

Experimental Methods and Physics at the LHC

Shin-Shan Eiko Yu
Department of Physics, National Central University,
Taiwan

24th Vietnam School of Physics: Particles and Cosmology

Namely, How You Transform

subjet1

 $\eta = 0.353$

CMS experiment at LHC, CERN

Data recorded: Mon Sep 28 03:40:40 2015 CEST

Run/Event: 257645/597084610

Into the Following Figure

From the Beginning to the End

Collider
pp or NN collisions

Detector and Trigger

Combining objects and perform physics analysis

Reconstruction of basic objects: track, γ, e, μ, τ, jet, b-jet, missing E_T

Outline of the Experimental Lectures

- Introduction to CERN and LHC experiments
- Detectors
- First measurements with run I data
- Jet and jet-related measurements
- Jet substructures and related searches
- LHC dark matter searches

Disclaimers

- Experimental techniques is a huge topic and I will not cover everything
- 50% pictures are taken from other talks (either mine or others')
 - Biased towards CMS
 - Please forgive repetition of things you may have seen before

Useful Links for Your Own Study

- Lectures for CERN summer students
 - https://indico.cern.ch/category/345/
- CERN/Fermilab hadron collider summer schools
 - http://hcpss.web.cern.ch/hcpss/
- SLAC summer institute
 - https://www-conf.slac.stanford.edu/ssi/
- TASI
 - https://physicslearning.colorado.edu/tasi/

Outline of Lecture Part I

- Introduction to CERN and LHC
- Brief story of the four experiments
- Introduction to sub-detectors
 - Trackers
 - Muon system
 - Calorimeters
- Brief story of the trigger

- Conseil Européen pour la Recherche Nucléaire
- European Council for Nuclear Research
- Location of LHC and the experiments

- Established by 12 European countries on 1954/09/29
- Origin of WWW
 - Tim Berners-Lee in 1989
- Director
 - Fabiola Gianotti

- 22 member states
- Yearly budget $\sim 10^9$ CHF (= 2.4 $\times 10^{13}$ VND)
 - ▶ Germany、UK、France、Italy
 - LHC cost $\sim 4.3 \times 10^9$ CHF

Users Around the World

Distribution of All CERN Users by Nationality on 24 January 2018

- Conseil Européen pour la Recherche Nucléaire
- European Council for Nuclear Research
- Location of LHC and the experiments

- Conseil Européen pour la Recherche Nucléaire
- European Council for Nuclear Research
- Location of LHC and the experiments

• LHC

- Large Hadron Collider
- CERN LHC guide

- Conseil Européen pour la Recherche Nucléaire
- European Council for Nuclear Research
- Location of LHC and the experiments

• LHC

- Large Hadron Collider
- CERN LHC guide

Hadron

 Bound-state of quarks (anti-quarks), such as: proton, neutron, π meson

Magnetic dipole field: 8.3 Tesla

Beam-pipe pressure: 10-13 atm

Magnetic dipole field: 8.3 Tesla Beam-pipe pressure: 10⁻¹³ atm

1232 superconducting dipoles Operating temperature: 1.9 K

Magnetic dipole field: 8.3 Tesla

Beam-pipe pressure: 10-13 atm

Magnetic dipole field: 8.3 Tesla

Beam-pipe pressure: 10-13 atm

Magnetic dipole field: 8.3 Tesla

Beam-pipe pressure: 10-13 atm

Magnetic dipole field: 8.3 Tesla

Beam-pipe pressure: 10-13 atm

 Circular high-energy hadron collider

- Circular high-energy hadron collider
- Why high energy?

- Circular high-energy hadron collider
- Why high energy?

Wavelength of probe radiation needs to be smaller than object to be resolved

$$\lambda = \frac{h}{p} = \frac{h \cdot c}{E}$$

Object	size	Radiation energy
Atom	10 ⁻¹⁰ m	0.00001 GeV
Nucleus	10 ⁻¹⁴ m	0.01 GeV
Nucleon	10 ⁻¹⁵ m	0.1 GeV
Quarks	-	> 1 GeV

- Circular high-energy hadron collider
- Why high energy?

Wavelength of probe radiation needs to be smaller than object to be resolved

$$\lambda = \frac{h}{p} = \frac{h \cdot c}{E}$$

Object	size	Radiation energy
Atom	10 ⁻¹⁰ m	0.00001 GeV
Nucleus	10 ⁻¹⁴ m	0.01 GeV
Nucleon	10 ⁻¹⁵ m	0.1 GeV
Quarks	-	> 1 GeV

Fixed Target and Collider Experiments

- Pros: higher interaction rate
- Cons: lower available energy for producing new particles

- Pros: higher available energy for producing new particles
- Cons: lower interaction rate

Fixed Target and Collider Experiments

$$E_{CM} \sim \sqrt{2m_t E_b}$$

Assuming $E_b \gg m_t$, m_b

$$E_{CM} \sim \sqrt{4E_1E_2}$$

Assuming E_1 , $E_2 \gg m_1$, m_2

Why?

Several Important Colliders

Large Hadron Collider (LHC)

- Circular high-energy hadron collider
- Why high energy?
- Why large?

Large Hadron Collider (LHC)

- Circular high-energy hadron collider
- Why high energy?
- Why large?

$$p = qBR$$

$$\frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = qBR$$

$$\Rightarrow R = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} \times \frac{1}{qB}$$

Large Hadron Collider (LHC)

- Circular high-energy hadron collider
- Why high energy?
- Why large?
- Physics Goals
 - Discover Higgs boson(s)
 - ▶ Test standard model
 - Find new physics

$$p = qBR$$

$$\frac{mv}{\sqrt{1 - \frac{v^2}{a^2}}} = qBR$$

$$\Rightarrow R = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} \times \frac{1}{qB}$$

加速器名稱	質子動能	質子速度(%光速)
Linac 2	5000 萬電子伏特 (50 MeV)	31.4
PS Booster	14 億電子伏特 (I.4 GeV)	91.6
PS	250 億電子伏特 (25 GeV)	99.93
SPS	4500 億電子伏特(450 GeV)	99.9998
LHC	7 兆電子伏特 (7 TeV)	99.999991

Final goal

https://www.seeker.com/videos/inside-the-worlds-largest-particle-accelerator

https://www.seeker.com/videos/inside-the-worlds-largest-particle-accelerator

LHC Numbers

Parameter	Current Value
Center of mass energy (pp)	13 TeV (14 TeV*)
Center of mass energy (NN)	5.02 TeV
# of bunches	2808
Bunch Spacing (ns)	25
Bunch Spacing (m)	~7.5
# of protons per bunch	1.2E+11
Peak Instantaneous Luminosity (/cm*cm/sec)	2E+34
Average # of interactions per bunch crossing	50
Interaction Rate (Hz)	2E+09

Tevatron luminosity record: 4.04E+32 cm⁻²sec⁻¹

Event rates [N/s]

$$\frac{dR}{dt} = \sigma \times \mathcal{L}$$

- Cross section [barn]
- -The likelihood to have a certain interaction between a pair of particles
- Determined by physics processes, beam particle type, and beam energy
- •Instantaneous Luminosity [cm⁻² s]
- Driven by the accelerator performance: number of particles in each bunch, collision frequency, beam profile
- •Integrated Luminosity [barn]
- How we quote the amount of data collected

$$\mathcal{L} = f \frac{n_1 n_2}{4\pi\sigma_x \sigma_y}$$

$$L_{\text{int}} = \int \mathcal{L} \, dt$$

Number of Produced Events per Second

Number of Produced Events per Second

Number of Produced Events per Second

LHC History

```
1982: First studies for the LHC project
1983 : ZO/W discovered at SPS proton antiproton collider (SppbarS)
1989: Start of LEP operation (Z/W boson-factory)
1994: Approval of the LHC by the CERN Council
1996: Final decision to start the LHC construction
2000: Last year of LEP operation above 100 GeV
2002: LEP equipment removed
2003: Start of LHC installation
2005: Start of LHC hardware commissioning
2008: Start of (short) beam commissioning
       Powering incident on 19th Sept.
2009: Repair, re-commissioning and beam commissioning
2009.11.23: First pp collisions at 900 GeV
2009.11.30: Proton beam energy reaches 1.18 TeV each
2010.03.30: First pp collisions at 7 TeV
2012.04.05: First pp collisions at 8 TeV
2013.02.14: First 3-year running period finished
2015.06.03: First 13 TeV collisions
```

Data Delivered to CMS

CMS Integrated Luminosity, pp

 But what is the use of producing a lot of data/collisions, if no one is there to observe and study them? But what is the use of producing a lot of data/collisions, if no one is there to observe and study them?

Detectors

Brief Story of the Four Experiments

The LHC Experiments

- ALICE
 - A Large Ion Collider Experiment
- ATLAS
 - A Toroidal LHC ApparatuS
- CMS
 - Compact Muon Solenoid
- LHCb
 - the Large Hadron Collider beauty experiment

ALICE Introduction

- Designed to study lead-ion collisions
- Study properties of quark-gluon plasma, a state of matter likely existed just after the Big Bang
 - a state of matter where quarks and gluons are not confined inside hadrons due to very high temperature and densities
- 37 Countries, I54 Institutes and over I500 members

ALICE Introduction

- Designed to study lead-ion collisions
- Study properties of quark-gluon plasma, a state of matter likely existed just after the Big Bang
 - a state of matter where quarks and gluons are not confined inside hadrons due to very high temperature and densities
- 37 Countries, I54 Institutes and over I500 members

ATLAS/CMS Mission

- General purpose detectors
- Search for Higgs boson and measure its properties
- Search for physics beyond the standard model, e.g. supersymmetry, extra dimension, or something totally unexpected
- 38/40 Countries, 182/200 Institutes and over 3000/4000 members

One Floats and One Sinks in the Water

LHCb Mission

- Precision measurement of CP violation and rare b/c hadron decays
- 16 Countries, 71 Institutes and over 1200 members

LHCb Detector Sketch

