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Jets and Jet-related 
Measurements



Useful Links and Disclaimer

• Jet lectures by Gavin Salam

‣ https://gsalam.web.cern.ch/gsalam/teaching/
PhD-courses.html

• A lot of the material/ideas in this lecture 
are borrowed from his slides
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Definition of Jets



What Is a Jet?

5



What Is a Jet?
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• Collimated bundles of hadrons

‣ quarks or gluons that undergo soft and collinear 
showering, and then hadronization
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Why Jets?

• Differential cross sections of jets provide 
precision test of QCD

• Appear as the decay products of BSM 
heavy particles or of the SM bosons that 
BSM particles decay to

‣ Dijet resonance search

‣ W-jet, Z-jet, Higgs-jet
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LHC Jet Cross Section
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LHC Jet-related Searches
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An Event Display with Jets
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Jet Definition

• Jets can be reconstructed from

‣ hadrons (true-level or generator-level)

‣ calorimeter cells or tracks

‣ particle-flow objects (electrons, muons, photons, 
charged hadrons, neutral hadrons)

• Must be collinear and infrared safe

‣ collinear: angle between emitting gluons and 
original parton is much smaller than 1

‣ infrared: ratio of gluon to parton energy is much 
smaller than 1
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Combination of Particles into One Jet

• How do we decide if two particles should 
be combined and clustered into one jet?
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Combination of Particles into One Jet

• How do we decide if two particles should 
be combined and clustered into one jet?

• When do we stop?
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Jet Algorithms

• Sequential recombination

‣ most widely used at LHC and HERA

‣ successively undoes QCD branching

• Cone 

‣ most widely used at Tevatron

‣ directed energy flow
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kt Algorithm in e+e- Machines

• QCD branching probability grows with 
decreasing gluon energy and decreasing angle 
between emitted gluon and mother parton

• In e+e- machines, the kt algorithm is defined as:
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by G. Salam



kt Algorithm in e+e- Machines
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by G. Salamsingle parameter



kt Algorithm in Hadron Colliders
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kt Algorithm in Hadron Colliders
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by G. Salam

two parameters



Example: Should We Combine These Two Particles?
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Example: Should We Combine These Two Particles?
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pt,1

pt,2 d12 =min pt ,1
2 ,pt ,22( )ΔR12

2

R2

= pt ,1
2 ΔR12

2

R2

d1B = pt ,1
2 , 				d2B = pt ,22

d1B <d2B d12 <d1B ?



Common Sequential Recombination Algorithms

16



Shape of Jets from These Algorithms
• Although not infrared/collinear safe, cone algorithms 

give regular jet shapes, which makes it possible to 
predict acceptance

17



Shape of Jets from These Algorithms

• anti-kt algorithms can also give cone-like jet shapes
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Shape of Jets from These Algorithms

• anti-kt algorithms can also give cone-like jet shapes
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Comparison of Cone and Sequential Recombination

• See examples from the lectures of Gavin Salam 
in the attachment

19



Jet-Related 
Measurements



Dijet Cross Section 
Measurements



Triple-Differential Dijet Cross Section

• Three variables

22

Eur. Phys. J. C 77 (2017) 746
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Triple-Differential Dijet Cross Section

• Three variables
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Why Dijet Cross Section?

• Probe perturbative 
QCD

• Constrain PDFs and αs

‣ x>0.1 less known
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Results
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Results at Small yb
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Results at Small yb
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Due to soft gluon PDF and smaller αs



Results at Large yb
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Results at Large yb
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Where experimental results could contribute



Contraint on PDFs
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Contraint on PDFs
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Extrapolation to Gluon PDFs at Lower Q2
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