
Exploring z > 6 with LSST + NIR data

- LSST deep fields combined with NIR will allow the detection of 1000s of z > 6 LBGs
- NIR selection is required, with forced photometry on LSST
- Could be done on early data, at least for the bright objects (NIR data is much shallower)
- Preparation need realistic number counts of galactic brown dwarfs to simulate contamination, size measurements may help

Environmental Impacts on Galaxies

Low Surface Brightness Astron.

e.g.: LSB Galaxies, Stellar Haloes and Intracluster Light:

Mihos (2016), adapted from Rudick et al. (2011)

- Extremely faint ($\mu_V > 28.5 \text{ mag arcsec}^{-2}$)
- <1% brightness of the night sky
- Stars bound to cluster potential
- Extends ~hundreds kpc
- Diffuse / irregular web
- Hierarchical accretion

 $\rightarrow z = 0$

• ~10-20% cluster light/mass

 $10^{15}~M_{\odot}$ cluster N-body, collisionless Lum particle mass: ${\sim}10^{6}~M_{\odot}$