Small-scale Clustering in Large Galaxy Surveys

Peter Hatfield, University of Oxford LSST@Europe3, Lyon, 14th June 2018

Matt Jarvis, Clotilde Laigle, Rebecca Bowler, Catherine Hale, Aprajita Verma

Talk Summary

- Understanding the *non-linear* clustering of galaxies gives important information about galaxy environment and how galaxies and baryons trace matter beyond just bias
- VISTA surveys (VIDEO-CFHTLS, UltraVISTA, VEILS etc.) are a "milli-LSST-Euclid" testbed for understanding what highredshift galaxy physics can be learned in the deep-drilling fields
- 1. Small-Scale Clustering
- 2. Clustering in VIDEO
 - a) HOD and stellar mass to halo mass ratios
 - b) Cross correlations
 - c) Comparison to simulations
 - d) LBGs
- 3. Looking ahead to LSST

VIDEO-XMM3

The galaxy-halo connection in the VIDEO Survey at 0.5<z<1.7, Hatfield et al., MNRAS 2016 Environmental Quenching and Galactic Conformity in the Galaxy Cross-Correlation Signal, Hatfield & Jarvis, MNRAS 2017 The environment and host haloes of the brightest z~6 Lyman-break galaxies, Hatfield et al., MNRAS 2018 Comparing Galaxy Clustering in the Horizon-AGN Simulation and VIDEO Observations, Hatfield et al., 2018, in prep.

1. Modelling Small-Scale Clustering

- Model the linear and non-linear clustering simultaneously
- Get more physical properties than bias

Typically observe some sort of galaxy power spectrum...

Typically observe some sort of galaxy power spectrum...

- Often neglect the non-linear small scale clustering ("galaxy information") in favour of the large-scale linear clustering ("cosmological information")
 - Can model both simultaneously (galaxy evolution as nuisance parameter for cosmology) as well as getting galaxy environment information

- -> Measure correlation function (and other variables)
- -> Generate model correlation functions from galaxy-halo relation model
- -> Fit parameters

HOD Ingredients:

- (Cosmology)
- Halo mass function
- Halo bias prescription
- Dark matter power spectrum
- Halo profiles
- Occupation number
- Poisson assumption
- Central/satellite distinction
- 1-halo and 2-halo terms

$$\chi^2 = rac{[n_{ ext{gal}}^{ ext{obs}} - n_{ ext{gal}}^{ ext{model}}]^2}{\sigma_n^2} + \sum_i rac{[\omega^{ ext{obs}}(heta_i) - \omega^{ ext{model}}(heta_i)]^2}{\sigma_{w_i}^2},$$

Wake et al., 2011

2. Clustering in VIDEO

- Deep NIR and optical data to comparable depth to LSST-Euclid Main Survey over 12deg²
- Work measuring and modelling clustering as a function of stellar mass and star formation rate

VIDEO Survey - VISTA Deep Extragalactic Observations Survey

- Infrared (Z, Y, J, H, K_s band) with optical from CHFTLS
- >200 nights over 5 years
- Galaxy and structure evolution up to z=4
- AGN and most massive galaxies up to reionisation
- 3 fields; selected for multi-band data
- Fits between UltraVISTA and VIKING for depth and width
- 12 sq deg
- Right combination of width and depth for HOD
- VEILS survey is extending VIDEO fields, started 2018

Filter	Time (h)	Time (h)	Time (h)	5σ	2" ap.mag.	UKIDSS	Seeing	Moon	Transparency
	(per source)	(per tile)	(full survey)	AB	Vega	Vega			
	(no overheads)	(+overheads)	(+overheads)						
Z	17.5	60.8	570	25.7	25.2	_	0.8	D	THN,CLR
Y	6.7	23.2	218	24.6	24.0	_	0.8	G	THN,CLR
J	8.0	27.9	261	24.5	23.7	22.3	0.8	G	THN,CLR
н	8.0	29.4	276	24.0	22.7	22^{\dagger}	0.8	В	THN,CLR
K_s	6.7	23.8	224	23.5	21.7	20.8	0.6	В	THN,CLR

M.Jarvis et al., The VISTA Deep Extragalactic Observations (VIDEO) Survey, MNRAS (2013)

UNIVERSITY OF OXFORD

10

- Most massive galaxies in highest mass halos, most highly biased
- More highly biased at high redshift
- Very small fraction of massive galaxies are satellites

Comparison with Simulations

- Mock catalogue from Horizon-AGN hydrodynamical cosmological simulation
- Compare observations and simulations in a consistent way
- Compare `actual' simulation and `observed' simulation UNIVERSITY OF

Modelling the Cross-Correlation Function

- Conventional HOD assumes galaxies trace **NFW** profile
- If galaxies are preferentially quenched or star forming in certain environments, this makes them follow slightly different profiles, which manifests itself in the 1-halo term $\xi^2_{
 m galAB}
 eq \xi_{
 m galAA} imes \xi_{
 m galBB}$
- Cross correlations also give information on covariance on occupation numbers
- Cross-correlation function can be used to study the 'interaction' of two galaxy samples
- See Simon+2009

OXFOR

$$1+\xi_{1h}(r)\propto\int_{\mathbb{R}^3}Q(\mathbf{r})
ho(\mathbf{r}-\mathbf{s})d\mathbf{s}$$

$$1+\xi_{1h}(r) \propto Q({f r}) \int_{\mathbb{R}^3}
ho({f r})
ho({f r}-{f s}) d{f s}$$

- Above z~4 Lyman Break Galaxies
- High luminosity LBGs are less rare than expected, but still highly clustered (b~8) onset of quenching? (See also Harikane+2017)

Bowler et al., 2014

3. Looking Ahead to LSST/Conclusions

- The non-linear galaxy power spectrum in both the Main Survey and Deep Drilling fields will give unprecedentedly precise probes of environment
- Ongoing work in VISTA surveys as "milli-LSST-Euclid" surveys
- Multiwavelength data important e.g. clustering based on radio properties as per Hale+2018, cross-matching to SKA?
- Joint fit with weak lensing shear measurements as per Coupon+2015?
- Is it insightful to go to more and more complicated models for non-linear clustering? Model selection?
- Will be possible to measure environment in the early Universe (z>~5), as well as at the peak of star-formation (~0.5 < z < 3)
- Test on mock data from hydro-sims to validate inferences

