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A lot like HSC data (hsc-release.mtk.nao.ac.jp/hscMap2/) !

http://hsc-release.mtk.nao.ac.jp/hscMap2/
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An issue for LSST
Why is it an issue? 

• Order 50% of galaxies are blended by a star or another galaxy 

• Depends on the definition of “blended” 

• Affects both photometry and shapes 

⇒ deblend or increase error bars by         (and bias?) 

Why is it hard? 

• Modelling morphology+colors of objects 

• Success metric non-unambiguously defined
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Existing deblenders

• SExtractor : segmentation via thresholding 

• SDSS deblender : symmetry constraint, only one band 

• Inpainting techniques (Zhang+15, Connor+17) 

• MuSCADeT (Joseph+16) : source separation with sparse spatial constraint 

• SCARLET (Melchior,Moolekamp+18) 

• new methods : full deep-learning techniques
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Figure 1: Left: False-color image of grizy coadd images Y from the HSC UltraDeep COSMOS data release, shown with an arcsinh stretch. The scene spans 25⇥25
arcsec2. Object detections and ellipse fits are performed by SExtractor on the detection image (sum of the five coadds). Center: scarlet model AS of the scene
with single-component sources for each detection. Right: The residual Y�AS reveals the presence of additional sources or color variations within detected sources.

modeled because the e↵ect depends on the amount of absorbing
material and the intensity of the background radiation.

The assumptions above appear to lend themselves to a para-
metric modeling framework, where one assumes to know the
shapes of the components and potentially their intrinsic spec-
trum, exploiting quite tight relations between colors and mor-
phologies exhibited by galaxies in the late universe (e.g. Con-
selice, 1997; Ball et al., 2008). While drastically reducing the
number of optimization parameters, we are critical of this ap-
proach for two reasons: First, in the translation of an intrinsic,
restframe spectrum to the observed broadband colors one needs
to take the galaxy’s redshift into account, which is equivalent
to estimating a photometric redshift as part of the deblending
process. If the redshifting prescription is incorrect, e.g. be-
cause of a limited library of spectra or the evolution of those
spectra with redshift, it would a↵ect the properties of the de-
blended components—not only their recovered spectra but also
their shapes. Second, at the stage in the analysis pipelines of
large astronomical surveys where we envision the deblender
to operate, it will not necessarily be established what kind of
sources are in the scene; in other words, a suitable parameteri-
zation is probably not known. This is most evident when look-
ing at the star-galaxy distinction: for stars, three parameters are
su�cient (two centroid coordinates and one amplitude), while
even simple galaxy models need at least one more parameter
(the size). Model-fitting under those conditions can be done by
transdimensional sampling (e.g. Green, 1995), but the compu-
tational costs are likely too high for large-volume data sets.

Because of these concerns, we seek to characterize the scenes
without making questionable astrophysical assumptions, which
means describing colors in the observed frame and morpholo-
gies in the free-form space of image pixels.

2.1. Non-negative Matrix Factorization
We assume that an astronomical scene Y that we seek to

analyze is organized in the form of a multi-band image cube of
aligned images in B bands, each of which is suitably flattened

to have a total number of N pixels. Our previous assumptions
give rise to a multi-band model M as a sum of a finite number
of components K,

M =
KX

k=1

A>k ⇥ Sk = AS, (1)

where Ak 2 RB is the amplitude of component k across all
bands, i.e. its spectral energy distribution (SED), and Sk 2 RN

is the spatial shape of that component. By arranging the Ak as
columns of A 2 RB⇥K and Sk as the rows of S 2 RK⇥N , we have
a model M that is given by the product of two matrix factors.

With a homoscedastic Gaussian error model, the likelihood
function is

f (A,S) =
1
2
kY � ASk22 (2)

where k.k2 denotes the element-wise L2 (Frobenius) norm.5 In
its simplest form, the Non-negative Matrix Factorization (NMF
Paatero & Tapper, 1994) then amounts to fitting A and S such
that they minimize f and obey the non-negativity constraint,
which is given by the indicator function of the set of non-negative
matrix elements:

g+(X) =

8>><
>>:

0 if Xmn � 0 8m, n
1 else.

(3)

In other words, one seeks to minimize f (A,S)+ g+(A)+ g+(S).
The classical way of solving this NMF problem is known as
“multiplicative updates” (Lee & Seung, 2001), which su↵ers
from poor convergence if the constraints strongly work against
the minimum of the objective function. Moreover, in its sim-
plest form the NMF is hampered by a degeneracy that stems

5The objective function in Equation 2 is insu�cient for dealing with real-
istic multi-band data, which generally exhibit correlated noise and correlated
signals, the former from warping the images to rectify any astrometric distor-
tion, the latter because of the blurring from the point spread function. We will
work out in Section 2.4 and Section 2.5 how to deal with both e↵ects.
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- uses all bands 

- λ-dep PSF + correlated noise



Deblending with deep neural networks
Deblender based on auto-encoders for single galaxies  
(Arcelin, Doux, Roucelle, Aubourg) 

• COSMOS parametric+noisy images 

• Multi-band (ugrizy) noiseless + multiple blends
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Ground + space

LSST + Euclid 

• Euclid’s high space resolution 

‣ undetected blends (Dawson+16) 

• Euclid near IR band 

• joint photo-z’s + shape 
measurements 

‣ see Alex, Robert and Matt’s talks 
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HSC HST



Ground + space

Cyrille DOUX  |  LSST@Europe 3  |  June 14th, 2018  10

DES data - Peter Melchior’s slides



Ground + space
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CLASH WFC3/IR data - Peter Melchior’s slides


