

Introduction to Sub-detectors

CMS Experiment at the LHC, CERN Tue 2010-Mar-30 13:23:00 CET Run 132440 Event 428568 C O M Energy 7 00TeV

CMS Experiment at the LHC, CERN Tue 2010-Mar-30 13:23:00 CET Run 132440 Event 428568 C O M Energy 7 00TeV

Particles in the Detector

Name	Mass (MeV)	Lifetime	Travel for I GeV [m]	
е	0.51	>4.6×10 ²⁶ year	>8.5×1045	
μ	105.66	2.2×10-6 sec	6250	
τ	1776.82	2.9×10-13 sec	4.9×10 ⁻⁵	
π0	134.98	8.4×10-17 sec	1.9×10 ⁻⁷	
π±	139.57	2.6×10 ⁻⁸ sec	56	
K±	493.68	1.2×10 ⁻⁸ sec	7.5	
B ⁰	5279.5	1.5×10 ⁻¹² sec	8.7×10-5	
Р	938.27	>2.1×10 ²⁹ year	>2.1×1045	
n	939.57	885.7 sec	2.8×10 ¹¹	
W	80399	10 ⁻²⁵ sec	3.7×10-19	
Z	91187.6	10 ⁻²⁵ sec	3.3×10-19	

Particles in the Detector

Name	Mass (MeV)	Lifetime	Travel for I GeV [m]	
е	0.51	>4.6×10 ²⁶ year	>8.5×1045	
μ	105.66	2.2×10-6 sec	6250	
τ	1776.82	2.9×10-13 sec	4.9×10-5	
π0	134.98	8.4×10-17 sec	I.9×I0⁻ ⁷	
π±	139.57	2.6×10 ⁻⁸ sec	56	
K±	493.6 <mark>0</mark>	1.2×10 ⁻⁸ sec	7.5	
B ⁰	5279.	5×10 ⁻¹² sec	8.7×10 ⁻⁵	
Р	938.27	>2.1×10 ²⁹ year	>2.1×1045	
n	939.57	885.7 sec	2.8×10 ¹¹	
W	80399	10 ⁻²⁵ sec	3.7×10 ⁻¹⁹	
Z	91187.6	10 ⁻²⁵ sec	3.3×10 ⁻¹⁹	

• Particles have their distinctive features in the detectors

- Particles have their distinctive features in the detectors
 - Need to combine information of several sub-detectors, e.g. electron leaves signal in the tracker and electromagnetic (EM) calorimeter

- Particles have their distinctive features in the detectors
 - Need to combine information of several sub-detectors, e.g. electron leaves signal in the tracker and electromagnetic (EM) calorimeter
- For most of the cases, we are detecting the decay products of the particles we want to "see" and study

- Particles have their distinctive features in the detectors
 - Need to combine information of several sub-detectors, e.g. electron leaves signal in the tracker and electromagnetic (EM) calorimeter
- For most of the cases, we are detecting the decay products of the particles we want to "see" and study
 - γ, e, µ, charged hadrons, neutral hadrons

CMS Detector Sketch

 Cylindrical shape → uniform magnetic field and φ symmetry in physics

- Cylindrical shape → uniform magnetic field and φ symmetry in physics
- Going outwards from the beam pipe are:

- Cylindrical shape →uniform magnetic field and φ symmetry in physics
- Going outwards from the beam pipe are:
 - Tracker: silicon sensors (pixel, strips), drift chamber → detect and measure momentum of charged particles, reconstruct primary and secondary vertices

- Cylindrical shape \rightarrow uniform magnetic field and ϕ symmetry in physics
- Going outwards from the beam pipe are:
 - Tracker: silicon sensors (pixel, strips), drift chamber → detect and measure momentum of charged particles, reconstruct primary and secondary vertices
 - Electromagnetic calorimeter: crystal, sampling calorimeter (lead + scintillator/liquid argon)→detect electrons, photons, π⁰s

- Cylindrical shape \rightarrow uniform magnetic field and ϕ symmetry in physics
- Going outwards from the beam pipe are:
 - Tracker: silicon sensors (pixel, strips), drift chamber → detect and measure momentum of charged particles, reconstruct primary and secondary vertices
 - Electromagnetic calorimeter: crystal, sampling calorimeter (lead + scintillator/liquid argon)→detect electrons, photons, π⁰s
 - Hadron calorimeter: sampling calorimeter (iron/brass)
 +scintillator → detect charged/neutral, stable hadrons

- Cylindrical shape →uniform magnetic field and φ symmetry in physics
- Going outwards from the beam pipe are:
 - Tracker: silicon sensors (pixel, strips), drift chamber → detect and measure momentum of charged particles, reconstruct primary and secondary vertices
 - Electromagnetic calorimeter: crystal, sampling calorimeter (lead + scintillator/liquid argon)→detect electrons, photons, π⁰s
 - Hadron calorimeter: sampling calorimeter (iron/brass)
 +scintillator → detect charged/neutral, stable hadrons
 - Muon chamber: drift tubes, cathode strips → detect and (possibly) measure momentum of muons

Muon Chamber

CMS Detector

Hadron Calorimeter

Electromagnetic Calorimeter

Silicon Tracker

Superconducting Magnet B=3.8 Tesla

Muon Chamber

CMS Detector

Hadron Calorimeter

Electromagnetic Calorimeter

Silicon Tracker

Superconducting Magnet B=3.8 Tesla

Path of Various Particles

Silicon Tracker Electroma Calorim	gnetic eter Hadre	on heter Sup	erconductine				
			Solenoid	Iron retu	ırn yoke inte	rspersed	
	-		-	with	Muon cham	bers	0000
0 m	1 m	2 m	3 m	4 m	5 m	6 m	7 m
Key:	luon	Ele	ectron	Cha	arged Hadror	n (e.g. Pion)	
N	eutral Hadro	on (e.g. Neu	tron)	Phot	ton		

Path of Various Particles

Silicon Tracker Electroma Calorim	gnetic eter Hadre	on heter Sup	erconductine				
			Solenoid	Iron retu	ırn yoke inte	rspersed	
	-		-	with	Muon cham	bers	0000
0 m	1 m	2 m	3 m	4 m	5 m	6 m	7 m
Key:	luon	Ele	ectron	Cha	arged Hadror	n (e.g. Pion)	
N	eutral Hadro	on (e.g. Neu	tron)	Phot	ton		

• Charge

- Charge
- Particle momentum, mass (?), energy

- Charge
- Particle momentum, mass (?), energy
- Multiplicity

- Charge
- Particle momentum, mass (?), energy
- Multiplicity
- Point of decay, lifetime

- Charge
- Particle momentum, mass (?), energy
- Multiplicity
- Point of decay, lifetime
- All above require interaction of particles with detectors

- Charge
- Particle momentum, mass (?), energy
- Multiplicity
- Point of decay, lifetime
- All above require interaction of particles with detectors
- Particle detectors always rely on electromagnetic interaction

- Charge
- Particle momentum, mass (?), energy
- Multiplicity
- Point of decay, lifetime
- All above require interaction of particles with detectors
- Particle detectors always rely on electromagnetic interaction

Standard Collider Kinematic Variables

η-θ Conversion

By Mets501 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20392149

Charge Hadron Multiplicity

Phys. Lett. B 751 (2015) 143

Kinematic Variables

rapidity
$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

Under boost along the *z* direction

 $y \rightarrow y + \Delta y_b$

Kinematic Variables

rapidity
$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

For relativistic particle,
$$p \gg m$$

 $y \rightarrow \eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$ Homework

Center of Momentum Frame

If proton were a point-like particle, lab frame is also the center of momentum frame of the hard scattering.

Proton Is Not an Elementary Particle

Center of Momentum Frame

If proton were a point-like particle, lab frame is also the center of momentum frame of the hard scattering.

But ... proton has substructure, and the scattering constituents are partons inside proton (quarks and gluons). Therefore, the center of momentum frame varies event by event and does not coincide with the lab frame.

Therefore, we want to use kinematic variables that are invariant under the boost along the z direction.

Missing Transverse Momentum

• The negative of the total transverse momentum of all observed particles in the detector

Standard Collider Kinematic Variables

 $\Rightarrow \phi, p_T, \eta$

$$\Rightarrow \phi, p_T, \eta$$

• How do we measure these quantities?

$$\Rightarrow \phi, p_T, \eta$$

- How do we measure these quantities?
 - Basically, we need to measure the direction of momentum and the magnitude of transverse momentum.

$$\Rightarrow \phi, p_T, \eta$$

- How do we measure these quantities?
 - Basically, we need to measure the direction of momentum and the magnitude of transverse momentum.
- Which variable(s) will not change as particles travel through the detector?

How to Measure Momentum?

• Charged particle

Measure trajectory with tracker (silicon detector, gas chamber) + a magnetic field

67

Tracks

- Trajectory of charged particles
- Only possible for charged particle due to their ionization loss

Tracks

- Trajectory of charged particles
- Only possible for charged particle due to their ionization loss

Gas: ~0.5 keV/cm Liquid: ~300 keV/cm Solid: ~4 MeV/cm

Relative energy loss for 10 GeV particle: < 0.001% for a gas detector,

~ 5% for a solid detector

$$-\left\langle \frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Gas vs. Semiconductor

Average Energy Loss per Unit Length

CMS Tracker

CMS Tracker

CMS Tracker

CMS Tracker

CMS Tracker

What Could We Do with Tracks?

- Charge of a particle
 - Knowing they originate from the collision point, not from the sky
- Momentum of a particle (direction and magnitude)
- Reconstruct primary vertex
 - Momentum for neutral particles
 - pileup removal
- Reconstruct secondary vertex

b-tagging

Typical Track Parameters

Five helix parameters:

C: [half] curvature, signed

 $\cot(\theta)$: polar angle

D: Distance of closest approach to orign. (Also called impact parameter, d₀).

φ₀: Phi at closest approach

z₀: z at closest approach

Hanz Wenzel, CDF Note 1790

How to Obtain pT

Singly charged, in units of GeV/c, meter, and Tesla $\rightarrow p_T = 0.3 BR$

 $p_T = qBR$

Example: The CMS magnetic field is 3.8 Tesla. The trajectory of a 10 GeV charged particle at CMS is a helix with a radius of 8.8 m.

How to Obtain p_T

Singly charged, in units of GeV/c, meter, and Tesla $\rightarrow p_T = 0.3 BR$

 $p_T = qBR$

Example: The CMS magnetic field is 3.8 Tesla. The trajectory of a 10 GeV charged particle at CMS is a helix with a radius of 8.8 m.

A typical tracker has an outer radius of 1~1.5 m. ➡ Its trajectory is an arc (rather than a full circle)!

How to Obtain pT

Singly charged, in units of GeV/c, meter, and Tesla $\rightarrow p_T = 0.3 BR$

 $p_T = qBR$

Example: The CMS magnetic field is 3.8 Tesla. The trajectory of a 10 GeV charged particle at CMS is a helix with a radius of 8.8 m.

(I) What happens to a 0.1 GeV or 1 GeV charged particle?(2) How do we obtain p_z?

Sagitta and Momentum Resolution

L (level arm): tracker outer-inner radius

Usually *s* (sagitta) $\ll R$

$$\Rightarrow R \cong \frac{L^2}{8s}, \ p_T \cong \frac{qBL^2}{8s} = \frac{0.3 BL^2}{8s}$$
 Homework

Sagitta and Momentum Resolution

ATLAS and CMS Trackers

	ATLAS	CMS
Tracker Radius	110 cm	115 cm
Tracker Length	7 m	5.4 m
Solenoid Field	2T	4T
Pixels		
# Barrel Layers	3	3
Barrel Radii	5.05, 9.85, 12.25	4.4, 7.5, 10.2
#Fwd Disks	3	2(3)
Disk Positions	49.5, 56.0, 65.0 cm	35.5, 48.5, 61.5 cm
Microstrips		
#Barrel Layers	4	10
# Disk Layers	9	9
Radial Span	25-50 cm	20-110 cm
Measurement points in central region	7 precision + 36 TRT	13 precision

Tracking Resolution

$$\frac{\delta p_T}{p_T} \propto \frac{\delta x}{BL^2} \frac{1}{\sqrt{(N+4)}} \times p_T$$

Hit position resolution Gas: $\delta x \sim 150 \ \mu m$ Silicon: $\delta x \sim 10 - 20 \ \mu m$
Typical Tracking Resolution

- ATLAS has similar performance
- p⊤ resolution for I GeV (TeV) particle is
 0.7% (5%)
- Impact parameter resolution is 10 (15)
 µm in xy (z) direction for high momentum tracks

Typical Tracking Efficiency

Muon Chamber

- Muon is a charged particle
 - Leaves signal in the tracker and the muon chamber, with small energy deposit in the calorimeter

 Drift tubes (DTs), resistive plate chambers (RPCs), cathode strip chambers (CSCs)

 Drift tubes (DTs), resistive plate chambers (RPCs), cathode strip chambers (CSCs)

 Drift tubes (DTs), resistive plate chambers (RPCs), cathode strip chambers (CSCs)

 Neutral and interacting particle(s)

Connect the spot of energy deposit in calorimeter with primary interaction point

 Neutral and interacting particle(s)

Connect the spot of energy deposit in calorimeter with primary interaction point

 Neutral and interacting particle(s)

Connect the spot of energy deposit in calorimeter with primary interaction point

R. Cavanaugh

 Neutral and interacting particle(s)

Connect the spot of energy deposit in calorimeter with primary interaction point

• Measure energy by "stopping" the incoming particle, a destructive way to detect particles

- Measure energy by "stopping" the incoming particle, a destructive way to detect particles
 - Incoming particles induce electromagnetic or hadronic showers

- Measure energy by "stopping" the incoming particle, a destructive way to detect particles
 - Incoming particles induce electromagnetic or hadronic showers
 - The number of secondary particles produced in the shower is related to the energy of the incoming particle

- Measure energy by "stopping" the incoming particle, a destructive way to detect particles
 - Incoming particles induce electromagnetic or hadronic showers
 - The number of secondary particles produced in the shower is related to the energy of the incoming particle
 - Shower products deposit energy in the detector via ionization or excitation

- Measure energy by "stopping" the incoming particle, a destructive way to detect particles
 - Incoming particles induce electromagnetic or hadronic showers
 - The number of secondary particles produced in the shower is related to the energy of the incoming particle
 - Shower products deposit energy in the detector via ionization or excitation
- Passive material (absorber) and active material

Bremsstrahlung

Bremsstrahlung

- Showers are induced and detector material are excited and produced scintillation light
- Radiation length X_0

pair production

Bremsstrahlung

- Showers are induced and Solution detector material are excited and produced scintillation light
- Radiation length X_0

Bremsstrahlung

- Showers are induced and detector material are excited and produced scintillation $\frac{1}{X_0}$
- Radiation length X_0

pair production

$$rac{1}{2} = rac{4lpha N_A Z(Z+1) r_e^2 \log(183 Z^{-1/3})}{A}$$

CMS Electromagnetic Calorimeter

CMS Electromagnetic Calorimeter PbWO₄: 2.2 (2.86) cm x 2.2 (2.86) cm x 23 (22) cm X_0 =0.89 cm Molière radius R_M=2.2 cm (90% of shower) CMS Electromagnetic Calorimeter PbWO₄: 2.2 (2.86) cm x 2.2 (2.86) cm x 23 (22) cm X_0 =0.89 cm Molière radius R_M=2.2 cm (90% of shower)

barrel $\frac{\sigma_E}{E} = \frac{2.8\%}{\sqrt{E(GeV)}} \oplus \frac{12\%}{E(GeV)} \oplus 0.3\%$

CMS Electromagnetic Calorimeter PbWO₄: 2.2 (2.86) cm x 2.2 (2.86) cm x 23 (22) cm X_0 =0.89 cm Molière radius R_M=2.2 cm (90% of shower)

barrel $\frac{\sigma_E}{E} = \frac{2.8\%}{\sqrt{E(GeV)}} \oplus \frac{12\%}{E(GeV)} \oplus 0.3\%$

Photon energy resolution from H→γγ is 1.1-2.6% (2.2-5%) for barrel (endcaps)

Hadronic Shower Cascade

Good reference book: <u>Calorimetry by Richard Wigman</u>

• Interaction length $\lambda_I \approx 35 \text{ g cm}^{-2} A^{\frac{1}{3}}$

Good reference book: <u>Calorimetry by Richard Wigman</u>

MS Hadronic Calorimeter

and and

Sampling calorimeter: cintillator+ brass/steel

CMS Hadronic Calorimeter

AWAS

Sampling calor meter: scintillator + brass/steel

CMS Hadronic Calorimeter

110%

E(GeV

Sampling calor meter: scintillator + brass/steel

Upgraded Endcap Calorimeter

Upgraded Endcap Calorimeter

91

Brief Story of the Trigger

Trigger Philosophy

- Two-level system
 - Hardware trigger at LI
 - Software trigger (computer clusters, 1000 nodes) at high-level
- Reduction factor ~ 1000
- Event size ~ I MB, can handle
 300 MB/sec
- Fast response, but still keep interesting physics

Trigger Reduction Rates

Shin-Shan Eiko Yu

Level-I Trigger

- Based on calorimeters and muon chambers only
- Simple algorithms
 - objects' E_T (Hit+Max E_T), location, Had/EM
- Group smaller cells into larger ones
 - 5 x 5 crystals in ECAL
 barrel → trigger tower
 (level-1 trigger
 primitives)

Shin-Shan Eiko Yu

Data Reduction

- Employ selective readout (ECAL and HCAL for CMS)
- Only active part of the calorimeter could be readout (full ECAL: 2MB/event, 100kB/event allocated)
- Use trigger primitives (TP) generated at Level-1 to identify region of interest (Here, use ECAL as an example.)
 - Low interest: TP < I GeV (Zero suppression at 3σ noise-level)
 - Medium interest: I < TP < 2 GeV (Full readout the TP)

High interest: TP > 2 GeV (Full readout the 3x3 trigger towers)
 Shin-Shan Eiko Yu
 96

High-level Trigger

- Almost offline reconstruction with faster algorithms
- Apply isolation, shower shape ID cuts
- Include tracking to form electron and muon
 - Matching between tracker and calorimeter/ muon chamber