Advances in Machine Learning in HEP: Deep Learning, GAN and more

David Rousseau LAL-Orsay

rousseau@lal.in2p3.fr

LLR seminar 27th Nov 2017

Outline

- ML basics
- ML in analysis
- ML in reconstruction/simulation
- ML challenges
- Wrapping up

Focus on applications rather than details of the techniques

ML in HEP

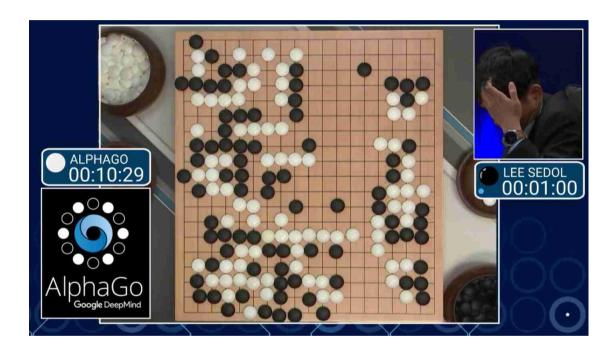
- ☐ Use of Machine Learning (a.k.a Multi Variate Analysis as we call it) already at LEP somewhat, much more at Tevatron (Trees)
- □ At LHC, Machine Learning used almost since first data taking (2010) for reconstruction and analysis
- \square In most cases, Boosted Decision Tree with Root-TMVA, on ~ 10 variables
- For example, impact on Higgs boson sensitivity at LHC:

analysis	data	no ML	ML	ML
	taking year	sensitivity	sensitivity	data gain
ATLAS H $\rightarrow \gamma \gamma$ [16]	2011-2012	4.3	-	-
CMS H $\rightarrow \gamma \gamma$ [17]	2011-2012	?	2.7	?
ATLAS H $\rightarrow \tau^+\tau^-$ [18]	2012	2.5	3.4	85%
CMS H $\rightarrow \tau^+ \tau^-$ [19]	2012	3.7	-	-
ATLAS VH \rightarrow bb [20]	2012	1.9	2.5	73%
ATLAS VH \rightarrow bb [21]	2015-2016	2.8	3.0	15%
$CMS VH \rightarrow bb [22]$	2012	1.4	2.1	125%
$CMS VH \to bb [23]$	2015-2016	-	2.8	-

→~50% gain on LHC running

ML in HEP

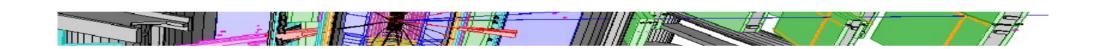
Meanwhile, in the outside world :



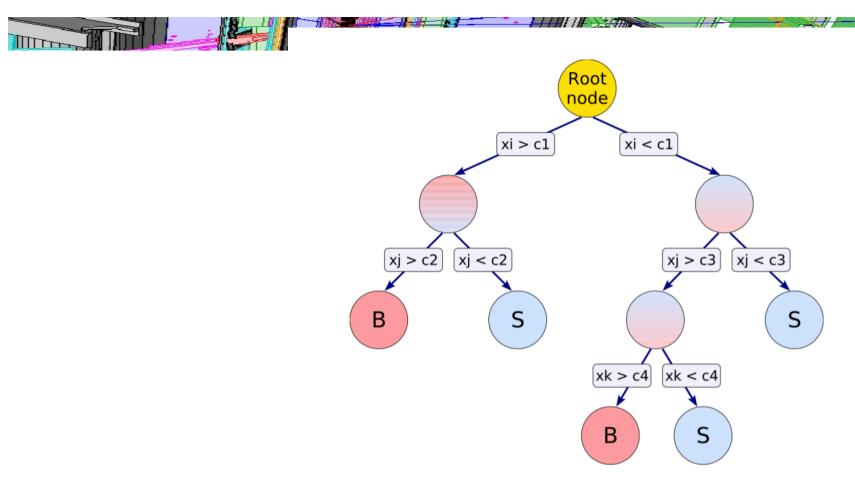
- "Artificial Intelligence" not a dirty word anymore!
- We've realised we're been left behind! Trying to catch up now...

Multitude of HEP-ML events

ML Basics

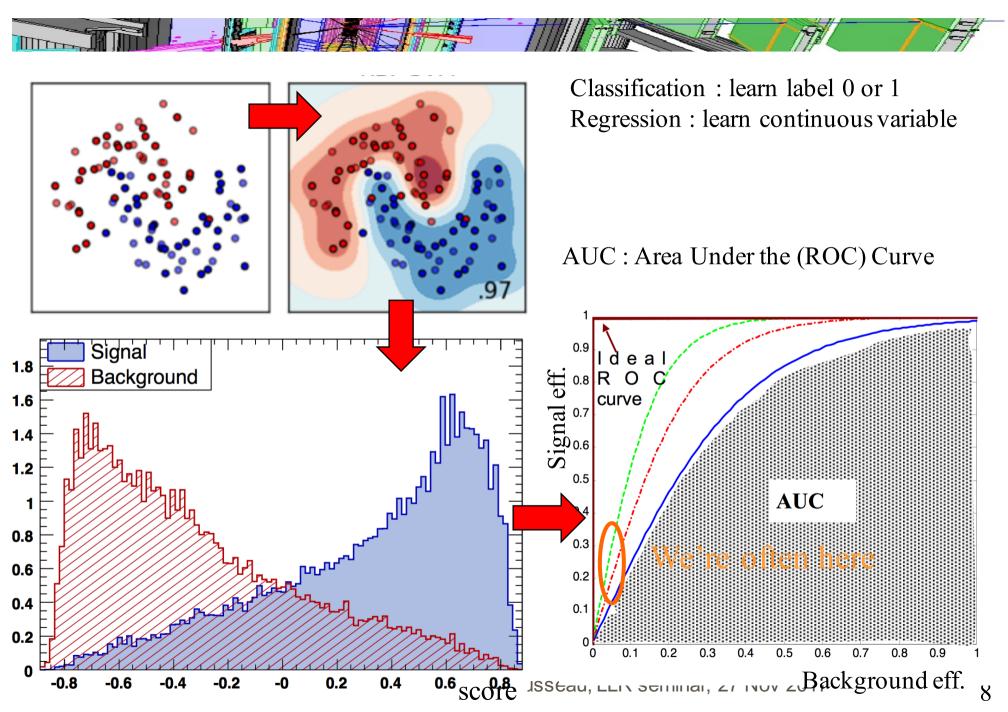


BDT in a nutshell

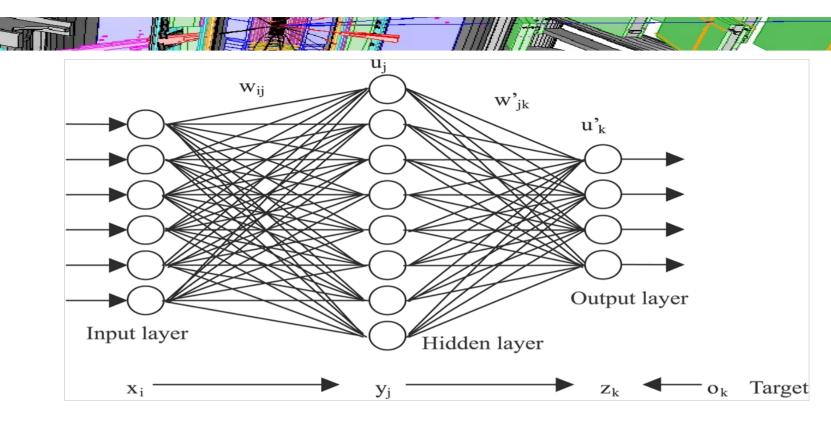


- ☐ Single tree (CART) <1980
- □ AdaBoost 1997: rerun increasing the weight of misclassified entries → Boosted Decision Trees (Gradient BDT, random forest...)

Classifier basics



Neural Net in a nutshell

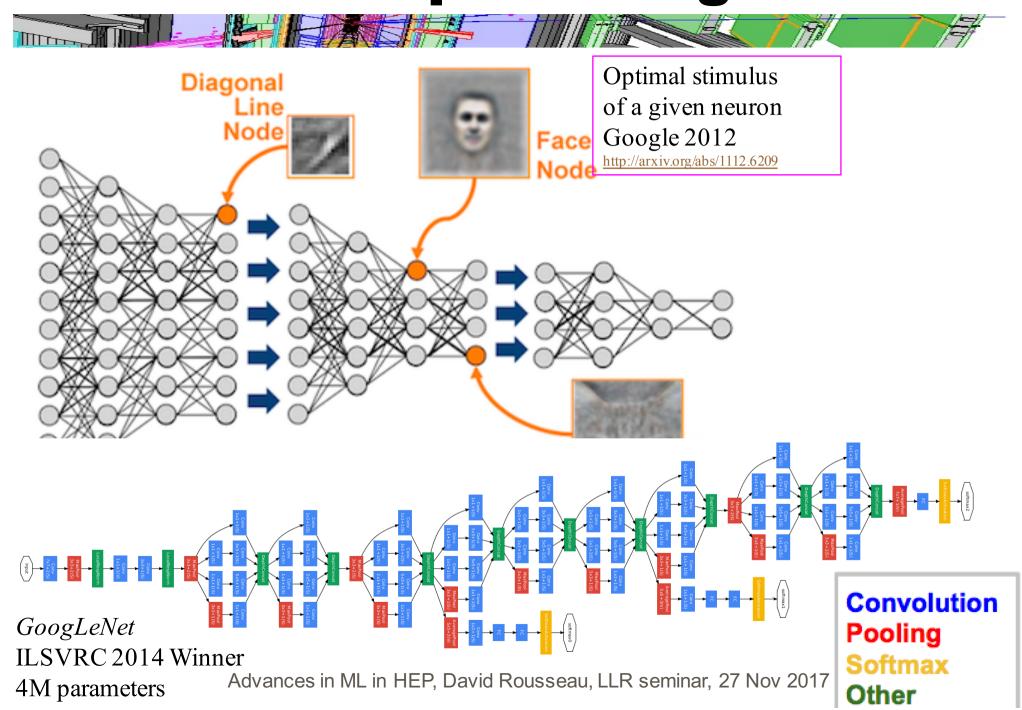


- Neural Net ~1950!
- But many many new tricks for learning, in particular if many layers (also ReLU instead of sigmoïd activation)
- "Deep Neural Net" up to 100 layers
- □ Computing power (DNN training can take days even on GPU)

 Advances in ML in HEP, David Rousseau, LLR seminar, 27 Nov 2017

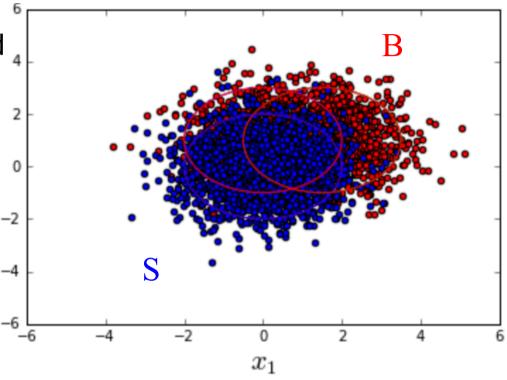
9

Deep learning

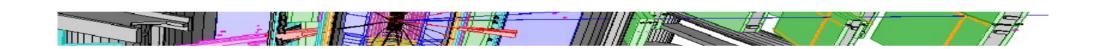


No miracle

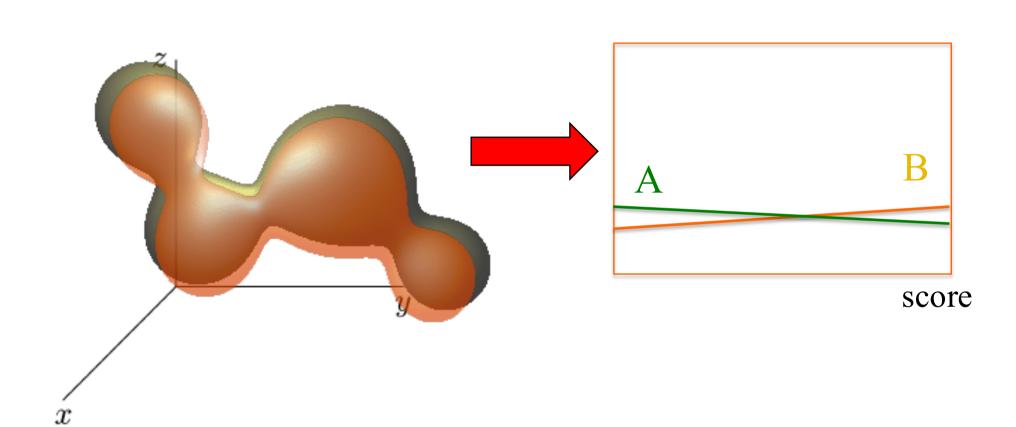
- ML (nor Artificial Intelligence) does not do any miracles
- □ For selecting Signal vs Background and underlying distributions are known, nothing beats Likelihood ratio! (often called "bayesian limit"):
 - $OL_S(x)/L_B(x)$
- OK but quite often L_S L_B are unknown
 - + x is n-dimensional
- ML starts to be interesting when there is no proper formalism of the pdf
- mixed approach, if you know something, tell your classifier instead of letting it guess



ML Techniques



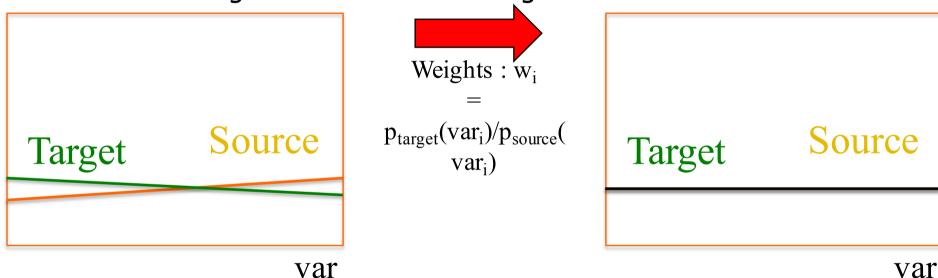
What does a classifier do?



□ The classifier "projects" the two multidimensional "blobs" maximising the difference, without (ideally) any loss of information

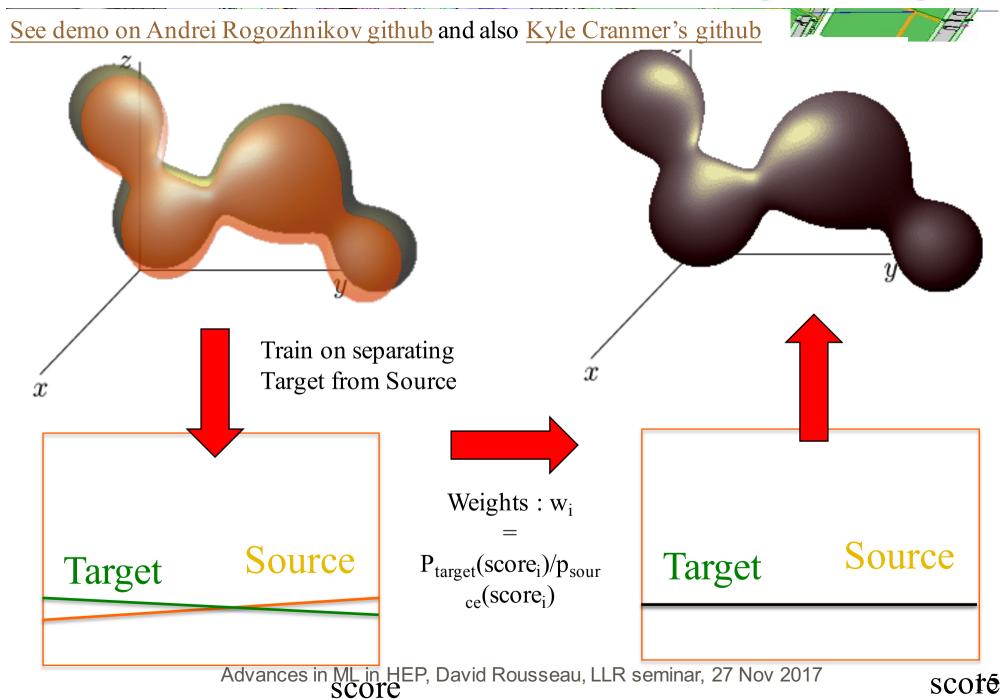
Re-weighting

- Suppose a variable distribution is slightly different between a Source (e.g. Monte Carlo) and a Target (e.g. real data)
 - o → reweight! ...then use reweighted events



- What if multi-dimension?
- Usually: reweight separately on 1D projections, at best 2D, because of quick lack of statistics
- Can we do better ?

Multidimension reweighting

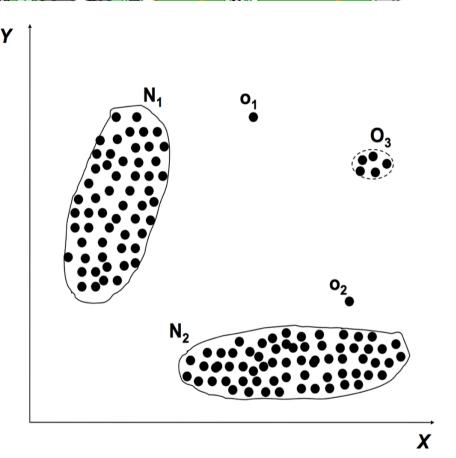


Multi dimensional reweighting (2)

- Reweighting the Source distribution on the score allows multidimensional reweighting without statistics problem
- Usual caveat still hold: Target support should be included in Source support, distributions should not be too different otherwise unmanageable very large or very small weights
- (Note: "reweighting" in HEP language <==> "importance sampling" in ML language)

Anomaly: point level

- Also called outlier detection
- Two approaches:
 - Unsupervised: give the full data, ask the algorithm to cluster and find the lone entries: o1, o2, O3

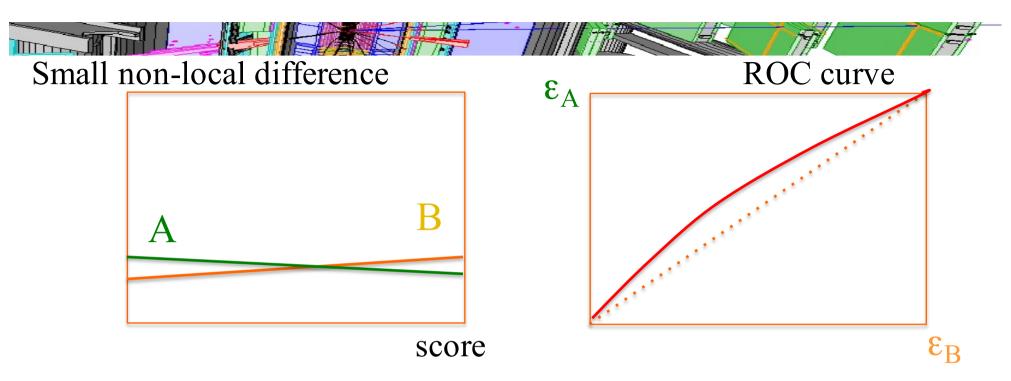


- Supervised: we have a training "normal" data set with N1 and N2.
 Algorithm should then spot o1,o2, O3 as "abnormal" i.e. "unlike N1 and N2" (no a priori model for outliers)
- Application: detector malfunction, grid site malfunction, or even new physics discovery...

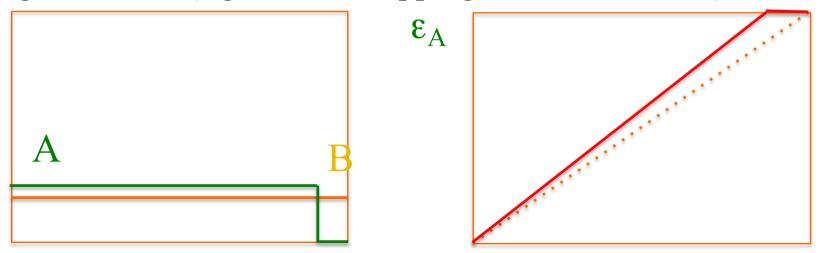
 Advances in ML in HEP, David Rousseau, LLR seminar, 27 Nov 2017

Anomaly: population level

- Also called collective anomalies
- Suppose you have two independent samples A and B, supposedly statistically identical. E.g. A and B could be:
 - MC prod 1, MC prod 2
 - MC generator 1, MC generator 2
 - Geant4 Release 20.X.Y, release 20.X.Z
 - Production at CERN, production at BNL
 - Data of yesterday, Data of today
- How to verify that A and B are indeed identical?
- Standard approach: overlay histograms of many carefully chosen variables, check for differences (e.g. KS test)
- One ML approach (not the only one): ask an artificial scientist, train your favorite classifier to distinguish A from B, histogram the score, check the difference (e.g. AUC or KS test)
 - →only one distribution to check



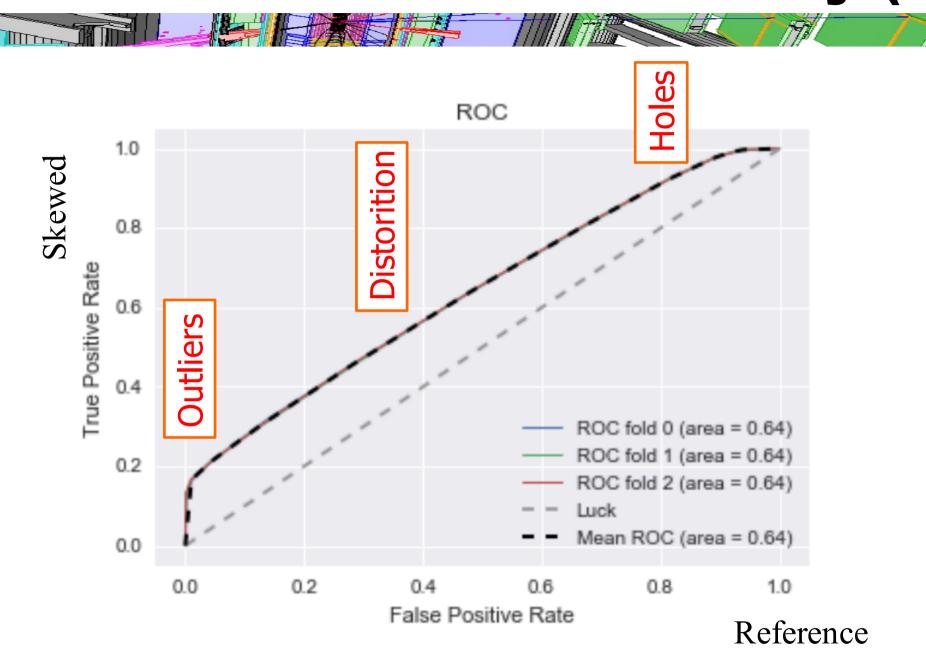
Local big difference (e.g. non overlapping distribution, hole)



HSF ML RAMP on anomaly

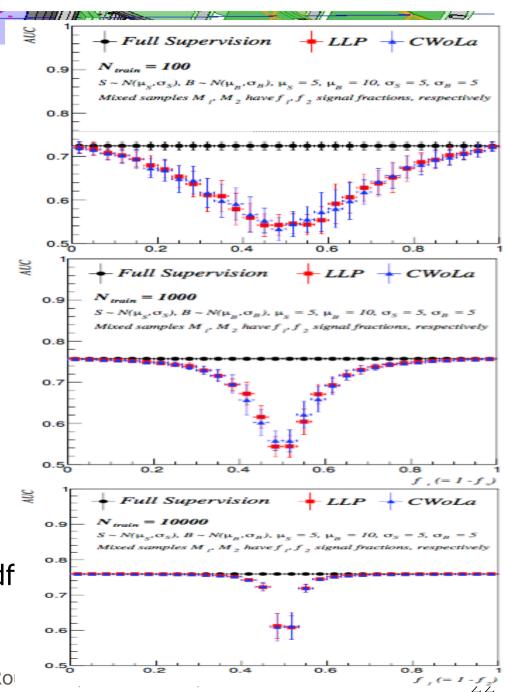
- RAMP: collaborative competition around a dataset and a figure of merit. Organised in June 2016 by CDS Paris Saclay with HEP people. See agenda.
- Dataset built from the Higgs Machine Learning challenge dataset (on CERN Open Data Portal)
 - Lepton, and tau hadron 3 momentum, MET: PRImary variables
 - DERived variables e.g various invariant masses (computed from the above) from Htautau analysis
 - o → reference dataset
- "Skewed" dataset built from the above, introducing small and big distortions:
 - Change of tau energy scale (Small scaling of Ptau)
 - Holes in eta phi efficiency map of lepton and tau hadron
 - Outliers introduced, each with 5% probability
 - Eta tau set to large non possible values
 - P lepton scaled by factor 10
 - Missing ET + 50 GeV
 - Phi tau and phi lepton swapped → DERived variables inconsistent with PRImary one
 - skewed dataset

HSF ML RAMP on anomaly (2)

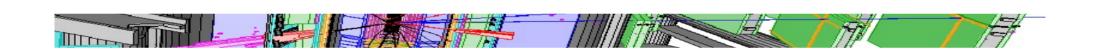


Classification without labels

- Metodiev et al, <u>1708.02949</u>
- Suppose one wants to separate S and B
- But one only has one signal reach sample Ms and one background rich sample Mb
- □ A classifier optimally trained with Ms and Mb (without information on fraction of S and B) is actually also optimal to separate S and B!
- → ...allows training on data where it is hard to have very pure control sample
- ...one still need to evaluate classification performance
- Big caveat: works only if S and B pdf are indentical in Ms and Mb



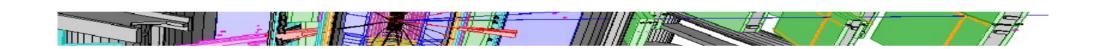
ML Tools

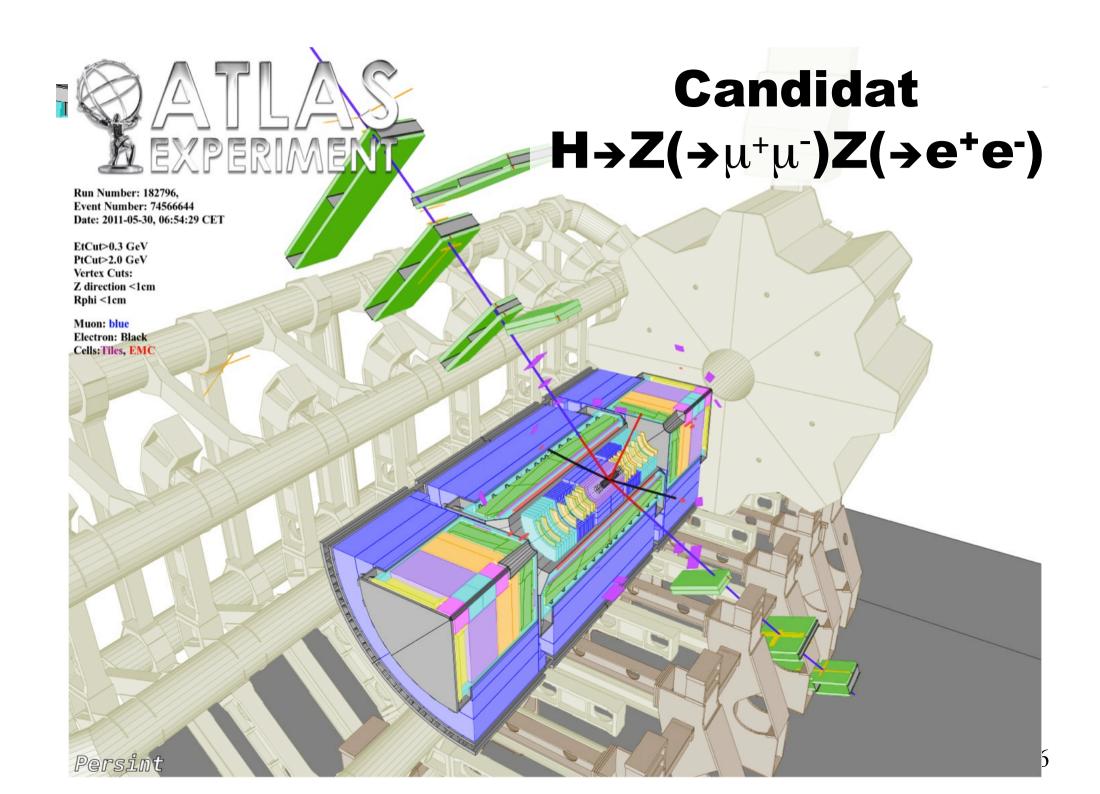


Modern Software and Tools

- New version of TMVA (root 6.0.8 on beyond) (see talk <u>Lorenzo Moneta, Sergei Gleyzer</u> IML workshop CERN March 2017)
 - Jupyter interface
 - Hyper-parameter optimisation
 - Cross-validation
 - (...unfortunately not so well documented yet)
- Non HEP software
 - Sci-kit learn : de facto standard toolbox ML (except Deep Learning) (python, but fast)
 - Keras+Thenao/TensorFlow: NN toolbox (build a NN in a few lines of python)
 - XGBoost best BDT on the market, both speed and performance (c++ with python interface)
- Note: for ~10 variable classification/regression task gradient BDT is still the tool of choice!
- Platforms
 - Your laptop is sufficient in many cases: install e.g. Anaconda <u>https://docs.continuum.io/anaconda/install</u> (<u>demo</u>)
 - If not, more and more platforms looking for users, maybe on your campus (with GPU DNN ==millions of parameter to optimise=>heavy duty linear algebra)
 - GridCL @ LLR (not for production but useful)
 - o 50 GPU platform at Lyon CC-IN2P3, little used so far
- For CERN users:
 - SWAN interactive data analysis on the web see https://swan.web.cern.ch/content/machine-learning
 - CVMFS ML setup for any CVMFS enabled platform

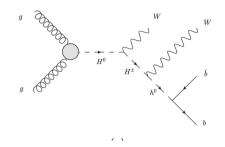
ML in analysis

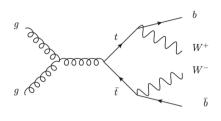


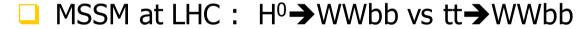


Deep learning for analysis

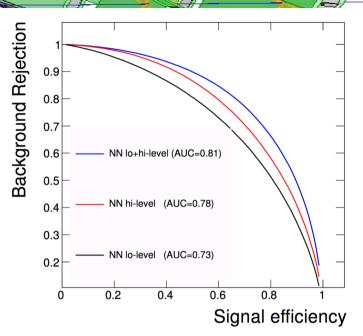
1402.4735 Baldi, Sadowski, Whiteson

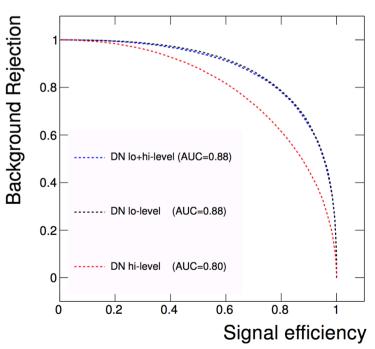






- Low level variables:
 - 4-momentum vector
- High level variables:
 - Pair-wise invariant masses
- Deep NN outperforms NN, and does not need high level variables
- DNN learns the physics ?

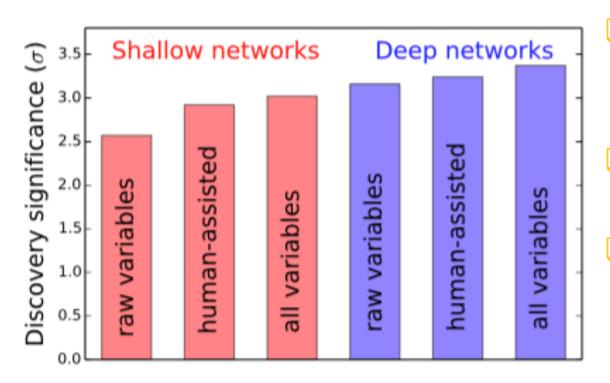




Deep learning for analysis (2)

1410.3469 Baldi Sadowski Whiteson

- □ H tautau analysis at LHC: H→tautau vs Z→tautau
 - Low level variables (4-momenta)
 - High level variables (transverse mass, delta R, centrality, jet variables, etc...)

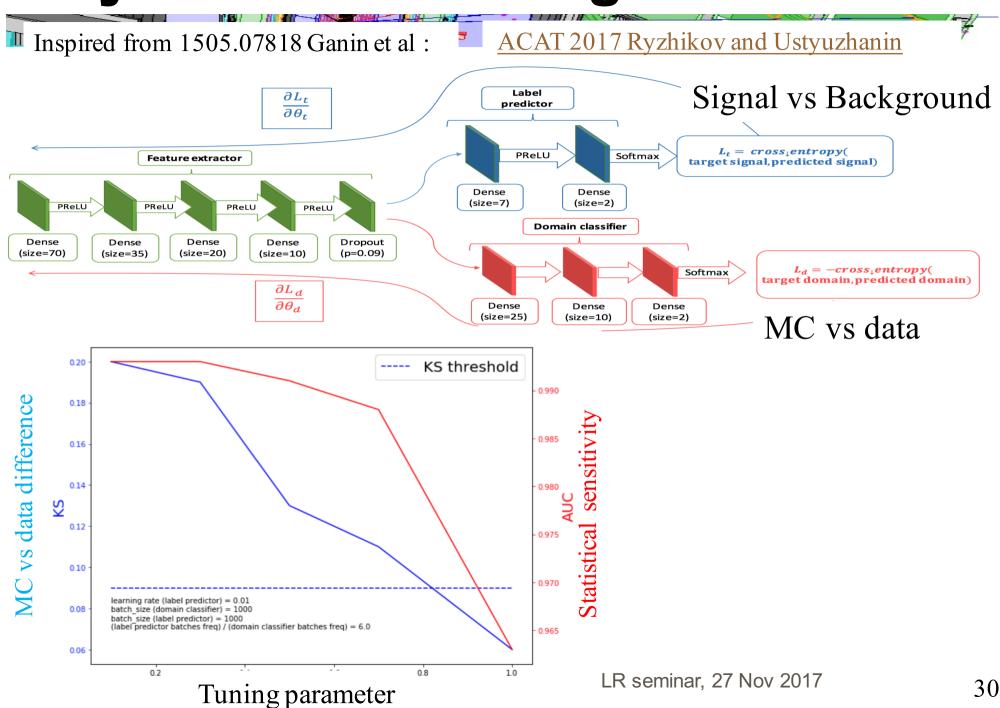


- Here, the DNN improved on NN but still needed high level features
- Both analyses withDelphes fast simulation
- ~100M events used for training (>>100* full G4 simulation in ATLAS)

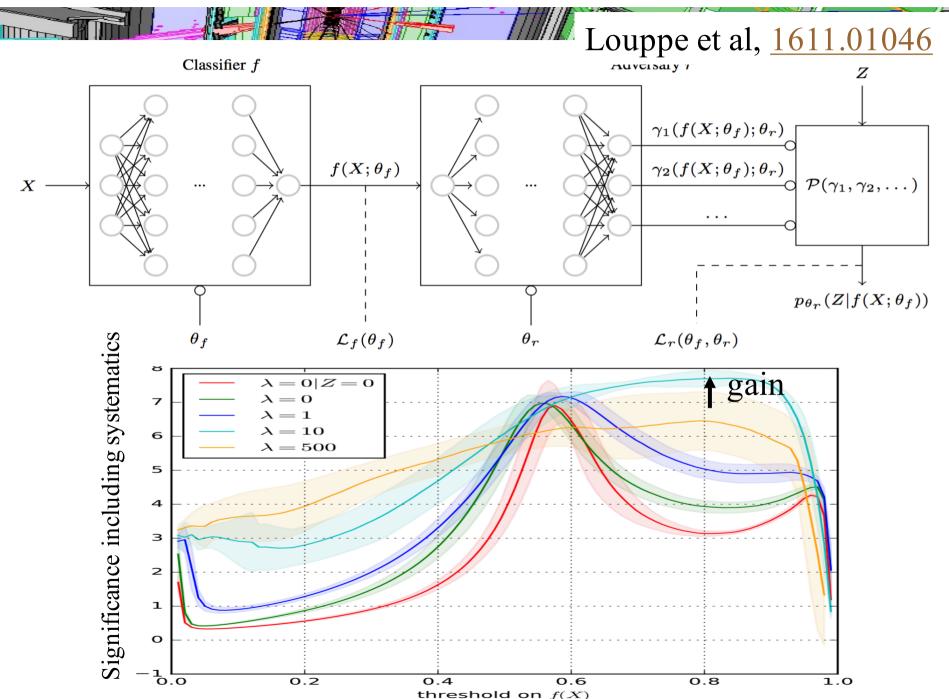
Systematics-aware training

- Our experimental measurement papers typically ends with
 - o measurement = m $\pm \sigma(stat) \pm \sigma(syst)$
 - o σ(syst) systematic uncertainty: known unknowns, unknown unknowns...
- □ Name of the game is to minimize quadratic sum of : $\sigma(\text{stat}) \pm \sigma(\text{syst})$
- \square ML techniques used so far to minimise $\sigma(\text{stat})$
- □ Impact of ML on σ(syst) or even better global optimisation of σ(stat) ± σ(syst) is an open problem
- \square Worrying about σ (syst) untypical of ML in industry
- ☐ However, a hot topic in ML in industry: *transfer learning*
- □ E.g.: train image labelling on a image dataset, apply on new images (different luminosity, focus, angle etc...)
- □ For HEP: we train with Signal and Background which are not the real one (MC, control regions, etc...) → source of systematics Advances in ML in HEP, David Rousseau, LLR seminar, 27 Nov 2017

Syst Aware Training: adversarial

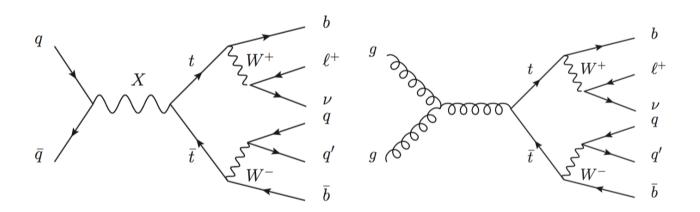


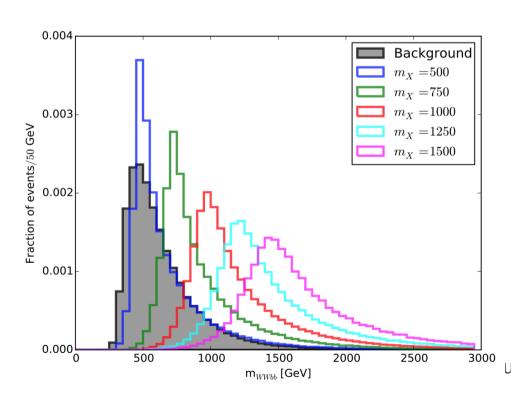
Syst Aware training: pivot



Parameterised learning

1601.07913 Baldi, Cranmer, Faucett, Sadowksi, Whiteson

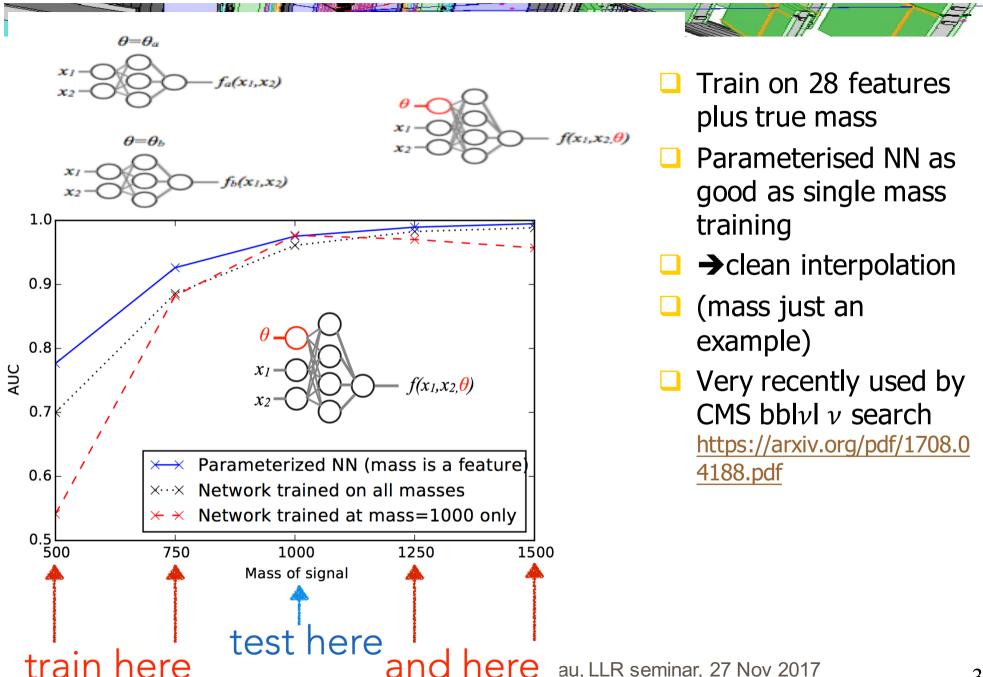




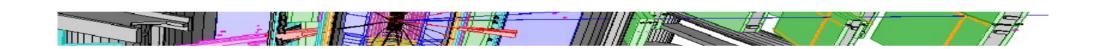
- Typical case: looking for a particle of unknown mass
- E.g. here tt decay

usseau, LLR seminar, 27 Nov 2017

Parameterised learning (2)



ML in reconstruction



Jet Images

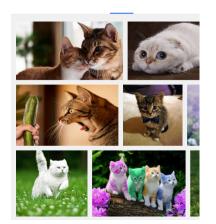
arXiv 1511.05190 de Oliveira, Kagan, Mackey, Nachman, Schwartzman

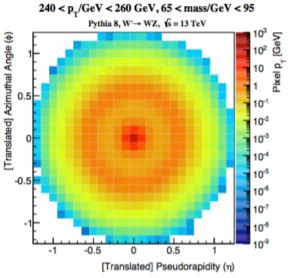
Distinguish boosted W

jets from QCD

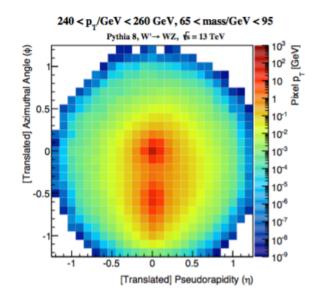
Particle level simulation

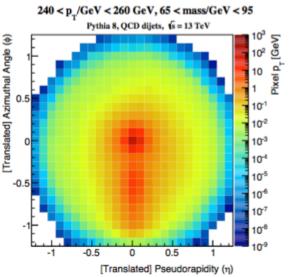
Average images:









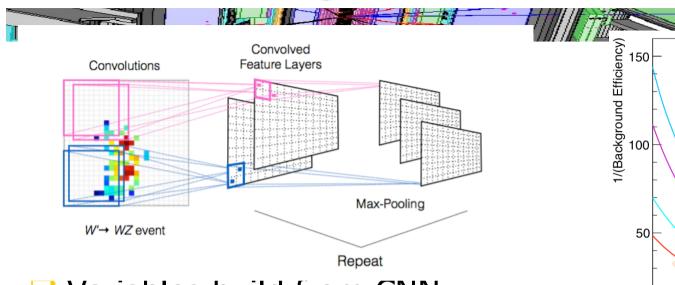


Advances in ML in HEP, David Rousseau, LLR seminar, 27 Nov 2017

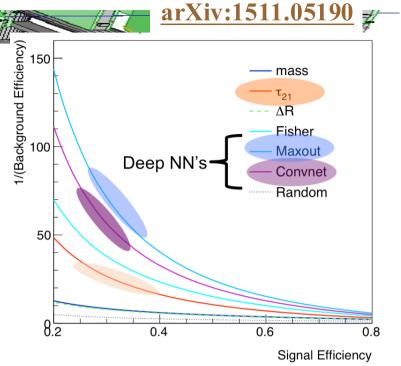
0.5

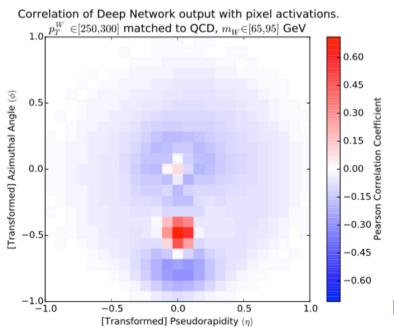
[Translated] Pseudorapidity (η)

Jet Images: Convolution NN



Variables build from CNN outperform the more usual ones

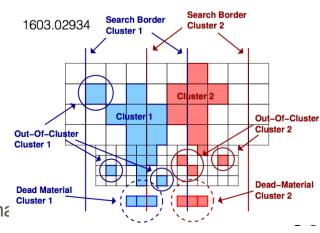




- What the CNN sees (the "cat" neurone")
- Now need proper detector and pileup

simulation

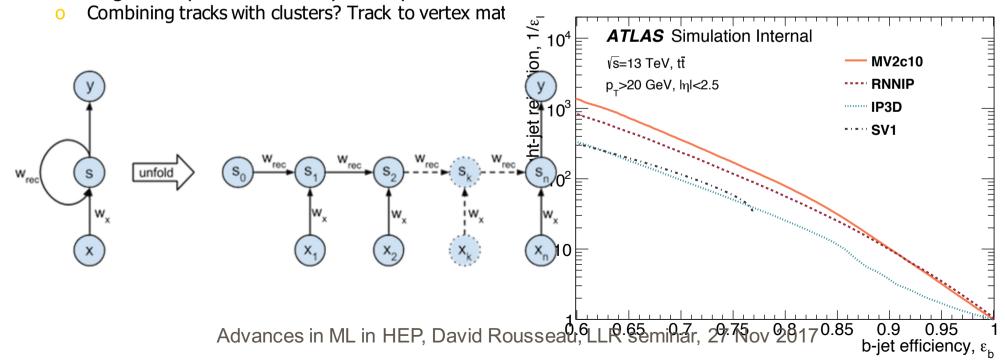
→3Dimension



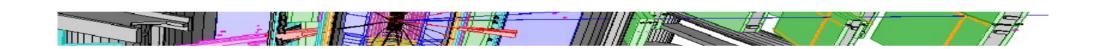
EP, David Rousseau, LLR semina

RNN for b tagging

- BDT and usual NN expect a fix number of input. What to do when the number of inputs is not fixed like the tracks for b-quark jet tagging?
- Recurrent neural networks have seen outstanding performance for processing sequence data
 - o Take data at several "time-steps", and use previous time-step information in processing next time-steps data
- For b-tagging, take list of tracks in jet and feed into RNN
 - o Basic track information like d0, z0, pt-Fraction of jet, ...
 - Physics inspired ordering by d0-significance
- RNN outperforms other IP algorithms
 - No explicit vertexing, still excellent performance
 - First combinations with other algorithms in progress
- Learning on sequence data may be important in other places!



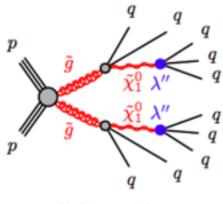
End to end Learning



End to end learning

Bhimji et al, 1711.03573

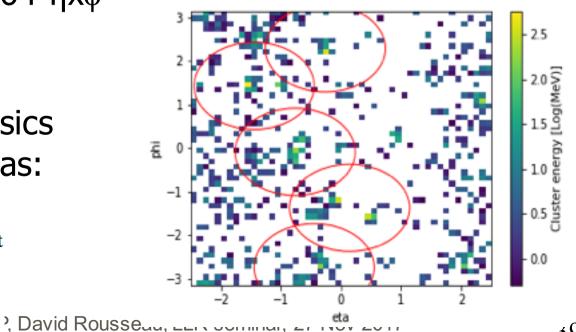
- ☐ Train directly for signal on « raw » event ?
- Start from RPV Susy search ATLAS-CONF-2016-057
- Simulated events with Delphes



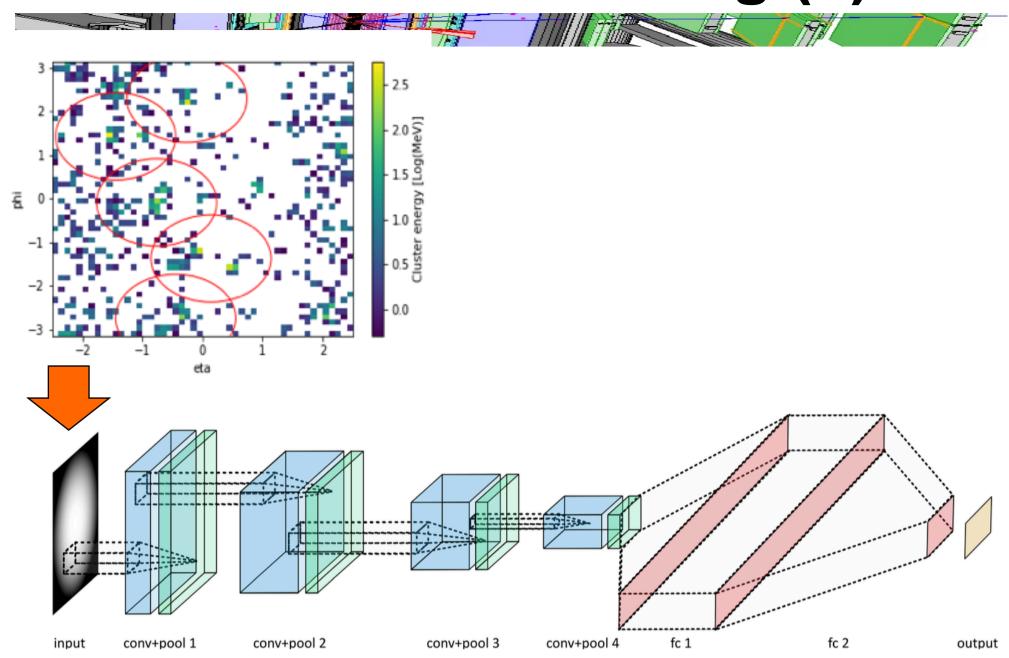
(b) gluino cascade decay

- Project energies on 64x64 ηxφ grid
- Compare with usual jet Reconstruction and physics Analysis variables such as:

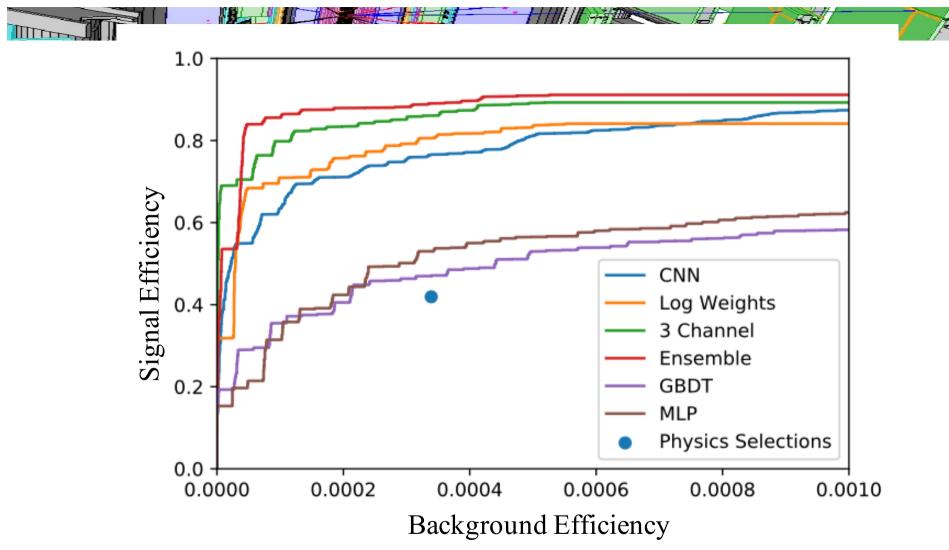
$$M_{\rm J}^{\Sigma} = \sum_{\substack{p_{\rm T} > 200 \, \text{GeV} \\ |\eta| \le 2.0}}^{4} m^{\rm jet}$$



End to end learning (2)

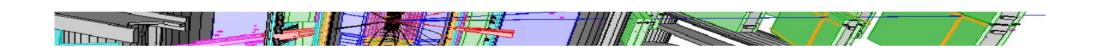


End to end learning (3)

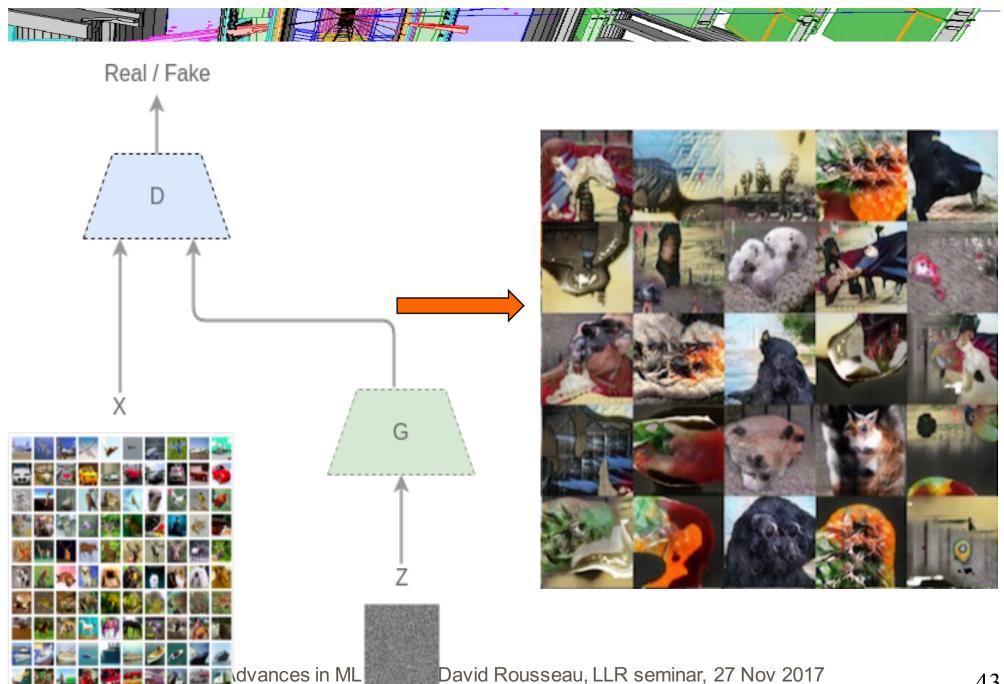


- >x2 gain over BDT/shallow network using physics variable and 5 leading jet 4-momenta
- CNN extract information from energy grid which is lost in the jets?
- □ Not sure they should compare to applying DL on the jets
 Advances in ML in HEP, David Rousseau, LLR seminar, 27 Nov 2017

ML in simulation



Generative Adversarial Network



Condition GAN

Text to image

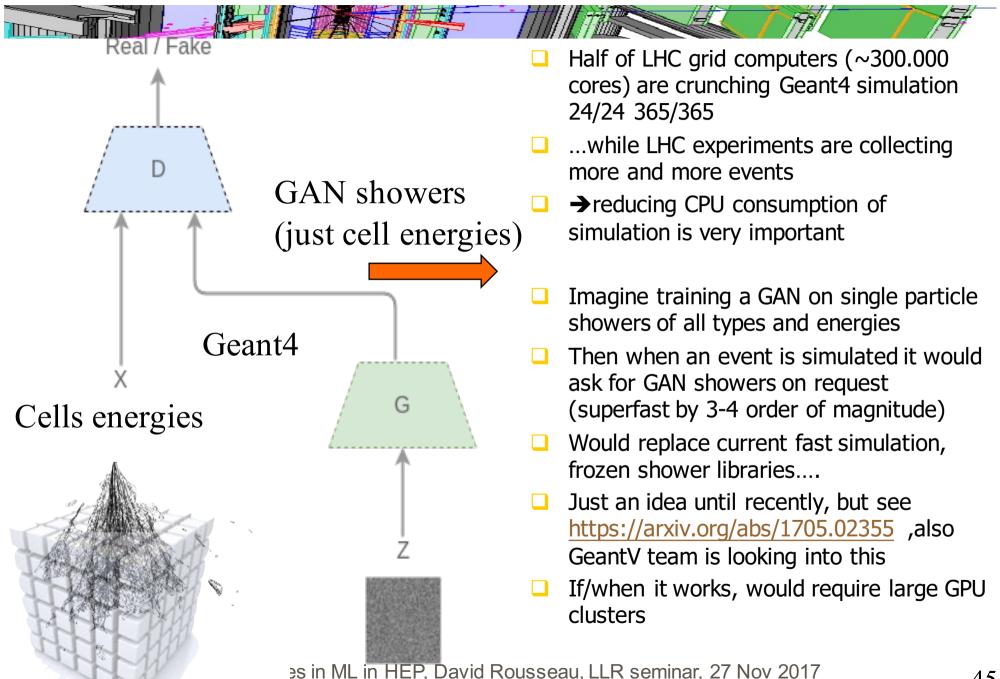
this small bird has a pink breast and crown, and black primaries and secondaries.

the flower has petals that are bright pinkish purple with white stigma

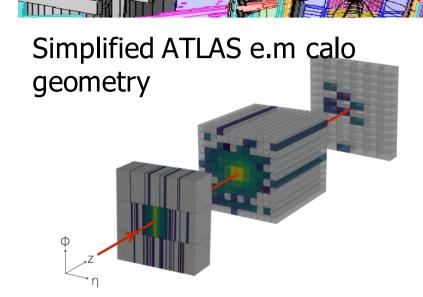
this magnificent fellow is almost all black with a red crest, and white cheek patch.

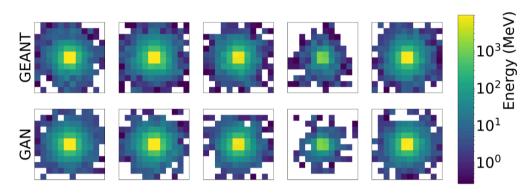
this white and yellow flower have thin white petals and a round yellow stamen

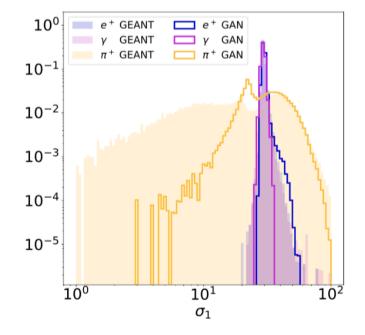
GAN for simulation



CaloGAN

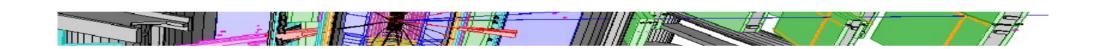






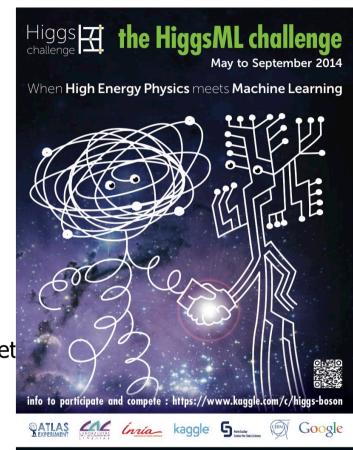
- One of many physics variable examined
- Pion more difficult
- → very promising

Data Challenges



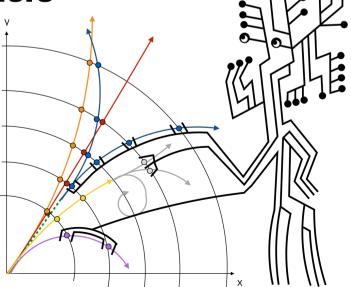
Higgs Machine learning challenge

- ☐ See talk DR CTD2015 Berkeley
- An ATLAS Higgs signal vs background classification problem, optimising statistical significance
- Ran in summer 2014
- 2000 participants (largest on Kaggle at that time)
- Outcome
 - Best significance 20% than with Root-TMVA
 - (gradient) BDT algorithm of choice in this case where number variables and number of training events limited (NN very slightly better but much more difficult to tune)
 - XGBoost written for HiggsML, now best BDT on the market
 - Wealth of ideas, documented in <u>JMLR proceedings v42</u>
 - Still working on what works in real life what does not
 - Raised awareness about ML in HEP
- Also:
 - Winner Gabor Melis hired by DeepMind
 - Tong He, co-developper of XGBoost, winner of special "HEP meets ML" price got a PhD grant and US visa



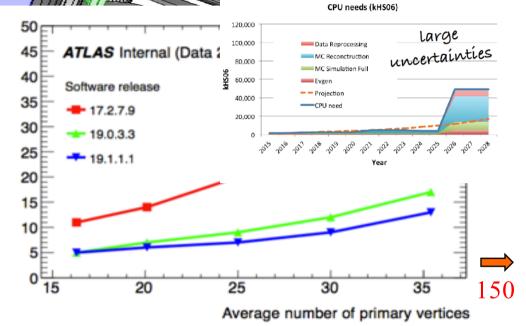
Towards a Future Tracking Machine Learning challenge

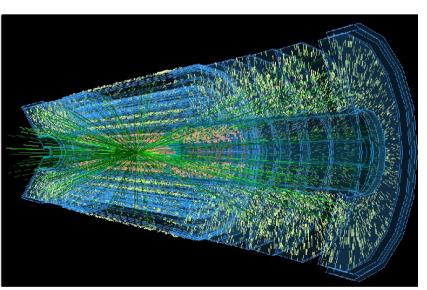
A collaboration between ATLAS and CMS physicists, and Machine Learners



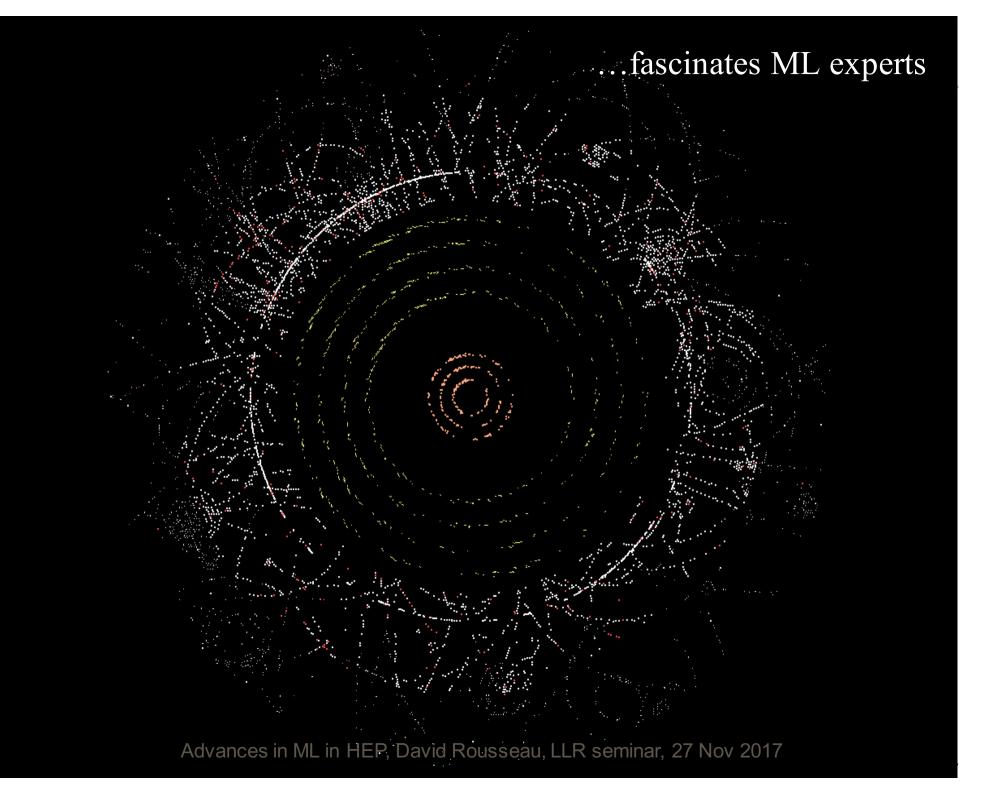
TrackML: Motivation

- Tracking (in particular pattern recognition) dominates reconstruction CPU time at LHC
- ☐ HL-LHC (phase 2) perspective: increased pileup: Run 1 (2012): <>~20, Run 2 (2015): <>~30, Phase 2 (2025): <>~150
- CPU time quadratic/exponential extrapolation (difficult to quote any number)
- Large effort within HEP to optimise software and tackle micro and macro parallelism. Sufficient gains for Run 2 but still a long way for HL-LHC.
- >20 years of LHC tracking development. Everything has been tried?
 - Maybe yes, but maybe algorithm slower at low lumi but with a better scaling have been dismissed?
 - Maybe no, brand new ideas from ML (i.e. Convolutional NN)





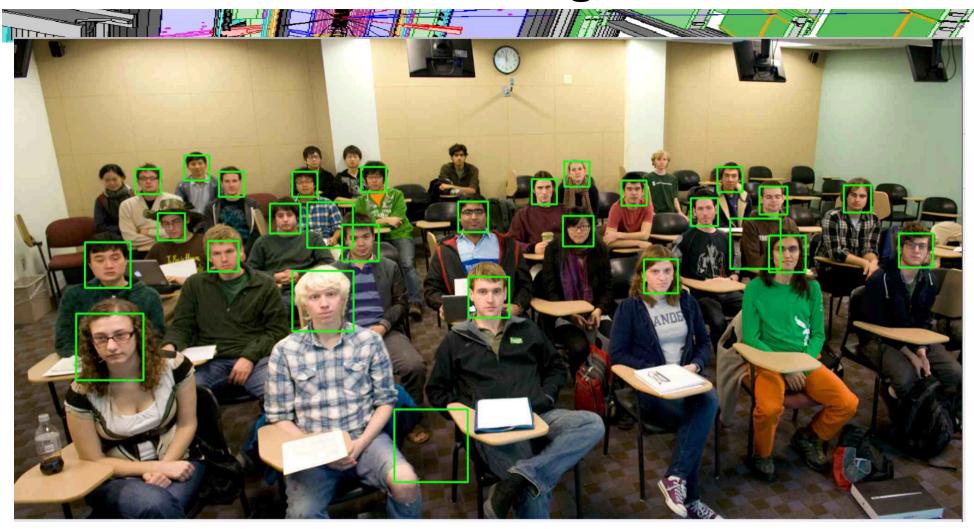




TrackML: engaging Machine Learners

- - Suppose we want to improve the tracking of our experiment
 - We read the literature, go to workshops, hear/read about an interesting technique (e.g. ConvNets, MCTS...). Then:
 - Try to figure by ourself what can work, and start coding→traditional way
 - Find an expert of the new technique, have regular coffee/beer, get confirmation that the new technique might work, and get implementation tips-better
 - ...repeat with each technique...
 - Much much better:
 - Release a data set, with a benchmark, and have the expert do the coding him/herself
 - → he has the software and the know-how so he'll be (much) faster even if he does not know anything about our domain at the beginning
 - → engage multiple techniques and experts simultaneously (e.g. 2000 people participated to the Higgs Machine Learning challenge) in a comparable way
 - o → even better if people can collaborate
 - →a challenge is a dataset with a benchmark and a buzz
 - Looking for long lasting collaborations beyond the challenge
 - Focus on the pattern recognition: release list of 3D points, challenge is to associate them into tracks fast. Use public release of ATLAS tracking (ACTS) as a simulation engine and starting kit
 - Phase 1 (just accuracy) will run winter 2018 on Kaggle platform
 - □ Phase 2 (accuracy and CPU) will run summer 2018, maybe on Kaggle also

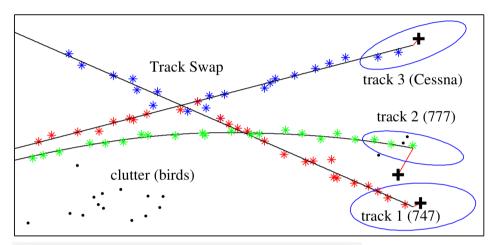
Pattern recognition

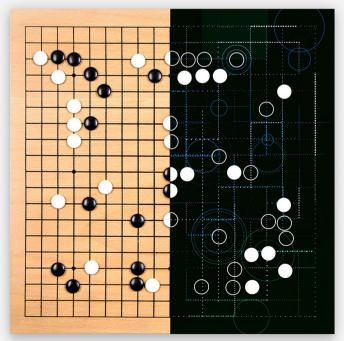


Real-time face recognition: efficiency, fake, CPU time...

Pattern Recognition/Tracking

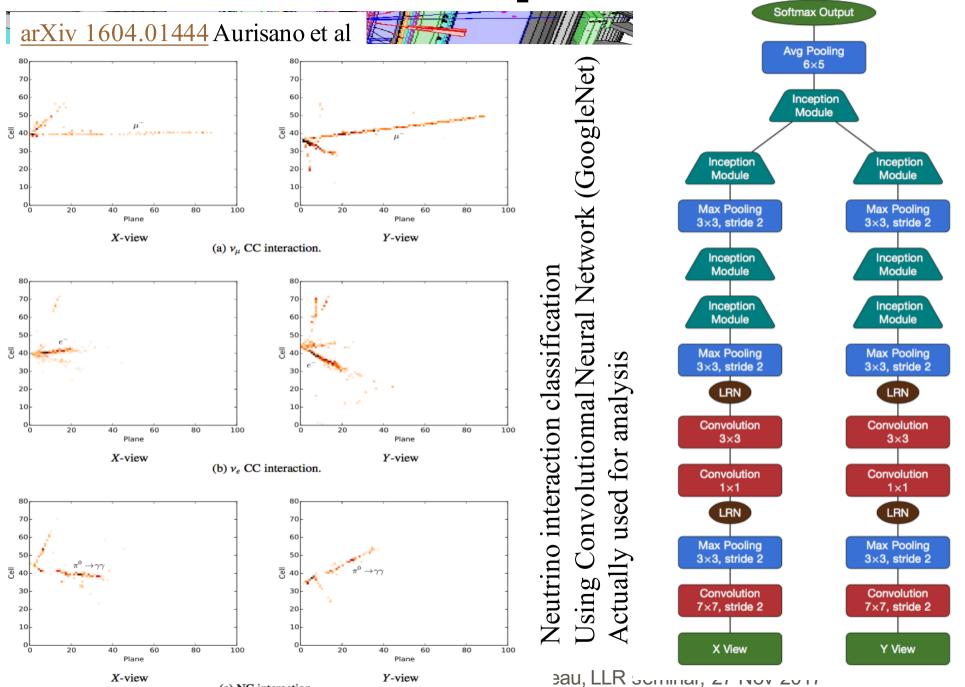
- Pattern recognition/tracking is a very old, very hot topic in Artificial Intelligence, but very varied
- □ Note that these are real-time applications, with CPU constraints







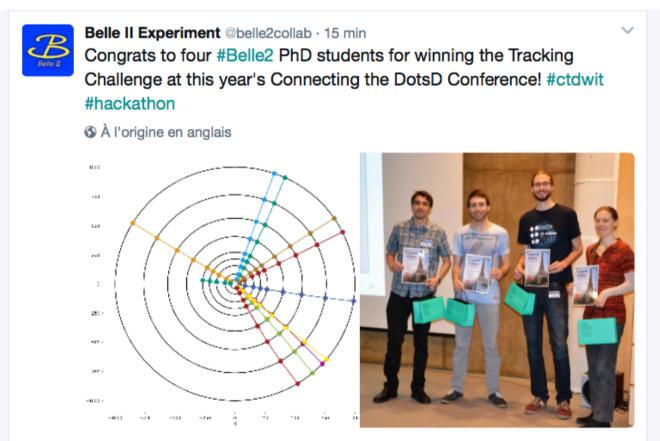
A recent attempt: NOVA



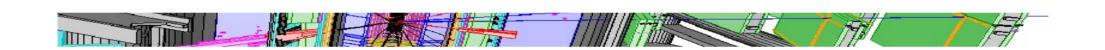
(c) NC interaction.

CTDWIT 2017 2D tracking Hackathon

- Very simplified 2D simulation with HL-LHC ATLAS layout (circular detectors, multiple scattering, inefficiency, stopping tracks)
 EPJ Web Conf., 150 (2017) 00015
- Run on RAMP platform
- 30 people (tracking experts mostly) for 2 hours in the same room, plus 36 hours till the end of the conference
- ☐ Winner is a Monte Carlo Tree Search algorithm (used in Go algorithms before and also by Alpha-Go)
- Runner-up a "real" ML algorithm : Long Short Term Memory



Wrapping-up



More on ML in HEP history

Computer Physics Communications 49 (1988) 429-448 North-Holland, Amsterdam

NEURAL NETWORKS AND CELLULAR AUTOMATA IN EXPERIMENTAL HIGH ENERGY PHYSICS

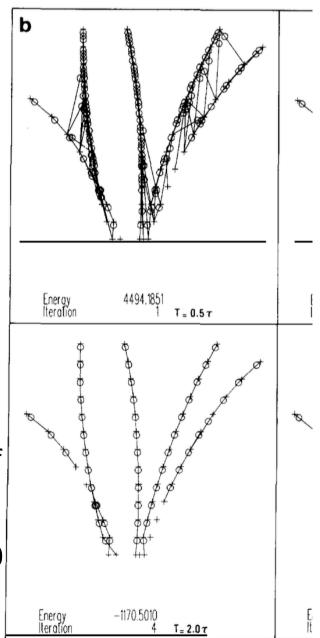
B. DENBY

Laboratoire de l'Accélérateur Linéaire, Orsay, France

Received 20 September 1987; in revised form 28 December 1987

- 1987 Very first ML in HEP paper known
- ML for tracking and calo clustering
- B. Denby then moved from Delphi at LEP to CDF at Tevatron. He still active outside HEP: 2017 analysis of ultrasonic image of the tongue
- 1992 JetNet Carsten Peterson, Thorsteinn Rognvaldsson (Lund U.), Leif Lonnblad (CERN) (~500 citations) really started NN use in HEP

Advances in ML in HEP, David Rousseau, LLR semin



ML playground

Collection of links

- In addition to workshops mentioned in the first transparencies, and references mentioned in the talks
- ☐ Interexperiment Machine Learning group (IML) is gathering speed (documentation, tutorials, etc...). Topical monthly meeting. Workshop 20-22 March:
- ☐ An internal ATLAS ML group has started in June 2016. In CMS in June 2017
- https://higgsml.lal.in2p3.fr
- http://opendata.cern.ch/collection/ATLAS-Higgs-Challenge-2014: permanent home of the challenge dataset
- NIPS 2014 workshop agenda and proceedings http://jmlr.org/proceedings/papers/v42/
- Mailing list opened to any one with an interest in both Data Science and High Energy Physics: <u>HEP-data-science@googlegroups.com</u> and <u>lhc-machinelearning-wg@cern.ch</u>
- IN2P3 project starting http://listserv.in2p3.fr/cgi-bin/wa?A0=MACHINE-LEARNING-L open to anyone with some interest to ML (planning on 2 x 1day workshop per year)
- NIPS 2017 DL in HEP workshop
- IN2P3 School of Statistics 28 May 1 June 2018 To be Confirmed (see SoS 2016)

ML Collaborations

- Many of the new ML techniques are complex→difficult for HEP physicists alone
- ML scientists (often) eager to collaborate with HEP physicists
 - prestige
 - o new and interesting problems (which they can publish in ML proceedings)
- ☐ Takes time to learn common language
- Access to experiment internal data an issue, but there are ways out
- Note : Yandex Data School of Analysis (with ~10 ML scientists) now a bona fide institute of LHCb
- Very useful/essential to build HEP ML collaborations : study on shared dataset, thesis (Computer Science or HEP)
- There is always a friendly Machine Learner on a campus! (Center for Data Science Paris-Saclay)

Open Data

- Public dataset are essential to collaborate (beyond talking over beer/coffee) on new
 ML techniques with ML experts (or even physicists in other experiments)
 - o can share without experiments Non Disclosure policies
- Some collaborations built on just generator data (e.g. Pythia) or with simple detector simulation e.g. Delphes
 - o good for a start, but inaccurate
- Effort to have better open simulation engine (e.g. Delphes 4-vector detector simulation, ACTS for tracking)
- UCI dataset repository has some HEP datasets
- Role of CERN Open Data portal:
 - We (ATLAS) initially saw its use for outreach purposes (CMS has been more open on releasing data)
 - o But after all, ML collaboration is a kind of scientific outreach
 - →ATLAS uploaded there in 2015 the data from Higgs Machine Learning challenge (essentially 4-vectors from full G4 ATLAS simulation Higgs->tautau analysis)
 - ATLAS consider releasing more datasets dedicated to ML studies

Conclusion

- We (in HEP) are analysing data from multi-billion € projects→should make the most out of it!
- Recent explosion of novel (for HEP) ML techniques, novel applications for Analysis, Reconstruction, Simulation, Trigger, and Computing
- □ Some of these are ~easy, most are complex: open source software tools are ~easy to get, but still need (people) training, know-how
- More and more open datasets/simulators
- More and more HEP and ML workshops, forums, schools, challenges
- More and more direct collaboration between HEP researchers and ML researchers
- ☐ HEP will need more and more access to (GPU) training resources
- Never underestimate the time for :
 - (1) Great ML idea→
 - (2) ...demonstrated on toy dataset→
 - (3) ...demonstrated on real experiment analysis/dataset →
 - o (4) ...experiment publication using the great idea