The First 15 CMS Physics Papers

	15	EXO-10-017	Search for Microscopic Black Hole Signatures at the Large Hadron Collider PLB 69		PLB 697 (2011) 434-453	16 December 2010	
	14	EWK-10-002 Measurements of Inclusive W and Z Cross Sections in pp Collisions at \sqrt{s} = 7 TeV		surements of Inclusive W and Z Cross Sections in pp Collisions at \sqrt{s} = 7 TeV	JHEP 01 (2011) 080	12 December 2010	
	13	QCD-10-019	Measurement	of the Isolated Prompt Photon Production Cross Section in pp Collisions at \sqrt{s} = 7 TeV	PRL 106 (2011) 082001	3 December 2010	
	12 <u>EXO-10-003</u> Search for Sto			Search for Stopped Gluinos in pp collisions at \sqrt{s} = 7 TeV	PRL 106 (2011) 011801	26 November 2010	
	11	QCD-10-004	С	harged particle multiplicities in pp interactions at \sqrt{s} = 0.9, 2.36, and 7 TeV	JHEP 01 (2011) 079	25 November 2010	
	10	BPH-10-002		Prompt and non-prompt J/w production in pp collisions at $\sqrt{s} = 7 \text{ TeV}$	EPJC 71 (2011) 1575	18 November	
4		EWK-10-002 Measurements of Inclusive W and Z Cross Sections in pp Collisions at \sqrt{s} = 7 TeV		JHEP (2011) 080	_		
	7	EXO-10-010		Search for Dijet Resonances in 7 TeV pp Collisions at CMS	PRL 105 (2010) 211801	2010	
6 QCD-10-002		Observation	of Long-Range, Near-Side Angular Correlations in Proton-Proton Collisions at the LHC	JHEP 09 (2010) 091	22 September 2010		
	5	TRK-10-001		OMO T 11 D (D 11 (D 11 11 10 0 11	ED 10 70 (0040) 4405	14 July 2010	
		QCD-10-001 First Measurement of the Underlying Event Activity at the LHC with \sqrt{s} = 0.9 TeV EPJC 70 (2010) 555-572		CMS Tracking Performance Results from Early LHC Operation	EPJC 70 (2010) 1165	14 July 2010	
	4	QCD-10-001	Firs			11 June 2010	
i	3	QCD-10-001 QCD-10-003				-	
į	3		First Measurement	It Measurement of the Underlying Event Activity at the LHC with \sqrt{s} = 0.9 TeV	EPJC 70 (2010) 555-572	11 June 2010	

Measurements of Wand Z Cross Sections

Why W and Z bosons?

- W and Z boson signals are standard candles
 - The properties are well measured by previous experiments (also well predicted)
 - Calibration of electron, muon, and photon efficiencies
- Many BSM theories predict particles that decay to W's or Z's

Summary of SM Cross Section Measurements

Summary of SM Cross Section Measurements

We always start from W and Z!

W⁺ DECAY MODES

Fraction (Γ_i/Γ)

$$\ell^+ \nu$$
 $e^+ \nu$
 $\mu^+ \nu$
 $\tau^+ \nu$
hadrons

[a]
$$(10.86\pm 0.09)\%$$

 $(10.71\pm 0.16)\%$
 $(10.63\pm 0.15)\%$
 $(11.38\pm 0.21)\%$
 $(67.41\pm 0.27)\%$

Z DECAY MODES

Fraction (Γ_i/Γ)

e^+e^-	
$\mu^+\mu^-$	
$ au^+ au^-$	
$\ell^+\ell^-$	
invisible	
hadrons	

[a] (
$$3.3632 \pm 0.0042$$
) % [a] (3.3662 ± 0.0066) %

[a]
$$(3.3696 \pm 0.0083) \%$$

[a,b] $(3.3658 \pm 0.0023) \%$

[a]
$$(20.000 \pm 0.055)$$
 %

[a]
$$(69.911 \pm 0.056)$$
 %

 Hadronic channels have huge background from the QCD dijet production

- Hadronic channels have huge background from the QCD dijet production
- Dijet mass resolution about 15-20%
 - driven by both jet energy and angular resolution
 - Can't separate W and Z

- Hadronic channels have huge background from the QCD dijet production
- Dijet mass resolution about 15-20%
 - driven by both jet energy and angular resolution
 - Can't separate W and Z
- Narrower mass peaks means larger signal to background ratio

Discovery of x?

Phys. Rev. Lett. 106, 171801 (2011)

Early Di-electron Mass Spectra

Early Di-muon Mass Spectra

Muon and Electron Energy Resolution

by R. Cavanaugh

Electron

- Ideally, like a photon with a track
 - But energy spreads in Φ due to tracker material
 - Need to add 4momentum of photons back

More about Gaussian Sum Filter Algorithm

Electron

$$x_p \pm \sigma_p$$
 prediction $x_h \pm \sigma_h$ hit

New x =
$$\frac{(x_p / \sigma_p^2) + (x_h / \sigma_h^2)}{(1 / \sigma_p^2) + (1 / \sigma_h^2)}$$
 = weighted average

Kalman Filter, figure by D. Stuart

Electron

- Ideally, like a photon with a track
 - But energy spreads in Φ due to tracker material
 - Need to add 4momentum of photons back

More about Gaussian Sum Filter Algorithm

 Photons that convert early or overlap of a random track with a photon

- Photons that convert early or overlap of a random track with a photon
- Hadrons (early shower, overlap)

- Photons that convert early or overlap of a random track with a photon
- Hadrons (early shower, overlap)
- Semileptonic decays of hadrons

Electron ID Variables

- Basically the same as photon ID variables, with addition of tracker-calorimeter matching
 - Shower shape
 - Isolation
 - Require hits in the most inner layer of tracker or reconstruct conversions explicitly (reduce photon conversions)

 High reconstruction (~99%) and identification efficiency (~95%)

- High reconstruction (~99%) and identification efficiency (~95%)
- Better than 10% p_T resolution for muon p_T

- High reconstruction (~99%) and identification efficiency (~95%)
- Better than 10% p_T resolution for muon p_T
- Backgrounds:
 - Decay in flight
 - Punch through
 - Overlap of random tracks with noise in the muon chamber

π^+ DECAY MODES

$$\mu^+ \nu_{\mu}$$

[a]
$$(99.98770 \pm 0.00004)$$
 %

D+ DECAY MODES

$$e^+$$
 semileptonic μ^+ anything

$$(16.07 \pm 0.30)$$

$$(17.6 \pm 3.2)$$

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

$$\ell^+ \,
u_\ell$$
 anything

[a]
$$(10.69 \pm 0.22)\%$$

- High reconstruction (~99%) and identification efficiency (~95%)
- Better than 10% p⊤ resolution for muon p⊤
- Backgrounds:
 - Decay in flight
 - Punch through
 - Overlap of random tracks with noise in the muon chamber

- High reconstruction (~99%) and identification efficiency (~95%)
- Better than 10% p_T resolution for muon p_T
- Backgrounds:
 - Decay in flight
 - Punch through
 - Overlap of random tracks with noise in the muon chamber

Muon ID Variables

- Isolation
- Minimum amount of energy in calorimeters
- Matching quality between tracker and muon chamber information
- Track quality
 - Number of hits
 - Impact parameter
 - Fit chi-square

Event Selection Criteria

- W
 - An electron or a muon candidate
 - Remove events with a second isolated leptons
- Z
 - Two isolated electrons or two isolated muons
- Form transverse mass for W, invariant mass for Z

Event Selection Criteria

- W
 - An electron or a muon candidate
 - Remove events with a second isolated leptons
- Z
 - Two isolated electrons or two isolated muons
- Form transverse mass for W, invariant mass for Z

$$m_{\mathrm{T}} = \sqrt{2 p_{\mathrm{T}}^{\ell} E_{\mathrm{T}}^{\mathrm{miss}} (1 - \cos \Delta \phi)}$$

Event Selection Criteria

- W
 - An electron or a muon candidate
 - Remove events with a second isolated leptons
- Z
 - Two isolated electrons or two isolated muons
- Form transverse mass for W, invariant mass for Z

$$m_{\mathrm{T}} = \sqrt{2 \; p_{\mathrm{T}}^{\ell} \; E_{\mathrm{T}}^{\mathrm{miss}} \; (1 - \cos \Delta \phi)}$$

Background Processes

- W
 - QCD multi-jet events
 - Photon + jet events
 - Drell-Yan production with one missing lepton
 - Leptonic decays of tauchannel of W and Z production
 - Top quark pair and diboson production

- Z
 - QCD multi-jet events
 - Top quark pair, diboson production

W Candidates (Electron Channel)

- Signal shapes from simulation
- Background shapes validated with simulation and control data with inverted selection

W Candidates (Electron Channel)

$$f(E_{\mathrm{T}}) = E_{\mathrm{T}} \times \exp\left(-\frac{E_{\mathrm{T}}^2}{2(\sigma_0 + \sigma_1 E_{\mathrm{T}})^2}\right)$$

- Signal shapes from simulation
- Background shapes validated with simulation and control data with inverted selection

W Candidates (Muon Channel)

$$m_{\mathrm{T}} = \sqrt{2 p_{\mathrm{T}}^{\ell} E_{\mathrm{T}}^{\mathrm{miss}} (1 - \cos \Delta \phi)}$$

- Signal and most background shapes from simulation
- QCD Background shape from control data with inverted isolation

Z Candidates

Summary of W and Z Cross Sections

Summary of W and Z Cross Sections

Summary of W and Z Cross Sections

I 1% uncertainty from initial luminosity measurement

NNLO, FEWZ+MSTW08 prediction, 60-120 GeV [with PDF4LHC 68% CL uncertainty]

2.9 pb⁻¹ at $\sqrt{s} = 7$ TeV

Apart from luminosity uncertainty, experimental uncertainty comparable to theoretical uncertainty

Ratio of Cross Sections

Ratio of Cross Sections

Ratio of Cross Sections

More W⁺ than W⁻ because this is a pp collider

Comparison with Other Measurements

