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Measurements of W 
and Z Cross Sections



Why W and Z bosons?

• W and Z boson signals are standard 
candles 

‣ The properties are well measured by 
previous experiments (also well predicted)

‣ Calibration of electron, muon, and photon 
efficiencies

• Many BSM theories predict particles that 
decay to W’s or Z’s
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Summary of SM Cross Section Measurements
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We always start from W and Z!
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Why Are e/μ Channels Better
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Why Are e/μ Channels Better

• Hadronic channels have huge 
background from the QCD 
dijet production

• Dijet mass resolution about 
15-20%

‣ driven by both jet energy and 
angular resolution

‣ Can’t separate W and Z

• Narrower mass peaks means 
larger signal to background 
ratio
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Discovery of x ?
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Early Di-electron Mass Spectra
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Muon and Electron Energy Resolution

67

by R. Cavanaugh



More about Gaussian Sum Filter Algorithm

Electron

• Ideally, like a 
photon with a 
track

‣ But energy spreads 
in Φ due to 
tracker material

‣ Need to add 4-
momentum of 
photons back
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Background to Electrons of Interest

69

Drawing from M. Shapiro



Background to Electrons of Interest
• Photons that convert early or overlap of a random 

track with a photon

69

Drawing from M. Shapiro



Background to Electrons of Interest
• Photons that convert early or overlap of a random 

track with a photon

• Hadrons (early shower, overlap)

69

Drawing from M. Shapiro



Background to Electrons of Interest
• Photons that convert early or overlap of a random 

track with a photon

• Hadrons (early shower, overlap)

• Semileptonic decays of hadrons
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Drawing from M. Shapiro



Electron ID Variables

• Basically the same as photon ID variables, with 
addition of tracker-calorimeter matching

‣ Shower shape

‣ Isolation

‣ Require hits in the most inner layer of tracker or 
reconstruct conversions explicitly (reduce photon 
conversions)
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The Cleanest Object: Muon
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Muon ID Variables

• Isolation

• Minimum amount of energy in calorimeters

• Matching quality between tracker and muon 
chamber information

• Track quality

‣ Number of hits

‣ Impact parameter

‣ Fit chi-square
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Event Selection Criteria

• W

‣ An electron or a muon candidate

‣ Remove events with a second isolated leptons

• Z

‣ Two isolated electrons or two isolated muons

• Form transverse mass for W, invariant mass for Z
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Background Processes

• W

‣ QCD multi-jet events

‣ Photon + jet events

‣ Drell-Yan production 
with one missing lepton

‣ Leptonic decays of tau-
channel of W and Z 
production

‣ Top quark pair and di-
boson production

74

• Z

‣ QCD multi-jet events

‣ Top quark pair, di-
boson production
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W Candidates (Electron Channel)

• Signal shapes from 
simulation

• Background 
shapes validated 
with simulation 
and control data 
with inverted 
selection
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W Candidates (Muon Channel)

• Signal and most 
background shapes 
from simulation

• QCD Background 
shape from 
control data with 
inverted isolation
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Z Candidates
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0 0.2 0.4 0.6 0.8 1 1.2

 = 7 TeVs at   -12.9 pbCMS

              [with PDF4LHC 68% CL uncertainty]
NNLO, FEWZ+MSTW08 prediction, 60-120 GeV 

 0.04 nb±     0.97 

 ee→Z 
 nblumi 0.11±  syst 0.06±  stat 0.04±0.96 

µµ →Z 
 nblumi 0.10±  syst 0.02±  stat 0.03±0.92 

(combined) ll   →Z 
 nblumi 0.10±  syst 0.02±  stat 0.03±0.93 

Summary of W and Z Cross Sections

78

 )   [nb]ν l→ B( W × WX ) →( pp σ
0 2 4 6 8 10 12

 = 7 TeVs at   -12.9 pbCMS

 [with PDF4LHC 68% CL uncertainty]
NNLO, FEWZ+MSTW08 prediction 

 0.52 nb±    10.44 

ν e→W 
 nblumi 1.10±  syst 0.52±  stat 0.10±10.04 

νµ →W 
 nblumi 1.09±  syst 0.31±  stat 0.09±9.92 

(combined) ν l→W 
 nblumi 1.09±  syst 0.28±  stat 0.07±9.95 



 ll )   [nb]→ B( Z × ZX ) →( pp σ
0 0.2 0.4 0.6 0.8 1 1.2

 = 7 TeVs at   -12.9 pbCMS

              [with PDF4LHC 68% CL uncertainty]
NNLO, FEWZ+MSTW08 prediction, 60-120 GeV 

 0.04 nb±     0.97 

 ee→Z 
 nblumi 0.11±  syst 0.06±  stat 0.04±0.96 

µµ →Z 
 nblumi 0.10±  syst 0.02±  stat 0.03±0.92 

(combined) ll   →Z 
 nblumi 0.10±  syst 0.02±  stat 0.03±0.93 

Summary of W and Z Cross Sections

78

 )   [nb]ν l→ B( W × WX ) →( pp σ
0 2 4 6 8 10 12

 = 7 TeVs at   -12.9 pbCMS

 [with PDF4LHC 68% CL uncertainty]
NNLO, FEWZ+MSTW08 prediction 

 0.52 nb±    10.44 

ν e→W 
 nblumi 1.10±  syst 0.52±  stat 0.10±10.04 

νµ →W 
 nblumi 1.09±  syst 0.31±  stat 0.09±9.92 

(combined) ν l→W 
 nblumi 1.09±  syst 0.28±  stat 0.07±9.95 

11% uncertainty from 
initial luminosity 
measurement



 ll )   [nb]→ B( Z × ZX ) →( pp σ
0 0.2 0.4 0.6 0.8 1 1.2

 = 7 TeVs at   -12.9 pbCMS

              [with PDF4LHC 68% CL uncertainty]
NNLO, FEWZ+MSTW08 prediction, 60-120 GeV 

 0.04 nb±     0.97 

 ee→Z 
 nblumi 0.11±  syst 0.06±  stat 0.04±0.96 

µµ →Z 
 nblumi 0.10±  syst 0.02±  stat 0.03±0.92 

(combined) ll   →Z 
 nblumi 0.10±  syst 0.02±  stat 0.03±0.93 

Summary of W and Z Cross Sections

78

 )   [nb]ν l→ B( W × WX ) →( pp σ
0 2 4 6 8 10 12

 = 7 TeVs at   -12.9 pbCMS

 [with PDF4LHC 68% CL uncertainty]
NNLO, FEWZ+MSTW08 prediction 

 0.52 nb±    10.44 

ν e→W 
 nblumi 1.10±  syst 0.52±  stat 0.10±10.04 

νµ →W 
 nblumi 1.09±  syst 0.31±  stat 0.09±9.92 

(combined) ν l→W 
 nblumi 1.09±  syst 0.28±  stat 0.07±9.95 

11% uncertainty from 
initial luminosity 
measurement

Apart from luminosity 
uncertainty, experimental 
uncertainty comparable to 

theoretical uncertainty
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More W+ than W- 
because this is a pp collider



Comparison with Other Measurements
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