

Mini-Data Challenge for atmospheric calibration

<u>Sylvie Dagoret-Campagne (LAL)</u>, Augustin Guyonnet (Harvard), Nicolas Regnault (LPNHE)

DESC-Photometric Correction Working Group

« atmospheric » data challenge

- Setup methods to estimate atmospheric transmission for each LSST observation
- → Different teams will Evaluate the performances of their methods
- → Evaluate the relative contribution of LSST alone config and (Auxiliary Telescope + LSST) config
 - → Set requirements on Auxiliary Telescope
- → On a fake but <u>realistically simulated Dataset</u>

Data Product

- ⑤ Select one Field of View in Cadence
- ② N_{vis} visits ($i=1,...,N_{vis}$) scheduled by minion16 cadence
- ③ N_{obj} objects sampled from a catalog of SED selected $(j=1,...,N_{obj})$
- \bullet F_i is the filter used for visit i
 - $-F_i = U, G, R I, Z, Y according a cadence (minion 16)$
- - the dataset: $\{z_i, F_i, \{M_{ij}, \delta M_{ij}\}_j\}_I$
- ① One spectrum (undelivered SED) of a reference star in the field (to combine with auxiliary telescope data)

Status: 1) List of Task already done DESC

- Selection of star catalog : Pickles → Done
- SED Sampling according the magnitude distribution in SNLS → Done
- Atmospheric parameters distribution according
 MERRA2 → Done
- Atmospheric transparency calculated by libradtran → Done
- True effective LSST Filter → Done

Status:

2) Last Task: Calculation of Magnitudes and errors

How to go from cadence $(z_{am}, sky) + SED + atm transm. + F_i \rightarrow \{M_{ij}, \delta M_{ij}\}$?

Two options can be used:

- saunerie (Nicolas R expert), python2
- LSST_SIM_MAF (python3)