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• Particles have their distinctive features in 
the detectors

‣Need to combine information of several 
sub-detectors, e.g. electron leaves signal in 
the tracker and electromagnetic (EM) 
calorimeter

• For most of the cases, we are detecting 
the decay products of the particles we 
want to “see” and study

‣γ, e, μ, charged hadrons, neutral hadrons
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CMS Detector Sketch
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• Cylindrical shape →uniform magnetic field and φ 
symmetry in physics

• Going outwards from the beam pipe are:

• Tracker: silicon sensors (pixel, strips), drift chamber →detect 
and measure momentum of charged particles, reconstruct 
primary and secondary vertices

• Electromagnetic calorimeter: crystal,  sampling calorimeter (lead 
+ scintillator/liquid argon)→detect electrons, photons, π0s

• Hadron calorimeter: sampling calorimeter (iron/brass)
+scintillator →detect charged/neutral, stable hadrons

• Muon chamber: drift tubes, cathode strips  →detect and 
(possibly) measure momentum of muons
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What Do We Need to Know?
• Charge

• Particle momentum, mass (?), energy

• Multiplicity

• Point of decay, lifetime

• All above require interaction of particles with 
detectors

• Particle detectors always rely on 
electromagnetic interaction

‣ photons, charged particles
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Standard Collider Kinematic Variables
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Beam axis z

η = +∞
θ = 0η = −∞

θ = π
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y η = 0
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Pseudo-rapidity

η = − ln tan θ
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η-θ Conversion
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By Mets501 - Own work, CC BY-SA 3.0,
 https://commons.wikimedia.org/w/index.php?curid=20392149

Pseudo-rapidity

η = − ln tan θ
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

https://commons.wikimedia.org/w/index.php?curid=20392149


Charge Hadron Multiplicity
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Kinematic Variables
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	rapidity	y = 12ln
E + pz
E − pz

⎛

⎝⎜
⎞

⎠⎟
		

Under	boost	along	the	z 	direction
y→ y +Δyb
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Kinematic Variables
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rapidity y = 1
2

ln E + pz
E − pz
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⎝⎜

⎞
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For relativistic particle, p≫ m

y→η = − ln tan θ
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Center of Momentum Frame
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p p

If proton were a point-like particle, lab frame is also the center 
of momentum frame of the hard scattering.



Proton Is Not an Elementary Particle
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Mostly u, d, s, and gluon



Center of Momentum Frame
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p p

If proton were a point-like particle, lab frame is also the center 
of momentum frame of the hard scattering.

q g

But ... proton has substructure, and the scattering constituents 
are partons inside proton (quarks and gluons). Therefore, the 
center of momentum frame varies event by event and does not 
coincide with the lab frame.

Therefore, we want to use kinematic variables that are invariant 
under the boost along the z direction.



Parton Distribution Function
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NNPDF3.1



µ

jet 

ν
Momentum imbalance 

MET 

μ

μ     

Missing Transverse Momentum

• The negative of the total transverse momentum 
of all observed particles in the detector

64

neutrinos or
dark matter
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Kinematic Variables We Use

• How do we measure these quantities?

‣ Basically, we need to measure the direction 
of momentum and the magnitude of 
transverse momentum.

• Which variable(s) will not change as 
particles travel through the detector?

66
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How to Measure Momentum?

• Charged particle

➡ Measure trajectory with 
tracker (silicon detector, 
gas chamber) + a magnetic 
field

67



Tracks
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• Only possible for 
charged particle due 
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Tracks
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• Trajectory of charged 
particles

• Only possible for 
charged particle due 
to their ionization loss

Relative energy loss for 10 GeV particle: 
< 0.001% for a gas detector, 
~ 5% for a solid detector



Gas vs. Semiconductor
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Average Energy Loss per Unit Length
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CMS Tracker
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CMS Tracker
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28 mm

 320 mm  390 mm  480 mm



CMS Tracker
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CMS Tracker (Before Phase-1)

72

80-120 μm pitch 
122-183 μm pitch 

~100-140 μm pitch 

~100-180 μm pitch 

100x150 μm2
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What Could We Do with Tracks?

• Charge of a particle

‣ Knowing they originate from the collision point, not 
from the sky

• Momentum of a particle (direction and magnitude)

• Reconstruct primary vertex

‣ Momentum for neutral particles

‣ pileup removal

• Reconstruct secondary vertex

‣ b-tagging
74



Typical Track Parameters
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trajectory of a 10 GeV charged particle at CMS is a 
helix with a radius of 8.8 m.
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Example:  The CMS magnetic field is 3.8 Tesla. The 
trajectory of a 10 GeV charged particle at CMS is a 
helix with a radius of 8.8 m.

A typical tracker has an outer radius of 1~1.5 m. ➡ 
Its trajectory is an arc (rather than a full circle)!



How to Obtain pT

76

pT = qBR			
Singly	charged,	
in	units	of	GeV/c,	
meter,	and	Tesla⎯ →⎯⎯⎯⎯ 	pT =0.3	BR

Example:  The CMS magnetic field is 3.8 Tesla. The 
trajectory of a 10 GeV charged particle at CMS is a 
helix with a radius of 8.8 m.

(1) What happens to a 0.1 GeV or 1 
GeV charged particle?
(2) How do we obtain pz?
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L  (level arm): tracker outer-inner radius
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L  (level arm): tracker outer-inner radius
Usually s (sagitta)≪  R

⇒ R ≅ L2

8s
,   pT ≅

qBL2

8s
= 0.3 BL2

8s

Where particle enters 
the tracker

Where particle leaves 
the tracker

L

δ pT
pT

∝ δ x
BL2

1
N + 4( )

× pT

D. Stuart

R



ATLAS and CMS Trackers

78



Tracking Resolution
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δ pT
pT

∝ δ x
BL2

1
N + 4( )

× pT

Hit position 
resolution

Gas: δ x ~ 150 µm
Silicon: δ x ~ 10 − 20 µm



Typical Tracking Resolution
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• ATLAS has similar performance

• pT resolution for 1 GeV (TeV) particle is 
0.7% (5%)

• Impact parameter resolution is 10 (15) 
μm in xy (z) direction for high 
momentum tracks



Typical Tracking Efficiency
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Muon Chamber

• Muon is a charged particle

‣ Leaves signal in the tracker and the muon chamber, 
with small energy deposit in the calorimeter

82

by Darien Wood



CMS Muon System
• Drift tubes (DTs), resistive plate chambers 

(RPCs), cathode strip chambers (CSCs)
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CMS Muon System
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CMS Muon System

84

Drift tube cell

σ x ≈200	µm

σ x ≈100−240	µm

σ t ≈2	ns



How to Measure Momentum?

• Neutral and interacting 
particle(s)

➡ Connect the spot of 
energy deposit in 
calorimeter with primary 
interaction point

➡ Due to the poor 
segmentation of hadron 
calorimeters, most of the 
time we are studying 
momentum of merged 
hadrons
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Basic Principle of Calorimeter

• Measure energy by “stopping” the incoming 
particle, a destructive way to detect particles

‣ Incoming particles induce electromagnetic or 
hadronic showers

‣ The number of secondary particles produced in 
the shower is related to the energy of the 
incoming particle

‣ Shower products deposit energy in the detector 
via ionization or excitation

• Passive material (absorber) and active material

86
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CMS Electromagnetic Calorimeter

88

PbWO4:  2.2 (2.86) cm x 2.2 (2.86) cm x 23 (22) cm
X0=0.89 cm

Molière radius RM=2.2 cm 
(90% of shower)

barrel	σ E

E
= 2.8%

E GeV( )
⊕ 12%
E GeV( )⊕0.3%

Photon energy resolution from H→γγ is 1.1-2.6% 
(2.2-5%) for barrel (endcaps)  



Hadronic Shower Cascade
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Good reference book: Calorimetry by Richard Wigman

https://www.amazon.com/Calorimetry-Measurement-Particle-International-Monographs/dp/0198502966


Hadronic Shower Cascade

89

Good reference book: Calorimetry by Richard Wigman

• Interaction length λI ≈35	g	cm-2A
1
3

https://www.amazon.com/Calorimetry-Measurement-Particle-International-Monographs/dp/0198502966
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CMS Hadronic Calorimeter
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Sampling calorimeter: 
scintillator+ brass/steel

	σ E

E
= 110%

E GeV( )
⊕9%



Upgraded Endcap Calorimeter
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Brief Story of the 
Trigger



Shin-Shan Eiko Yu

Trigger Philosophy

93

• Two-level system

• Hardware trigger at L1

• Software trigger (computer 
clusters, 1000 nodes) at 
high-level

• Reduction factor ~ 1000

• Event size ~ 1 MB, can handle 
300 MB/sec 

• Fast response, but still keep 
interesting physics



Shin-Shan Eiko Yu

Trigger Reduction Rates

94

LHC

Level-1 Trigger

High-level 
Trigger (HLT)

40M Hz

100K Hz

100 Hz



Shin-Shan Eiko Yu

Level-1 Trigger

95

• Based on calorimeters 
and muon chambers only

• Simple algorithms

• objects’ ET (Hit+Max 
ET), location, Had/EM

• Group smaller cells into 
larger ones

• 5 x 5 crystals in ECAL 
barrel →trigger tower 
(level-1 trigger 
primitives)



Shin-Shan Eiko Yu

Data Reduction

• Employ selective readout (ECAL and HCAL for CMS)

• Only active part of the calorimeter could be readout (full ECAL: 
2MB/event, 100kB/event allocated)

• Use trigger primitives (TP) generated at Level-1 to identify region 
of interest (Here, use ECAL as an example.)

• Low interest: TP < 1 GeV (Zero suppression at 3σ noise-level)

• Medium interest: 1 <  TP < 2 GeV (Full readout the TP)

• High interest: TP > 2 GeV (Full readout the 3x3 trigger towers)
96

low mid high Each box is a
5x5 crystal



High-level Trigger

• Almost offline reconstruction with faster 
algorithms

• Apply isolation, shower shape ID cuts

• Include tracking to form electron and 
muon

‣ Matching between tracker and calorimeter/
muon chamber
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