
Experimental Methods 
and Physics at the LHC 

Shin-Shan Eiko Yu
Department of Physics, National Central University, 

Taiwan

24th Vietnam School of Physics: Particles and Cosmology



First Measurements 
with Run 1 CMS Data



Questions

3



Questions
• What measurements can be performed with 

minimum amount of data?

3



Questions
• What measurements can be performed with 

minimum amount of data?

‣ Physics processes with large cross sections

3



Questions
• What measurements can be performed with 

minimum amount of data?

‣ Physics processes with large cross sections

‣ Physics processes that have clean signatures

3



Questions
• What measurements can be performed with 

minimum amount of data?

‣ Physics processes with large cross sections

‣ Physics processes that have clean signatures

• What measurements can be performed with 
minimum number of working sub-detectors?

3



Questions
• What measurements can be performed with 

minimum amount of data?

‣ Physics processes with large cross sections

‣ Physics processes that have clean signatures

• What measurements can be performed with 
minimum number of working sub-detectors?

‣ Provided that the magnet is working

3



Questions
• What measurements can be performed with 

minimum amount of data?

‣ Physics processes with large cross sections

‣ Physics processes that have clean signatures

• What measurements can be performed with 
minimum number of working sub-detectors?

‣ Provided that the magnet is working

• Before we explore the new territory, we need to 
make sure we understand our old friends 
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Number of Produced Events per Second
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☚ 108/sec  Total number of pp 
interactions, ~60% inelastic

☚ 200/sec   W boson
☚ 60/sec      Z boson

☚ 0.8/sec   top quark

☚ 0.045/sec      Higgs

Current instantaneous luminosity 
is 20 times higher!
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Number of Produced Events per Second

5

☚ 108/sec  Total number of pp 
interactions, ~60% inelastic

☚ 100/sec   W boson
☚ 30/sec      Z boson

☚ 0.2/sec   top quark

☚ 0.001/sec      Higgs

Initial instantaneous luminosity 
was 10 times lower!



What Does History Tell Us?
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To look for a needle in a haystack, we need to 
understand the haystack as well!



Otherwise ...
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From the Beginning to the End
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Collider
pp or ppbar collisions Detector and Trigger

Reconstruction of 
basic objects: 

track, γ, e, μ, τ, jet, 
b-jet, missing ET

Combining objects 
and perform physics 

analysis



Signatures of Physics Objects
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Measurement of Charge 
Hadron Distributions
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Charge Hadron Multiplicity vs. pT and η
• 0.9 TeV results came from 2-hour of 

commissioning data taken in December 2009

• 2.36 TeV results were the highest-energy 
measurements

‣ Tevatron ppbar collisions √s = 1.96 TeV

• 7 TeV results came from 1.1 μb-1 of data taken on 
30 March 2010 in the first hour of LHC 7 TeV 
operation

‣ Inelastic pp collision rate: 50 Hz 

‣ Results without magnetic field consistent within 1.5%
12
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Charge Hadron Multiplicity vs. η
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Charge Hadron Multiplicity vs. pT
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Measurement of 
Isolated Prompt 

Photon Cross Section
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Why Photons?

• Test perturbative QCD in a wide range of 
photon ET and pseudo-rapidity η and 
potentially provide constraint to gluon PDF

• Energy well measured by EM calorimeters 
(better energy resolution and less uncertainty 
on energy scale), could be used to calibrate jet 
energy scale
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Why Photons?

• Many theories beyond SM predict signatures 
with photons

‣ Photons do not decay (no reduction in rates due 
to BR)

‣ QCD photons are background to search for new 
physics

‣ Establish benchmark for photon ID and 
background estimate

19



Background to Searches
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Search for Higgs→γγ
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Discovery of x ?
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Phys. Rev. Lett. 
106, 171801 (2011)



Discovery of x ?

22

Phys. Rev. Lett. 
106, 171801 (2011)



Discovery of x ?

23

• The fake signal was due to two mis-modelings of 
background distributions

‣Fake electrons, energy of quark vs gluon jet



What Are Prompt Photons?

• Prompt photons are high-pT photons that take 
part directly in the hard process

• Prompt photons do not come from decays of 
hadrons (π0, η).

24



Inclusive Photon Cross Section

• For early measurements, 
we study only the photon 
side

‣Minimize the selection 
requirement

‣Calibration of jet energy 
needs some time

‣No signal reduction due 
to the acceptance of jets

25
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What You Observe in the Data
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Nobserved =σ ⋅L ⋅ε



Cross Section Definition

• Inclusive, isolated, prompt photon cross section

• no explicit requirement on the other objects in the 
same event

27

• Nγ: number of signal photons

• U: correction of energy resolution and loss of energy 
in the reconstruction (reconstructed → true) 

• ε: efficiency of reconstruction, identification, and 
trigger selections



Photon Reconstruction
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Photon Reconstruction
• Naively, one would think that photon is like 

electron without track.

• Photon interacts with ECAL material, convert into 
electron and positron pair, electron and positron 
bremsstrahlung, and so on and so forth→shower in 
ECAL

• Just sum up (cluster) the energy in calorimeter cells?
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Photon Reconstruction
• Naively, one would think that photon is like 

electron without track.

• Photon interacts with ECAL material, convert into 
electron and positron pair, electron and positron 
bremsstrahlung, and so on and so forth→shower in 
ECAL

• Just sum up (cluster) the energy in calorimeter cells?

• But the large tracker material budget makes 
photon convert frequently.

• In CMS ECAL, 97% of non-converted photon energy 
is contained in 5x5 crystals.

28



Tevatron Detectors

29

Electromagnetic Calorimeter 

Hadron Calorimeter 

CDF Central Calorimeters
• CDF central ECAL (lead+scintillator), |η| < 1.1

• shower profile detector at 6 X0

• 18 X0, Δη×Δφ=0.1×0.26

• tracker 0.2 X0, B=1.4 Tesla 

• ~3% energy resolution at 50 GeV

•D0 central ECAL (uranium + liquid argon),    
|η| < 1.1

•four longitudinal readouts (2, 2, 7, 10 X0)

•Δη×Δφ=0.1×0.1 (0.05 × 0.05 for EM3)

•tracker 0.3 X0, B= 2.0 Tesla

•~3.6% energy resolution at 50 GeV

2 mm resolution 

Δη×Δφ
=0.01×0.01



LHC Detectors

30

• ATLAS ECAL (lead+liquid argon), |η| < 3.2

• three longitudinal readouts (3-5, 17, 
4-15 X0)

• Δη×Δφ= 0.003-0.006× 0.098, 
0.025×0.0245, 0.05×0.0245

• tracker: 0.5-2.5 X0, B=2.0 Tesla

• 1.6-2.5% energy resolution at 50 GeV

•CMS ECAL (PbWO4 crystals), |η| < 3.0

•~25 X0, Δη×Δφ=0.0174×0.0174

•tracker: 0.5-2 X0, B=3.8 Tesla

•< 1% energy resolution for 
unconverted barrel photons above 
20 GeV

ATLAS

CMS



Amount of Material in LHC Trackers

31

ATLAS CMS

On average, about 1 X0 in |η| < 1.45 before photons reach ECAL and 
photons convert ~65% of the time. 
Compared to CDF where photons convert in front of preshower+ECAL 
~15% of the time.



Previous Measurements at Tevatron

• Barrel photons only

• Use shower shape 
and isolation

32

ηγ <0.9,	ETiso ET
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γ <0.1



Overall Comparison
• Tevatron measurements

‣ worse energy and angular resolution

‣ loss of converted photons < 15%

• LHC measurements

‣ a factor of 2 better energy resolution

‣ need to recover converted photons (could 
be as large as 70%)

33

CDF, D0

ATLAS, CMS

|η| < 1.0

|η| < 2.5



A Way to Resolve the Problem at LHC

• Build superclusters of small clusters

• Small clusters that are close-by are likely to 
come from photon conversion or electron 
bremsstrahlung. 

• Again, take CMS photon reconstruction 
algorithm in ECAL barrel as an example.

34



Algorithm Step 1

35 Slide from A. Askew
Δη x ΔΦ=0.0175x0.0175



Algorithm Step 2

36 Slide from A. Askew
Δη x ΔΦ=0.0175x0.0175



Algorithm Step 3

37 Slide from A. Askew
The magnetic field is along the z axis.
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More on Algorithm

• These steps form superclusters.

• ±17 steps in Φ direction (limit photon energy to 10 
GeV and above)

• If the ratio of energy deposited in 3x3 crystals to 
the energy of supercluster is very close to 1, take 
the energy deposited in 5x5 crystals as photon 
energy.

• Photon momentum is defined from the primary 
vertex to the energy-weighted cluster position. 

38
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Sagitta and Bending Distance

39

Δx

Δx ≅ 4s

					 ≅ 	 0.3	BL
2

2	pT

Important for estimating separation between 
electrons and photons due to bremsstrahlung 
and conversion, also separation between 
neutral and charged particles in the particle 
flow algorithm.

D. Stuart



Explicitly Reconstruct Converted Photons

• Start from ECAL cluster, 
going inwards to find hits in 
the tracker

‣ the search road depends on 
energy measured in ECAL 

• From the inner most layer 
where the track ends, going 
outwards to find the second 
track

• Alternative method by 
starting from tracker

40
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Background to Photons of Interest

• Signal photons are:

• Produced directly from hard scattering

• Decays of exotic particle (such as Higgs)

• Background photons are:

• Electrons due to loss of track or hard BREM

• Photons from decays of neutral hadrons (such as π0, η0, 
Ks

0)

• Non-collision photons due to BREM of beam halo, cosmic 
muons

• Hadron-induced electronic noise (spikes)

41



Background Photons

• When the two photons are close by, a jet 
could be mis-identified as a single photon

42

Δθmin ~
2mπ

Pπ



How to “Separate” Signal and Background

• Event-by-event separation couldn’t be 
achieved, need to estimate background 
on a statistical basis.

• Some variables are used to apply 
preselections, others are used to 
estimate remaining background. 

43



Strategy

• Obtain signal and background templates 
from the control samples

• Fit data to 

44

background 

signal 

DATA 

NdataPdata =NsigPsig +NbkgPbkg

Photon ID variable



Background Templates

• ID1 and ID2 are not correlated

• If we use ID1 to be our fitting variable, we could use events in 
regions C and D to model the background in regions A and B

45

ID 1

ID
 2

A: photon 
candidates that 
satisfy our 
selection, could 
contain our signal



The Usual Photon ID Variables
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The Usual Photon ID Variables
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Shower Shape:
shape of energy  
distribution in ECAL

γ 
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In the Photon Analysis

• Balance between efficiency and purity

• Want high purity to reduce uncertainty from 
background

• Want to calibrate efficiency with electrons

• Before we get enough real photons from final 
state radiation of W or Z leptonic decays

47



Estimation of Photon Purity

48

EM shower 
shape
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Estimation of Photon Purity
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EM shower 
shape

Signal Jet 

Control sample from data 
with photon candidates 

failing track isolation requirements

Signal fraction = 38% at 25GeV to 80% at 100GeV



Purity of Photon Candidates

49



Identification Efficiency

50

• Obtain data to MC scaling factors from W, Z electrons and 
photons from Z→μμγ (CMS no-pixel-seed requirement)

• Efficiency=  0.916 ± 0.034

• Systematic uncertainty from statistics of control samples and 
difference between electrons and photons

Passed 
probes

Failed 
probes



Photon Energy Resolution

• ECAL energy resolution calibrated with 
π0, η0, Z and cross-checked with Z→μμγ

• For photon at pT=60 GeV, resolution is 
1.1-2.6% in barrel and 2.2-5.0% in endcaps

51



Comparison with Theory

• NLO prediction with JETPHOX    

      JHEP 0205:028(2002) 

• μR=μF=μf=ET(γ)

• PDF: CT10 

• Correction of UE and hadronization = 
0.97±0.02

52

http://lapth.in2p3.fr/PHOX_FAMILY/jetphox.html


CMS Results

• Use only 10% of 2010 data

• Theory predictions agree with data from 21 
to 300 GeV

53



Previous Photon Cross Sections

54

xT=2pT/√s
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Isolation and Converted Photons
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Results with Full 2010 Data

57

• Data are presented in four regions of η
• Predictions agree with data over 6 orders of 

magnitude


