

Microlensing and Cadence Strategies on Lensed Type Ia Supernovae

Simon Huber

Max Planck Institute for Astrophysics

/ Technical University Munich

Master student working with Sherry Suyu and

Ulrich Nöbauer

Lyon, June 2018

More, Suyu et al.

Overview

- Strongly Lensed SNe Ia
- Microlensing and Time Delay Measurement
- Cadence and Time Delay Measurement
- Conclusion and Outlook

More, Suyu et al.

Strongly Lensed SN Ia

Illustration: Chien-Hsiu Lee/Subaru Telescope

Strongly Lensed SN Ia

Illustration: Chien-Hsiu Lee/Subaru Telescope

Time Delay Measurement with LSST

Expect about 100 SLSNe Ia with LSST (Oguri and Marshall 2010, Goldstein 2017)
 → How many of those for measuring time delays?

Time Delay Measurement with LSST

Expect about 100 SLSNe Ia with LSST (Oguri and Marshall 2010, Goldstein 2017)
 → How many of those for measuring time delays?

Time Delay Measurement with LSST

• Expect about 100 SLSNe Ia with LSST (Oguri and Marshall 2010, Goldstein 2017) → How many of those for measuring time delays?

- Effect of microlensing on strongly lensed SNe Ia (Goldstein et al. 2017)
- Theoretical SNe Ia data (W7 ARTIS, Kromer and Sim 2009) + magnification maps (GERLUMPH, Vernardos et al. 2015)

- Effect of microlensing on strongly lensed SNe Ia (Goldstein et al. 2017)
- Theoretical SNe Ia data (W7 ARTIS, Kromer and Sim 2009) + magnification maps (GERLUMPH, Vernardos et al. 2015)

- Effect of microlensing on strongly lensed SNe Ia (Goldstein et al. 2017)
- Theoretical SNe Ia data (W7 ARTIS, Kromer and Sim 2009) + magnification maps (GERLUMPH, Vernardos et al. 2015)

- Effect of microlensing on strongly lensed SNe Ia (Goldstein et al. 2017)
- Theoretical SNe Ia data (W7 ARTIS, Kromer and Sim 2009) + magnification maps (GERLUMPH, Vernardos et al. 2015)

• One spot in the WFD survey (Ra = 315 deg, Dec = -5 deg)

minion_1016, Total observations: 1067									
• u 79			•••	••••	• •	••••	•••••	• ••	
• g 110									
• r 216									
• i 254									
· z 209									
• y.199									
				••••••					
	•••••					•••••	•••••••	•••••	
60000 60500 61000 61500 62000 62500 63000									
MJD									

• One spot in the WFD survey (Ra = 315 deg, Dec = -5 deg)

• One SN from OM 10 catalog (Oguri & Marshall (2010)

C. D. 0.75 0.50 in arcsec 0.25 0.00 > -0.25 B -0.50 А -0.75-0.4 -0.2 0.0 0.2 0.4 0.8 -0.6 0.6 x in arcsec

mock catalog of strong gravitational lenses)

• One spot in the WFD survey (Ra = 315 deg, Dec = -5 deg)

• One SN from OM 10 catalog (Oguri & Marshall (2010)

C. D. 0.75 0.50 in arcsec 0.25 0.00 > -0.25 B -0.50 Α -0.75-0.6 -0.4 -0.2 0.0 0.2 0.4 0.8 0.6 x in arcsec SIE 1 μ, τ

mock catalog of strong gravitational lenses)

• One spot in the WFD survey (Ra = 315 deg, Dec = -5 deg)

One SN from OM 10 catalog (Oguri & Marshall (2010)

• One spot in the WFD survey (Ra = 315 deg, Dec = -5 deg)

time in days

minion 1016, Total observations: 1067

time in days

Feed simulated light curves into PyCS (Tewes et al. 2013, Bonvin et al. 2016) \rightarrow Use free-knot spline optimizer

Conclusion & Outlook

- 30 minute revisit in different filters
- First cadence investigation of SLSNe Ia:
 - favours alt_sched and alt_sched_rolling
 - \rightarrow Investigate more spots on sky and more SLSNe Ia from OM 10
 - \rightarrow Place SNe Ia more realistic in observation season
 - → Investigate fraction of SLSNe Ia which would be useful for time delay measurments
 - \rightarrow Include microlensing in cadence investigation
 - \rightarrow Use SN template fitting instead of splines

Backup

- Effect of microlensing on strongly lensed SNe Ia (Goldstein et al. 2017)
- Theoretical SNe Ia data (W7 ARTIS, Kromer and Sim 2009) + magnification maps (GERLUMPH, Vernardos et al. 2015)

399 minion 1016, filter i

k=0.32 g=0.27 delay = 0.0

k=0.72 g=0.87 delay = 32.9 k=0.49 g=0.35 delay = 19.4

k=0.6 g=0.57 delay = 19.7

18

19

20

Cadence and Time Delay Measurement

 Fed simulated lightcurves into PyCS (Tewes et al. 2013, Bonvin et al. 2016) - Use free-knot spline optimizer:

- Feed simulated light curves into PyCS (Tewes et al. 2013, Bonvin et al. 2016)
 - Use free-knot spline optimizer:

Magnification map (GERLUMPH, Vernardos et al. 2015)

y pixels

Microlensing Effect on Spectra

Microlensing Effect on Spectra

Microlensing Effect on Light Curve

Microlensing Effect on Color Curve

10000 randomly distributed SNe

Randomly distributed SNe – W7 ARTIS

W7 ARTIS - Randomly distributed SNe

Small spread for early times \rightarrow excellent for measuring time delays

W7 ARTIS - Randomly distributed SNe

0.2

0.0 -

4000

6000

8000

 λ [10⁻¹⁰m]

10000

Johnson, kappa = 0.6, gamma = 0.6, s = 0.5

W7 SEDONA (Goldstein et al. 2017)

Intensity profiles Johnson (ARTIS)

Magnification map (GERLUMPH, Vernardos et al. 2015)

$$F_{\lambda} = \frac{1}{D_{\rm A}^2} \int_0^{2\pi} \mathrm{d}\phi \int_0^{p_{\rm S}} \mathrm{d}p \, p \, I_{\lambda,\mathrm{o}}$$

Model parameters for iPTF16geu

Lens Model								κ,γ				
Model Profile	$\theta_{\rm E}('')$		$q_{ m m}$	φ_e	,	γ′	$\gamma_{ m ext}, arphi_{ m ext}$	Α		В	С	D
GLAFIC SIE	0.29 ± 0.01	$0.83 \pm$	0.01	65 ± 1	$\equiv 2$.0	_	0.56,0).56	0.43,0.43	0.57,0.56	0.46,0.45
GLEE SIE	0.294 ± 0.00	$2 0.77^{+}_{-}$	-0.03 -0.02	66 ± 1	$\equiv 2$.0	_	0.60,0).60	0.40,0.40	0.62,0.62	0.43,0.43
GLEE PL	0.30 ± 0.01	$0.73 \pm$	0.04	66 ± 1	2.1 ± 0	.1	-	0.56,0).66	0.35,0.44	0.58,0.68	0.38,0.48
GLEE PL+ γ_{ext}	0.30 ± 0.01	0.66^{+}_{-}	-0.08 -0.04	68^{+4}_{-2}	2.1 ± 0	$.1 0.02^{+0.0}_{-0.0}$	$^{03}_{01}, 79^{+8}_{-14}$	0.63,0).61	0.36,0.44	0.64,0.64	0.40,0.47
Model Predictions												
N	Model Magnification factors					Δt (days)						
P	rofile	Α	B		С	D	А	В	(C	D	
G	LAFIC SIE	$-8.2^{+0.4}_{-0.5}$	$7.2^{+0.}_{-0.}$	$\frac{2}{2}$ -7	$1^{+0.3}_{-0.3}$	$10.8^{+0.4}_{-0.4}$	$0.40^{+0.02}_{-0.02}$	$\equiv 0$	0.47	$^{+0.01}_{-0.02}$ ($0.25_{-0.01}^{+0.01}$	
G	LEE SIE	$-6.7^{+1.2}_{-1.0}$	$5.6^{+0.}_{-0.}$	$^{.6}_{.6}$ -4	$.5^{+0.6}_{-0.6}$	$8.7^{+1.1}_{-1.3}$	$0.52\substack{+0.08\\-0.05}$	$\equiv 0$	0.65	$^{+0.07}_{-0.07}$ ($0.35^{+0.05}_{-0.05}$	
G	LEE PL	$-5.5^{+0.9}_{-1.5}$	$4.8^{+0.0}_{-0.0}$	$^{9}_{.6}$ -3	$7^{+0.5}_{-0.9}$	$7.4^{+1.6}_{-0.9}$	$0.56\substack{+0.06\\-0.06}$	$\equiv 0$	0.70	$^{+0.06}_{-0.07}$ ($0.37\substack{+0.03\\-0.04}$	
G	LEE PL+ $\gamma_{ m ext}$	$-5.2^{+1.7}_{-1.9}$	4.7^{+1}_{-1}	$^{3}_{2}$ -3	$.6^{+1.2}_{-1.3}$	$7.4^{+1.9}_{-2.0}$	0.6 ± 0.1	$\equiv 0$	0.7 =	± 0.1 (0.4 ± 0.1	

 TABLE 1

 MODEL PARAMETERS AND PREDICTIONS.

NOTE. — θ_E is the Einstein radius. q_m is the axis ratio of the lens mass. The PAs (φ_e and φ_{ext}) are in degrees measured East of North. A shear angle of $\varphi_{ext} = 0$ corresponds to shearing of the lens system along the north-south direction. The most-probable convergence (κ) and shear (γ) values are given at the location of each SN image. Negative magnification (μ) means opposite parity and Δt is time delay relative to image B.

Observation iPTF16geu (More, Suyu et al.)

Observation (HST Image 28.10.16)

Observation iPTF16geu (Goobar et al. 2017)

- Model deviates from observation:
 - dust extinction
 - millilensing
 - microlensing
 - (More, Suyu et al. 2017)

interpolate magnification map to a finer grid until deviation < 1 %

W7 ARTIS + Microlensing

