam

NB: relative k_t between particles

- QCD branching probability grows with decreasing gluon energy and decreasing angle between emitted gluon and mother parton
- In e⁺e⁻ machines, the k_t algorithm is defined as:

kt Algorithm in ete Machines

1. Calculate (or update) distances between all particles i and j:

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{Q^2}$$

- 2. Find smallest of y_{ij}
 - If y_{cut} , stop clustering
 - \triangleright Otherwise recombine *i* and *j*, and repeat from step 1

Catani, Dokshitzer, Olsson, Turnock & Webber '91

single 'parameter

by G. Salam

NB: relative k_t between particles

kt Algorithm in Hadron Colliders

Introduce angular radius R (NB: dimensionless!)

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2$$

- ▶ 1. Find smallest of d_{ij} , d_{iB}
 - 2. if *ij*, recombine them
 - 3. if iB, call i a jet and remove from list of particles
 - 4. repeat from step 1 until no particles left.

S.D. Ellis & Soper, '93; the simplest to use

Jets all separated by at least R on y, ϕ cylinder.

NB: number of jets not IR safe (soft jets near beam); number of jets above p_t cut is IR safe.

by G. Salam

kt Algorithm in Hadron Colliders

Introduce angular radius R (NB: dimensionless!)

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2$$

- ▶ 1. Find smallest of d_{ij} , d_{iB}
 - 2. if *ij*, recombine them
 - 3. if iB, call i a jet and remove from list of particles
 - 4. repeat from step 1 until no particles left.

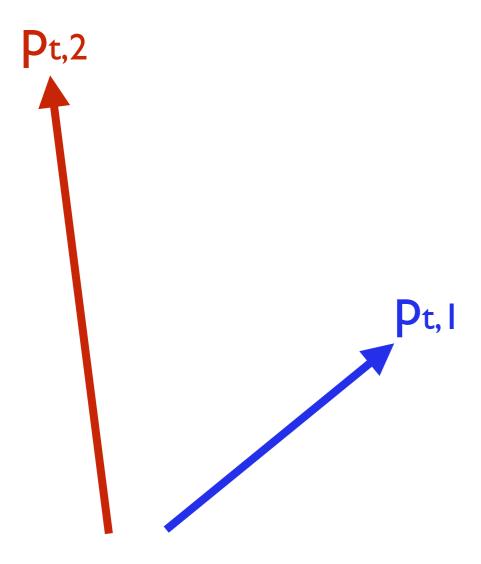
S.D. Ellis & Soper, '93; the simplest to use

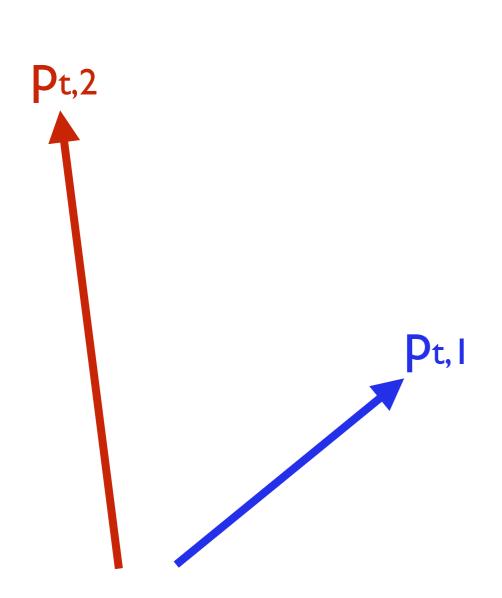
Jets all separated by at least R on y, ϕ cylinder.

NB: number of jets not IR safe (soft jets near beam); number of jets above p_t cut is IR safe.

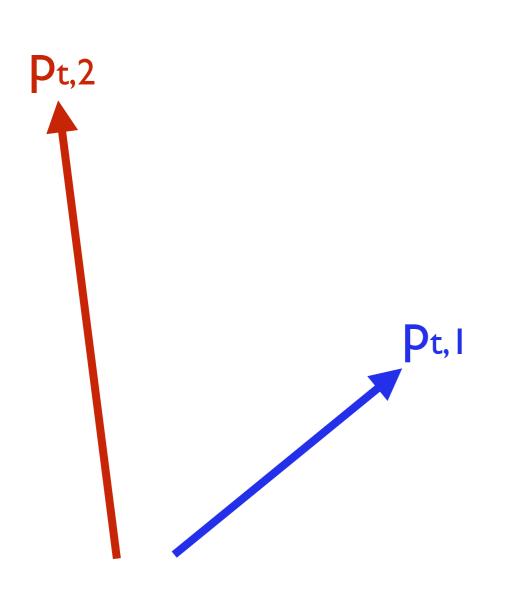
by G. Salam

two parameters

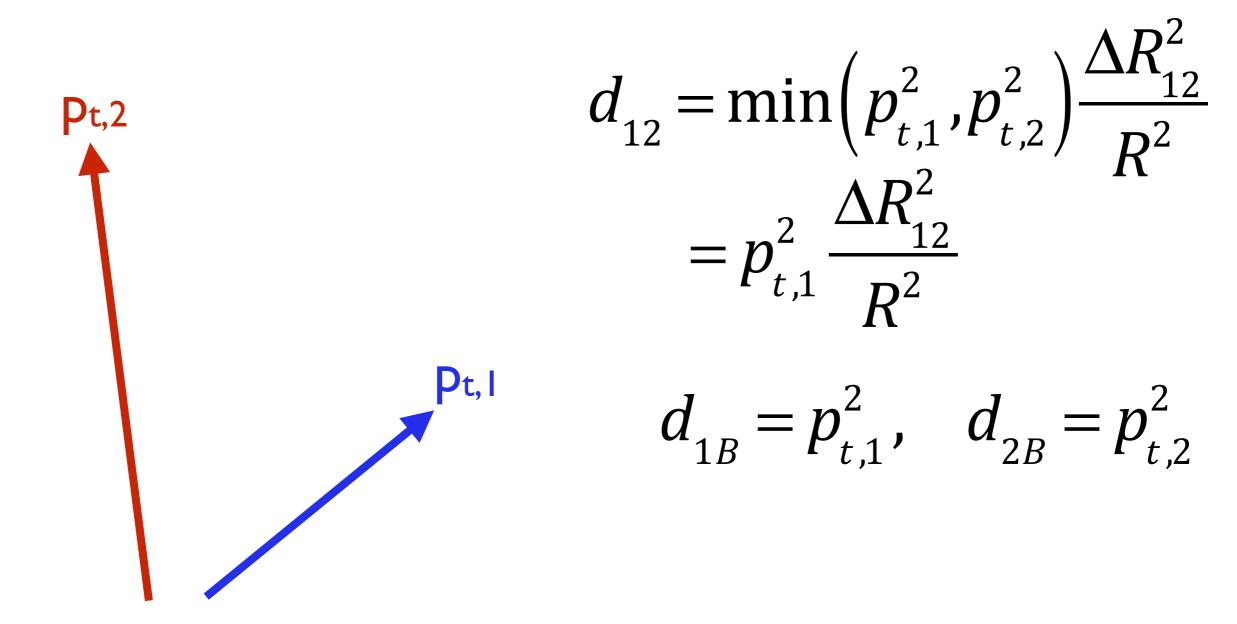


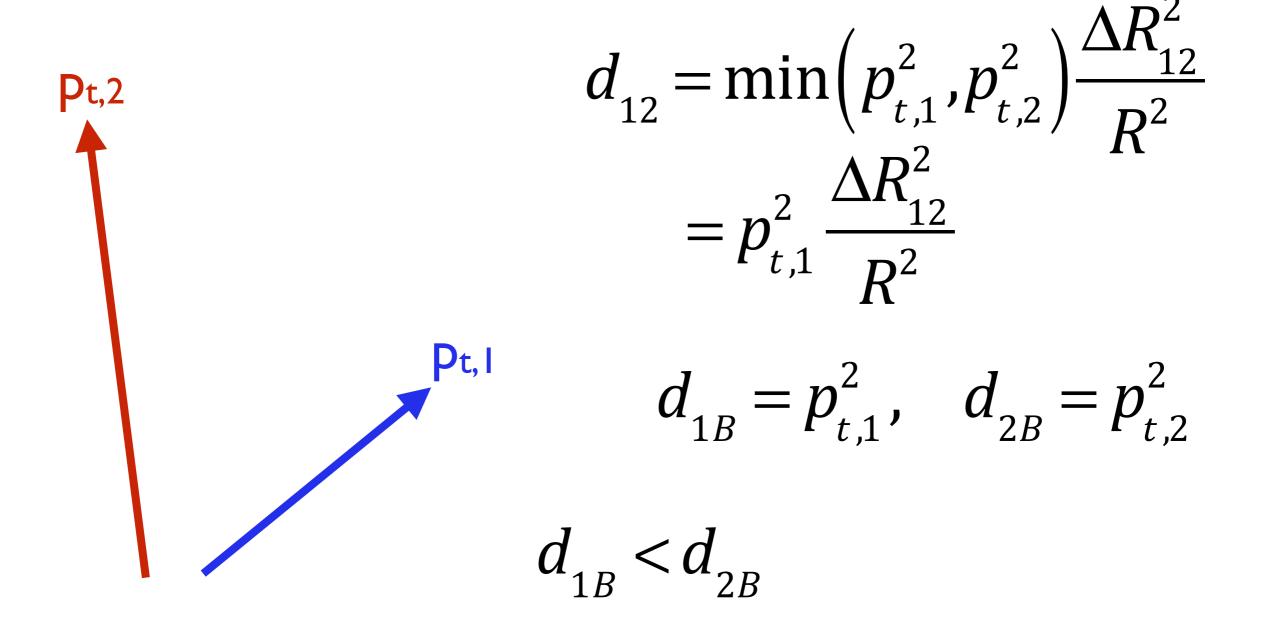


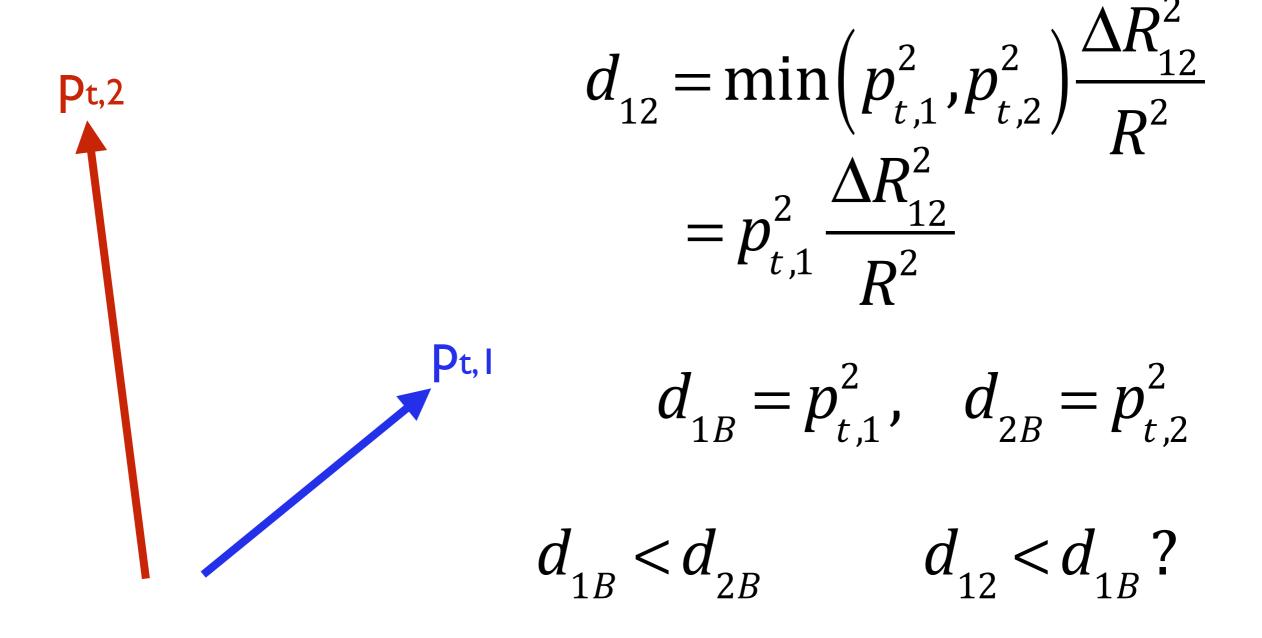
$$d_{12} = \min(p_{t,1}^2, p_{t,2}^2) \frac{\Delta R_{12}^2}{R^2}$$



$$d_{12} = \min(p_{t,1}^2, p_{t,2}^2) \frac{\Delta R_{12}^2}{R^2}$$
$$= p_{t,1}^2 \frac{\Delta R_{12}^2}{R^2}$$







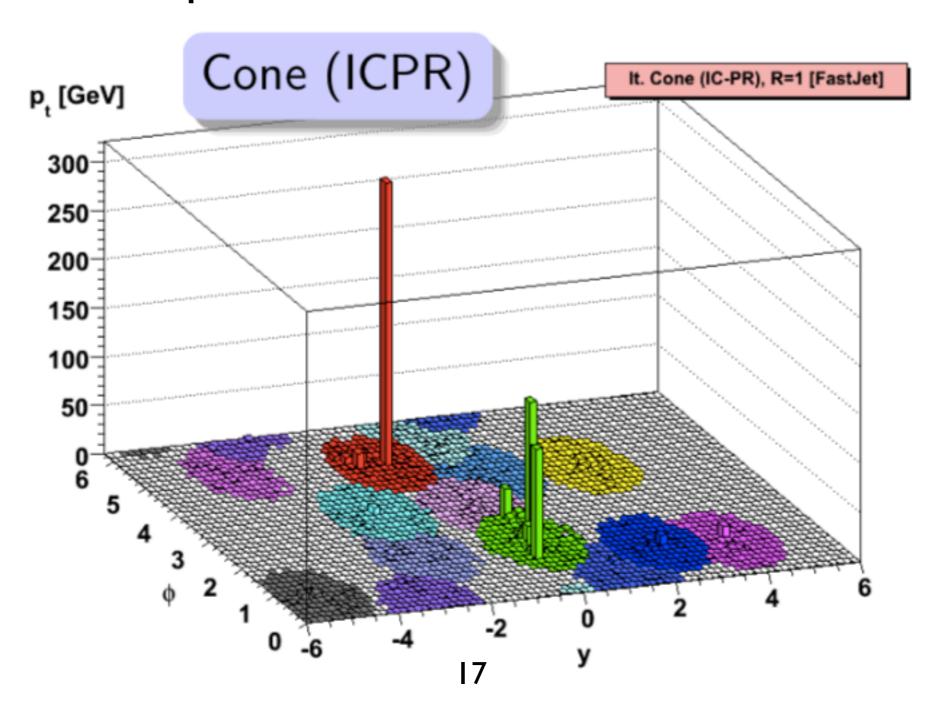
Common Sequential Recombination Algorithms

$$d_{ij} = \min(k_{ti}^{2\mathbf{p}}, k_{tj}^{2\mathbf{p}}) \Delta R_{ij}^2 / R^2$$
 $d_{iB} = k_{ti}^{2\mathbf{p}}$

	Alg. name
p = 1	k_t
	CDOSTW '91-93; ES '93
p = 0	Cambridge/Aachen
	Dok, Leder, Moretti, Webber '97
	Wengler, Wobisch '98
p = -1	anti- k_t Cacciari, GPS, Soyez '08
	\sim reverse- k_t Delsart

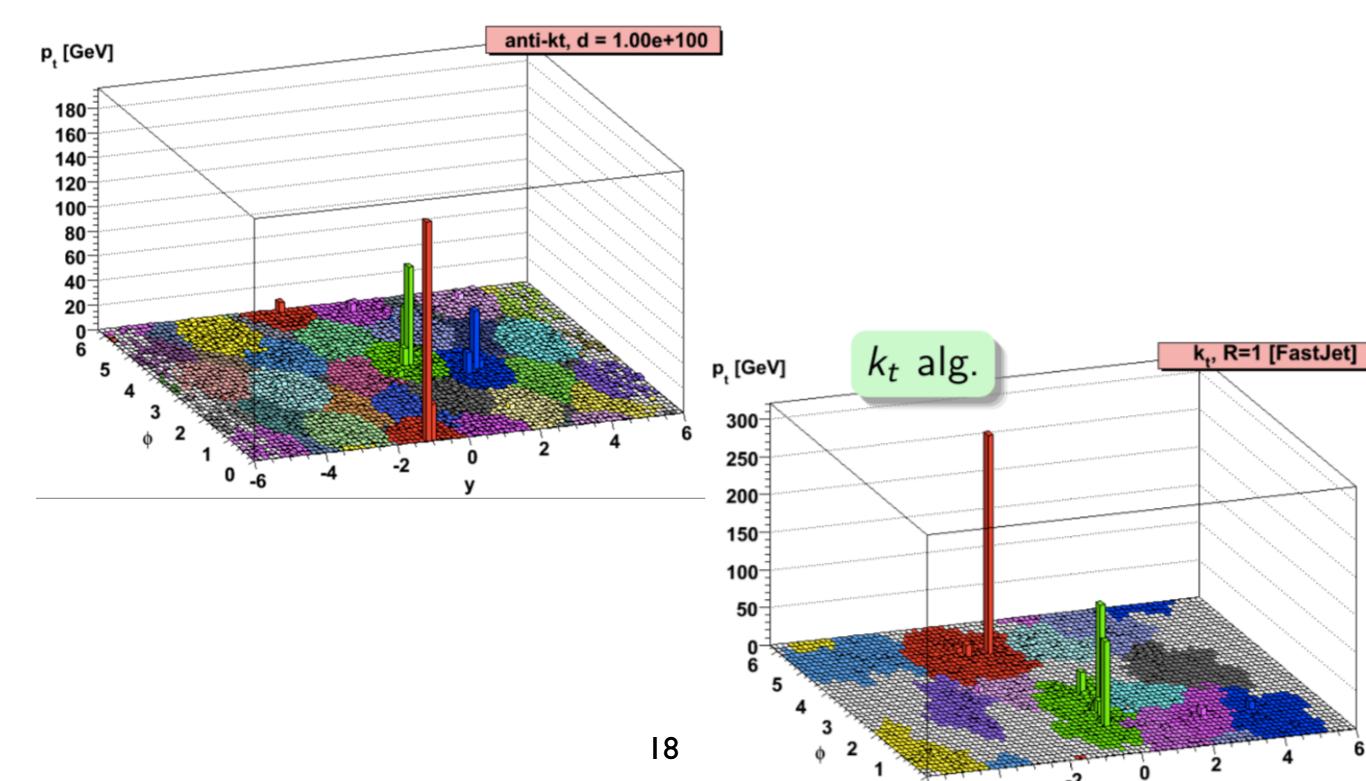
Shape of Jets from These Algorithms

 Although not infrared/collinear safe, cone algorithms give regular jet shapes, which makes it possible to predict acceptance



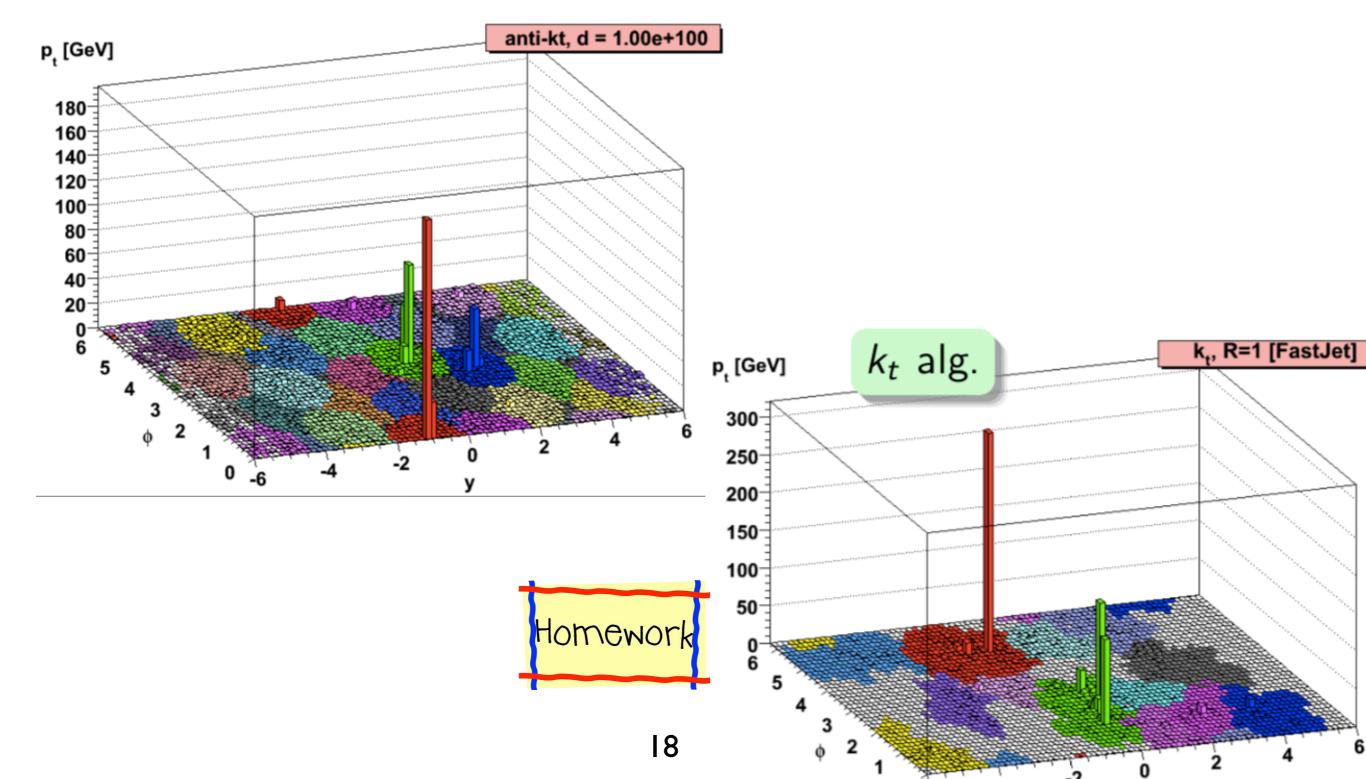
Shape of Jets from These Algorithms

anti-k_t algorithms can also give cone-like jet shapes



Shape of Jets from These Algorithms

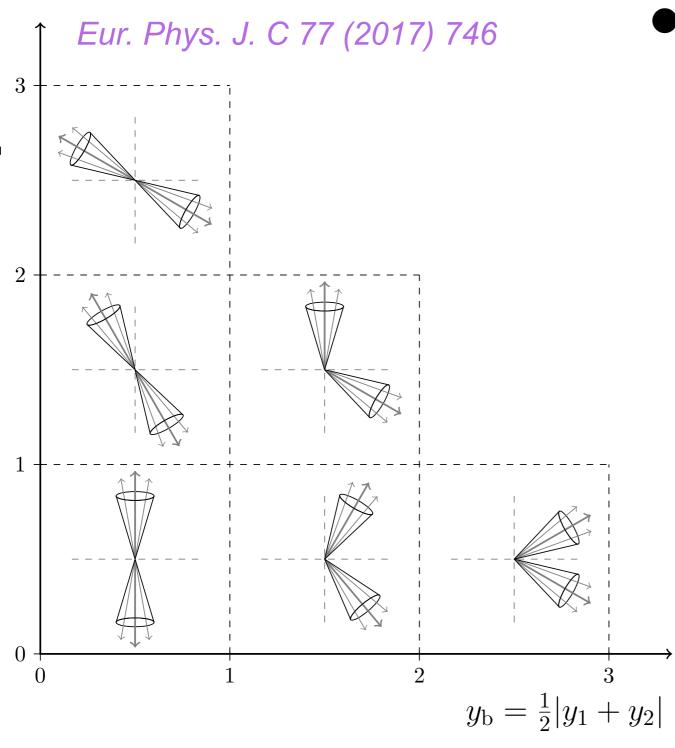
anti-k_t algorithms can also give cone-like jet shapes

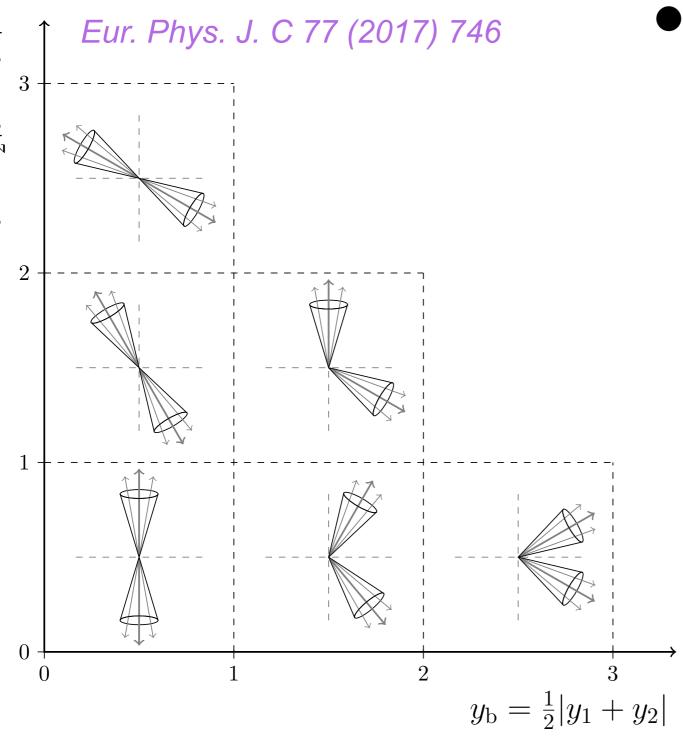


Comparison of Cone and Sequential Recombination

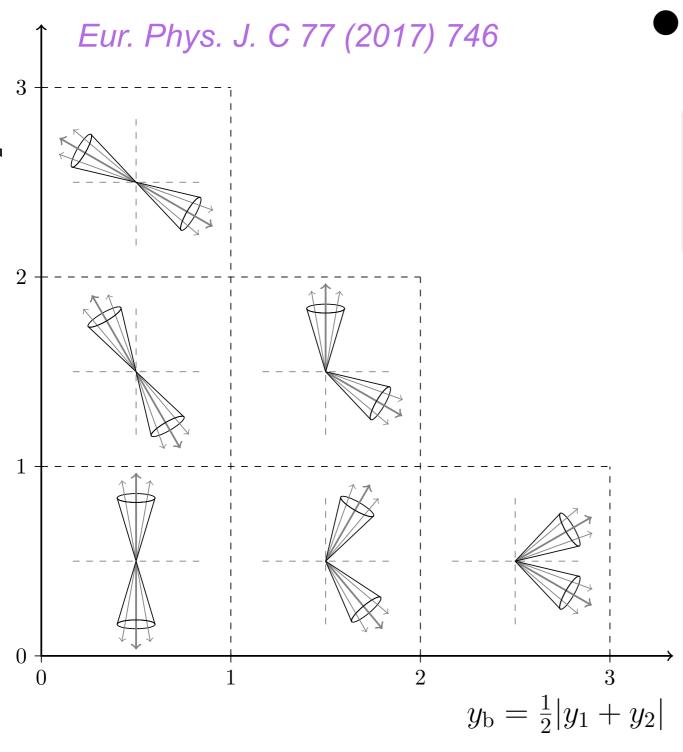
 See examples from the lectures of Gavin Salam in the attachment

Dijet Cross Section Measurements



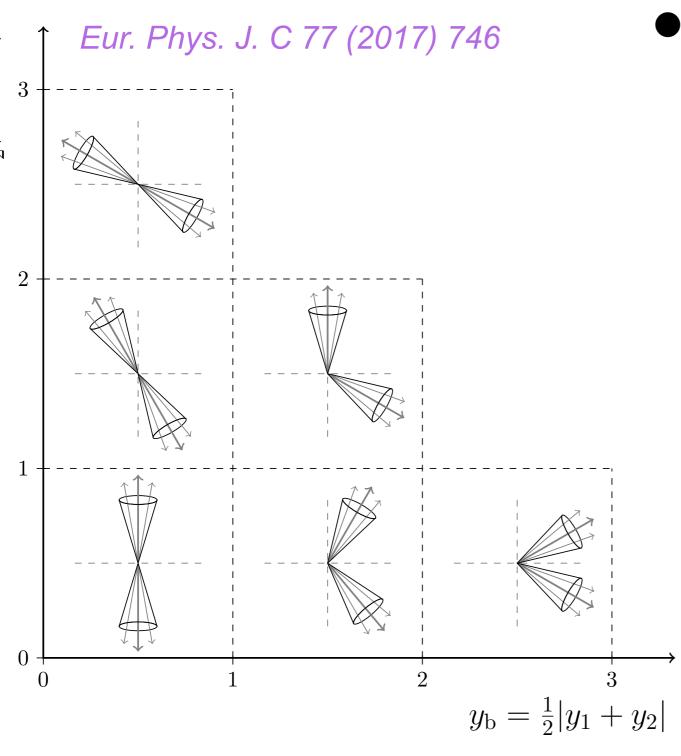


$$p_{T,avg} = (p_{T,1} + p_{T,2})/2$$



$$p_{T,avg} = (p_{T,1} + p_{T,2})/2$$

$$y^* = |y_1 - y_2|/2$$



$$p_{T,avg} = (p_{T,1} + p_{T,2})/2$$

$$y^* = |y_1 - y_2|/2$$

$$y_b = |y_1 + y_2|/2$$

Eur. Phys. J. C 77 (2017) 746

- Probe perturbative QCD
- Constrain PDFs and α_s
 - > x>0.1 less known

Eur. Phys. J. C 77 (2017) 746

- Probe perturbativeQCD
- Constrain PDFs and α_s
 - > x>0.1 less known

$$x_{1,2} = \frac{p_T}{\sqrt{S}} \left(e^{\pm y_1} + e^{\pm y_2} \right)$$

where
$$p_{T} = p_{T,1} = p_{T,2}$$

Eur. Phys. J. C 77 (2017) 746

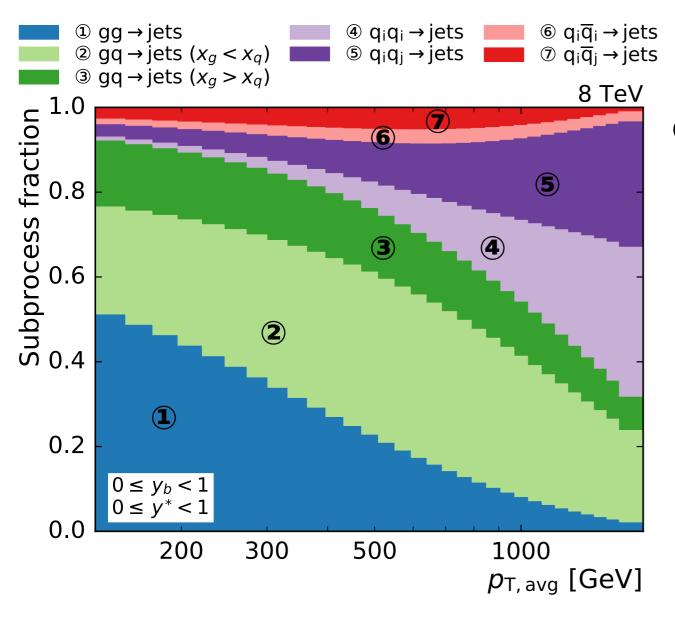
- Probe perturbativeQCD
- Constrain PDFs and α_s
 - x>0.1 less known

At LO,

$$x_{1,2} = \frac{p_T}{\sqrt{S}} \left(e^{\pm y_1} + e^{\pm y_2} \right)$$

where
$$p_{T} = p_{T,1} = p_{T,2}$$

Eur. Phys. J. C 77 (2017) 746



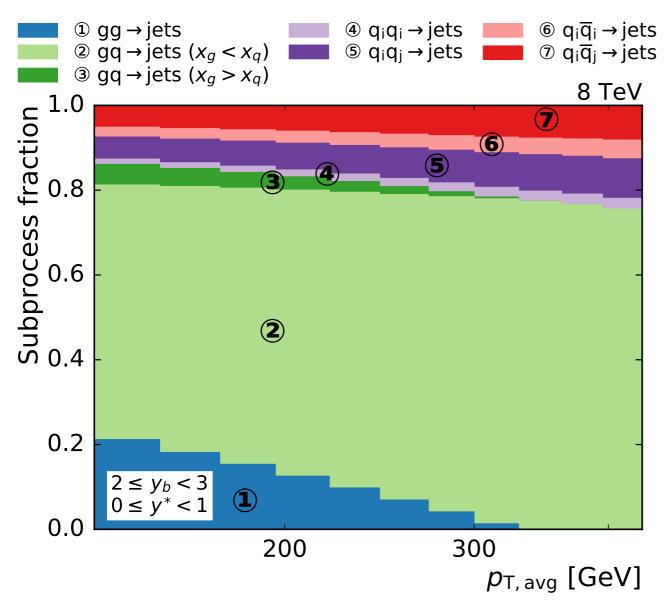
- Probe perturbative QCD
- Constrain PDFs and α_s
 - > x>0.1 less known

At LO,

$$x_{1,2} = \frac{p_T}{\sqrt{S}} \left(e^{\pm y_1} + e^{\pm y_2} \right)$$

where
$$p_{T} = p_{T,1} = p_{T,2}$$

Eur. Phys. J. C 77 (2017) 746



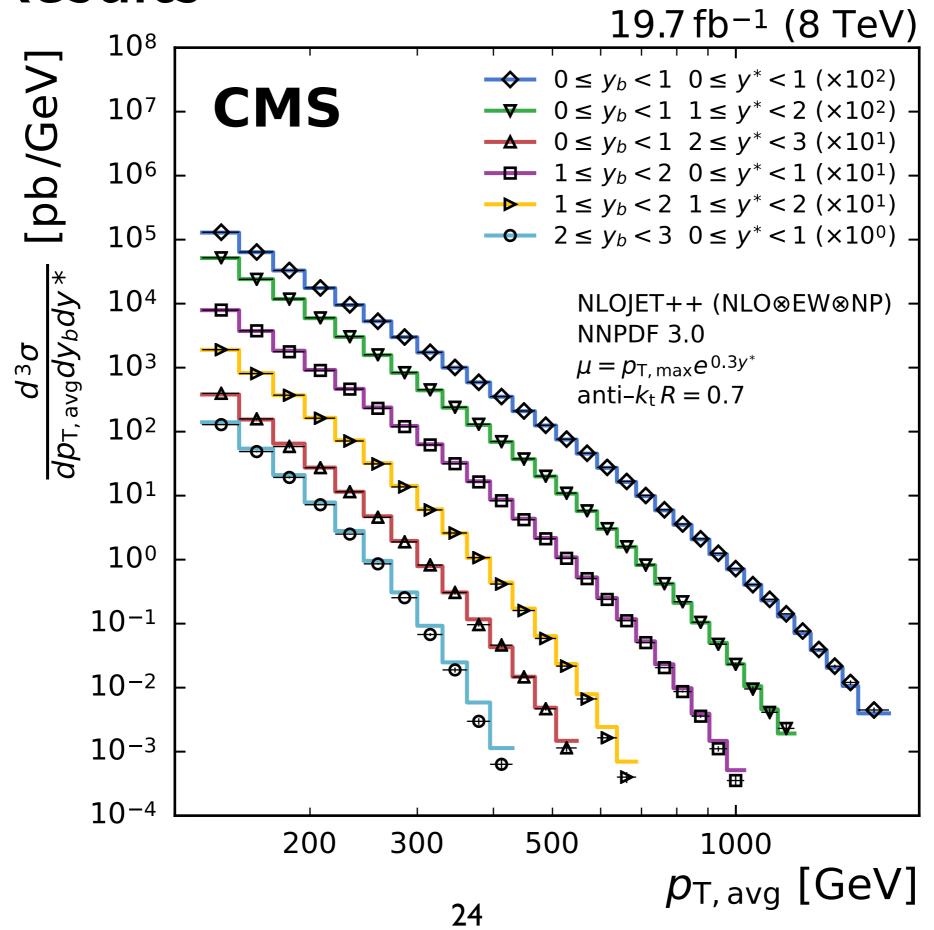
- Probe perturbative QCD
- Constrain PDFs and α_s
 - > x>0.1 less known

At LO,

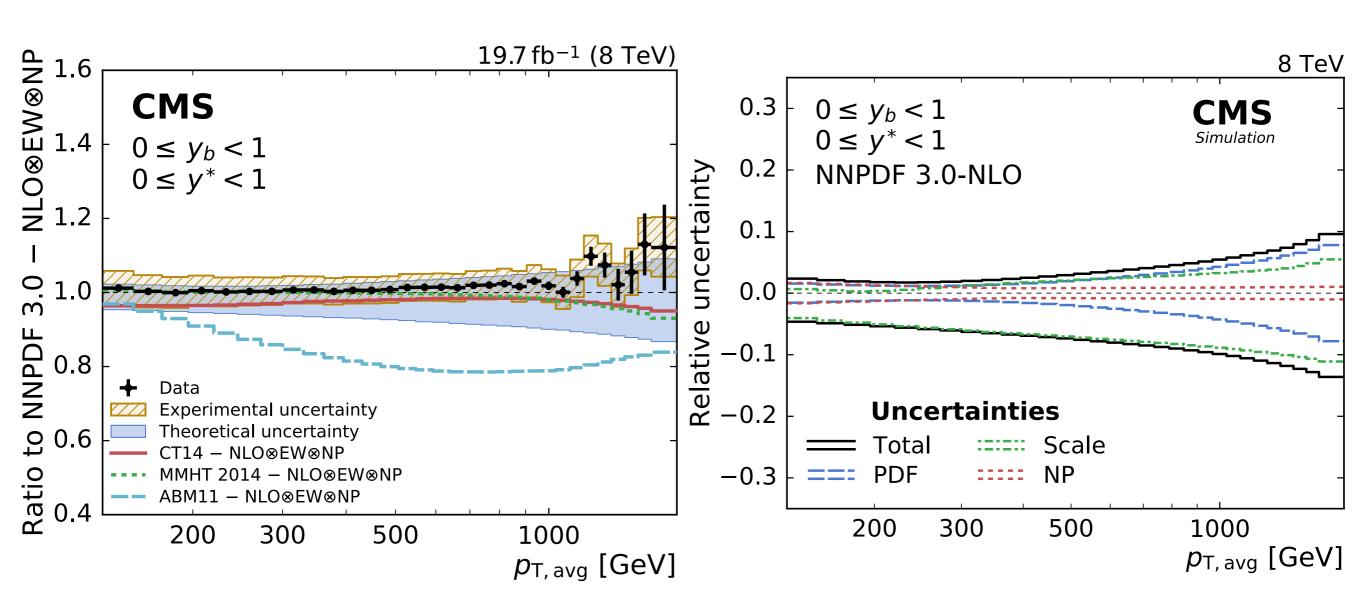
$$X_{1,2} = \frac{p_T}{\sqrt{S}} \left(e^{\pm y_1} + e^{\pm y_2} \right)$$

where
$$p_{T} = p_{T,1} = p_{T,2}$$

Results

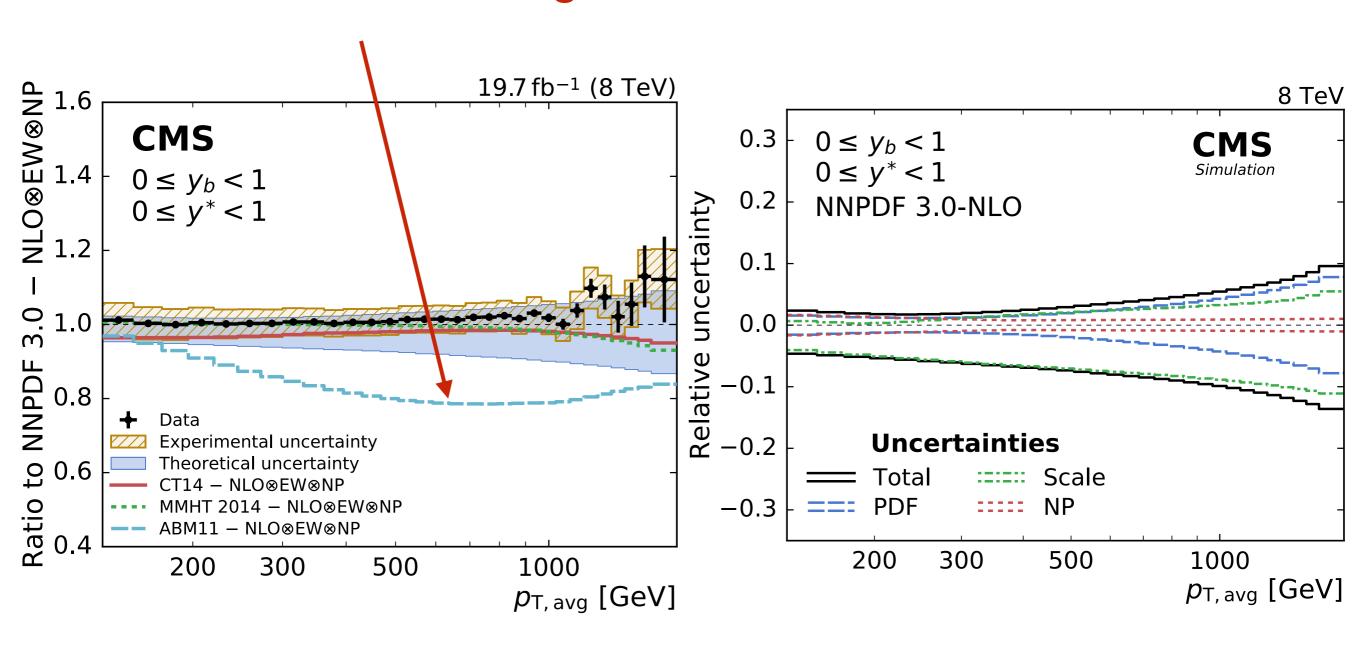


Results at Small yb

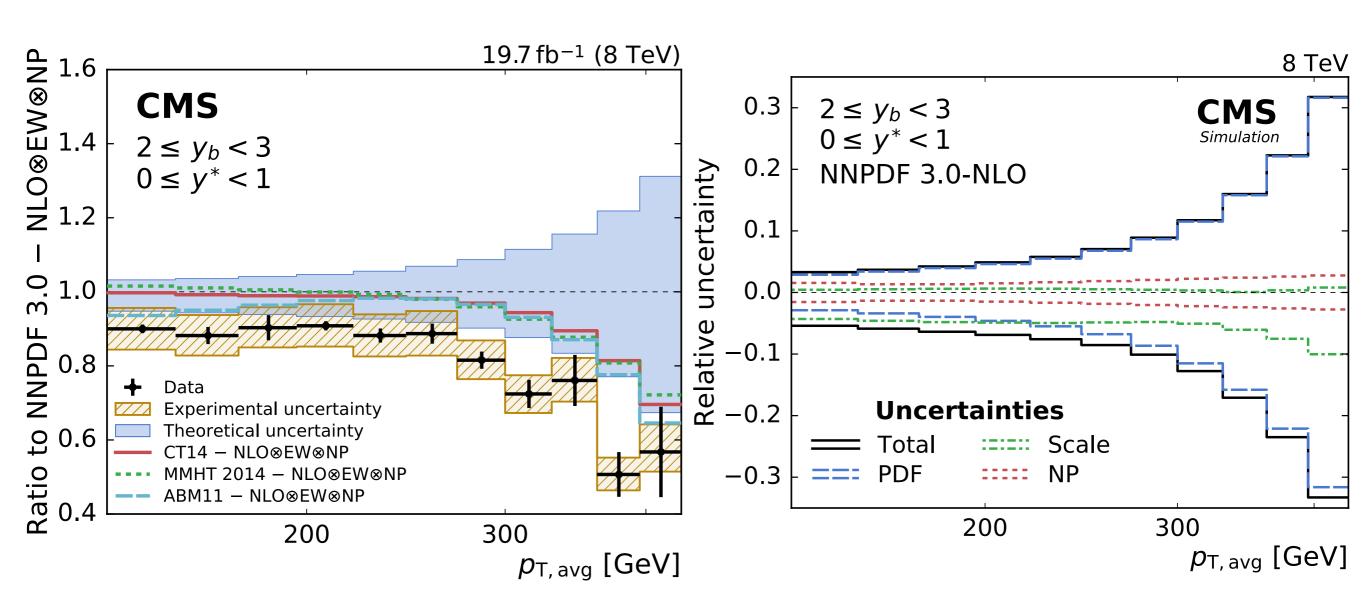


Results at Small yb

Due to soft gluon PDF and smaller α_s



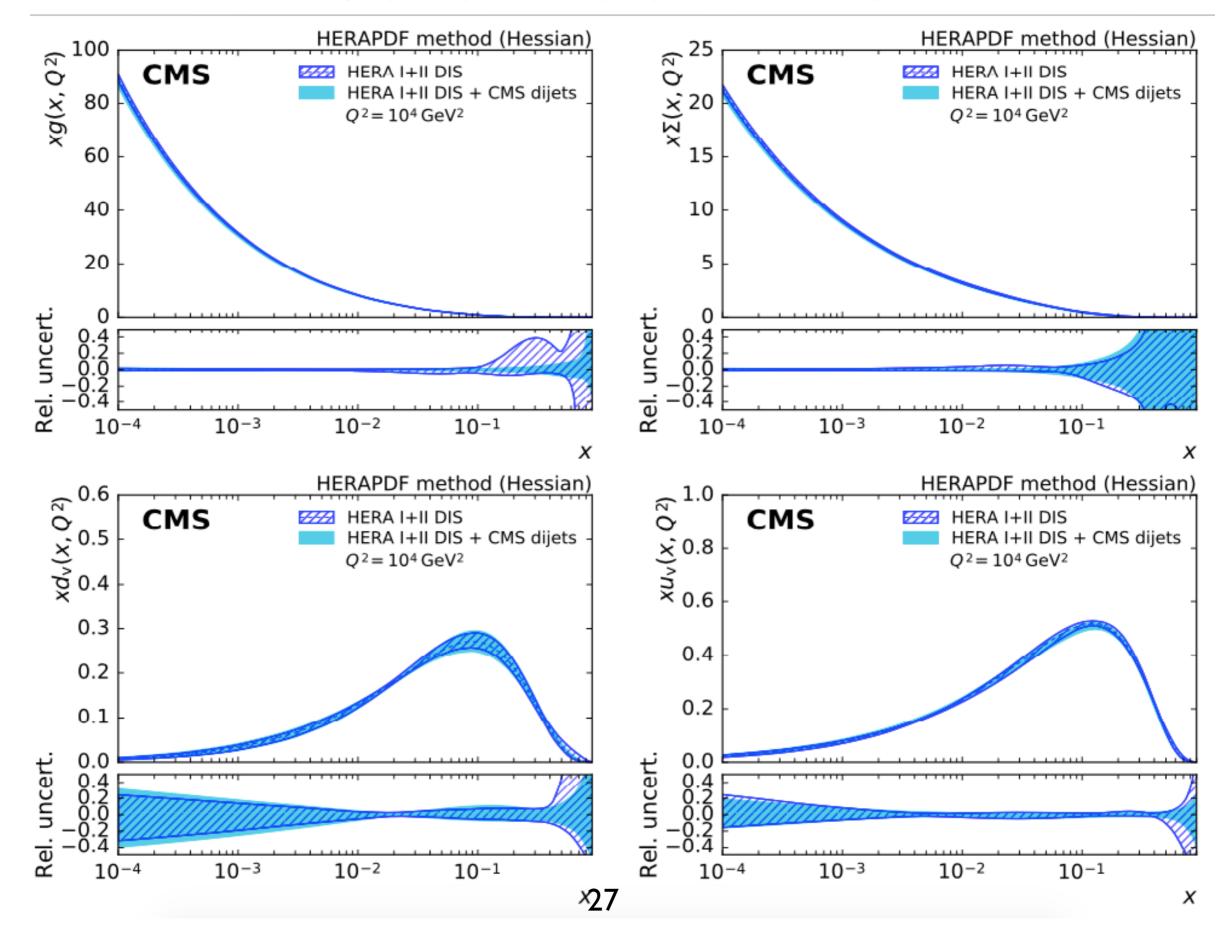
Results at Large yb



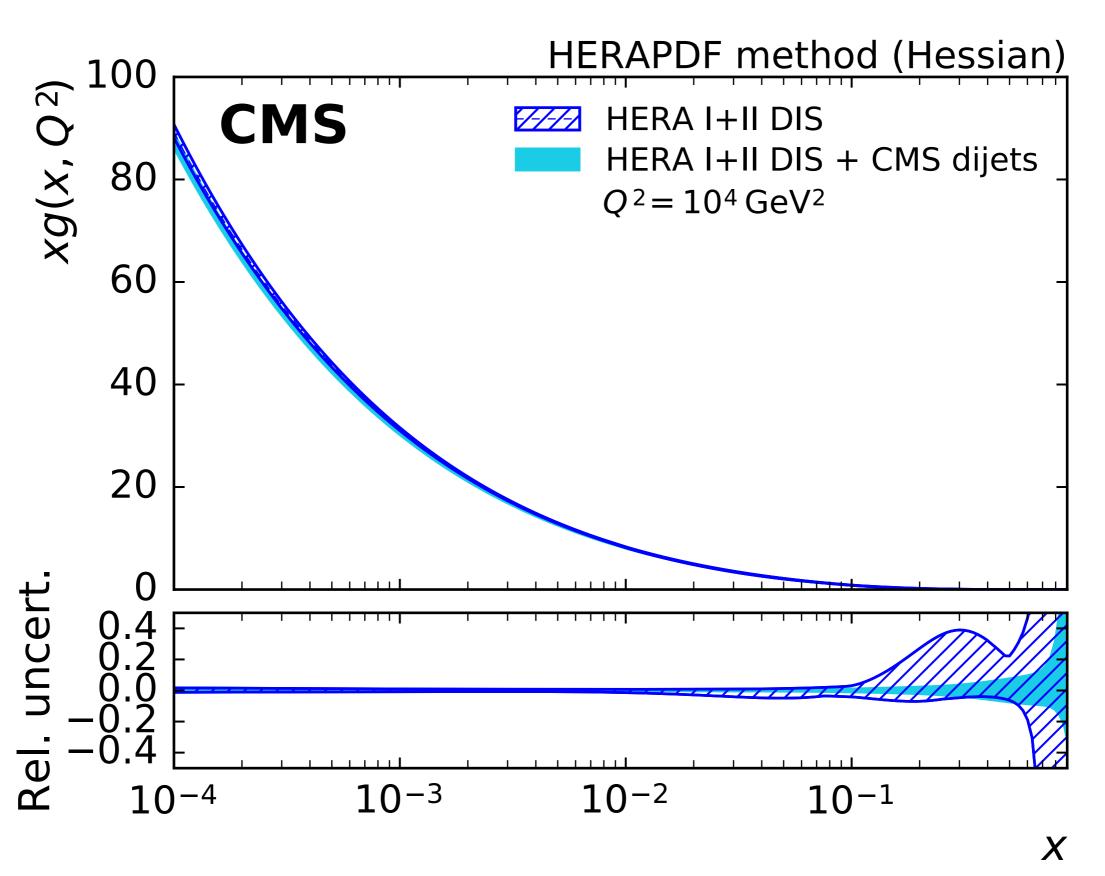
Results at Large yb

Where experimental results could contribute NS 1.6 NS 1.4 O 1.2 $19.7 \, \text{fb}^{-1} \, (8 \, \text{TeV})$ **CMS** 0.3 $2 \le y_b < 3$ CMS $0 \leq y^* < 1$ Simulation $2 \le y_b < 3$ NNPDF 3.0-NLO $0 \le y^* < 1$ 3.0 1.0 Ratio to NNPDF 0 0 0 0 8 8 8 Data **Uncertainties Experimental uncertainty** Theoretical uncertainty Total Scale CT14 - NLO⊗EW⊗NP PDF -0.3NP MMHT 2014 - NLO⊗EW⊗NP ABM11 - NLO⊗EW⊗NP 300 200 300 200 p_{Tavg} [GeV] $p_{\mathsf{T},\,\mathsf{avg}}\,[\mathsf{GeV}]$

Contraint on PDFs



Contraint on PDFs



Extrapolation to Gluon PDFs at Lower Q²

