

Stellar Variability in Crowded Fields

Preliminary results

Massimo Dall'Ora INAF-OACN

On behalf of the TVS Stellar Variability in Crowded Fields TF

INAF - OSSERVATORIO ASTRONOMICO DI CAPODIMONTE

Goals

- Create metrics to determine the success of the pipeline. These will be based on the recovery of:
 - periods
 - magnitudes
 - distance scale determinations
 - precision on astrometric solutions.
- Identify the optimal available code for the science requirements (primarily pulsating stars) and optimize it if necessary.

Project and People

- Stellar Variability in Crowded Fields is one of the TVS task forces
- Strictly connected with the DDF/MS TF: *RR Lyrae stars in the inner bulge*
- Kelly Hambleton (Villanova University)
- Giuseppe Bono (Univ. Tor Vergata)
- Michele Fabrizio (ASI Science Data Center)
- Giuliana Fiorentino (INAF-OABO)
- Alessia Garofalo (INAF-OABO)
- Davide Magurno (Univ. Tor Vergata)
- Silvia Marinoni (ASI Science Data Center)
- Paola Marrese (ASI Science Data Center)
- Tatiana Muraveva (INAF-OABO)

How the group is organized

- Weekly zoom call
 - Contact with the LSST people working on the pipeline: R. Lupton, C. Slater, E. Bellm
- Discussion of the past week results
- Planning of the next week work and tasks assignment

Timeline

GANTT Stellar Variability in Crowded Fields

PROJECT TITLE Stellar Variability in Crowded Fields	COMPANY NAME LSST	
PROJECT MANAGER Each of us	DATE	February 23, 2018

							PHASE ONE							PHASE TWO											PHASE THREE													PHAS	ASE FOUR						
WB5 NUMBE		TASK	START	DUE		PCT OF TASK	WEEK1 WEEK2 WEEK3			WEEK 4 WEEK 5							WEEK	< 6		w	EEK 7		WEEK 8				WEEK 9				WEEK 10			WEEK 11											
R	TASK TITLE	OWNER	DATE	DATE	DURATION	COMPLETE	мп	w	R	FM	T	WR	FM	т	WR	F	мт	w	R F	м	т и	N R	F	м -	r w	R	F M	т	WR	FI	мт	w	RF	м	т	WR	F	мт	w	RF	м	т١	WR	F	м
1	Preliminary Checks		2/26/18	3/16/18																																									
1.1	Check DECAM archive	Max			3	о%																																							
1.1.1	Download relevant data	Max			5	о%																																							
1.2	Create Shared Drive for data and documents (google, other?)	Kelly			3	0%																																							
1.3	Cross-check with OGLE and analysis of the pointings	Max or Volunteers			5	0%																																							
1.4	Download and familiarize with the LSST pipeline	Tatiana and Alessia			10	0%																																							
1.5	Contact Jurcsik and Lupton and invite them to our call (after we have all the stuff?)	Max			1	0%																																							
2	Photometry with standard and LSST techniques		3/16/18	4/9/18																																									
2.1	Daophot testing	Max			20	0%										_																													
2.2	SExtractor testing	Volunteers?			20	о%																																							
2.3	Pipeline testing	Tatiana and Alessia			20	0%																																							
3	Check of the results		4/10/19	4/19/10																																									
3.2	Cross-check Daophot-OGLE	Max			10	о%																																							
3-3	Cross-check SExtractor-OGLE	Volunteers?			10	o%																																							
3-4	Cross-check Pipeline-OGLE	Tatiana and Alessia			10	0%																																							
4	Analysis of the results and Deliverables		4/20/18	4/28/18																																									
4.1	CMD comparisons	Giuseppe, Michele and Volunteers			5	0%																																							
4.2		Kelly, Giuliana, Alessia, Tatiana, Max			10	0%																																							
	LOCT I DE LA C	All together				0/																																							

Where are we in the LSST Data Release?

Where are we in the LSST Data Release?

The ideal benchmark

- We need a robust, high quality and deep dataset
- Severe crowding
- Time-series
- Large Field
- "Level 3" data product already available: calibrated images
- Known variables

Test Dataset: the Galactic bulge

- DECam calibrated archive images (NOAO 2013A-0719, PI: Saha, 4156 images)
- More than 50 epochs per band with exposures > 10s, in the ugriz bands
- Project designed to detect RR Lyrae stars
- Known variables from OGLE IV
- Local standards from DECam Plane Survey (DECaPS)

Other data

- At a first stage, we discarded other available DECam data (too away from the center of the Bulge, poor overlap with OGLE IV, too few epochs)
- 2014A-0429: bands *griz*, 1328 images (PI: Finkbeiner)
- 2016A-0327: bands grizY, 2319 images (PI: Finkbeiner)
- 2016B-0279: bands grizY, 6150 images (PI: Finkbeiner)
- 2017A-0936: bands *grizY*, 190 images (PI: A. Calamida

Test Dataset: the Galactic bulge

- We identified a subset of "only" 150 mosaics (*resampled*, not *stacked*)
- We focused (to date) on r- and ibands
- In a first step, only a few CCDs selected, typically with a higher number of known RR Lyrae
- Then, at this preliminary stage we decided to fully focus on a single CCD, to perform a deeper analysis
- Unfortunately, the LSST pipeline is still at a too crude stage, and it was not available at the time of the beginning of our experiment

Blind analysis approach

- DAOPHOT/ALLSTAR reduction
- Fully automated PSF photometry: no visual check of the PSF stars, automatic discarding the outliers
- To test our procedures, we focus only on the *r*-band images
- TBD: photometric calibration based on DECaps

- Search for variability: spread of the photometry and FFT power spectrum
- FFT and Phase Dispersion Minimization analysis → periods search
- Cross-match with the OGLE IV catalogue
- Manual check of the light curves?

Blind analysis approach: individual steps

- Automatic PSF photometry
- Astrometric solution
- photometric catalogue of 211,989 sources (in a 5' x 10' arcmin² area)
 - Cleaning from unwanted sources → unresolved blends, galaxies, spikes → daophot *chi* and *sharpness* parameters → 40k sources
- Variability criteria → Stetson's variability index and minimum number (15) of measures → 4,434 sources

Analysis approach: individual steps

- FFT analysis, to check (periodic) variability and find preliminary periods
- Only sources above a given power spectrum value have been considered → 487 sources
- PDM period search
- Light curves

Validation: OGLE IV comparison

- OGLE IV
 - 9 RR Lyrae stars

• 123 eclipsing binaries

- Us
 - 8 RR Lyrae stars (one with only 10 measures, and then cut by our selections)
 - 30 eclipsing binaries fully detected
 - 23 with < 15 measures, or undetected
 - The others cut by the adopted criteria

Which stars are we missing?

- Our technique, with the current photometric accuracy, isn't efficient with variables with amplitudes lower than 0.05 mag
- Waiting for ALLFRAME

Some examples

Next Steps

Ok, we found the variables with PSF photometry, not a surprise, but...

- what is the lesson learned for the LSST pipeline? DIA is ok, but... is the only possible technique?
- In the LSST era, which will be the best reduction/analysis strategy?
- What is the "best" (i.e. more effective) cadence for the various variables? → Deep Drilling Fields?

Next steps

- Full ALLFRAME reduction of the images \rightarrow better determinations of the centroids and deeper reference catalog \rightarrow better photometry
- RR Lyrae stars: light curves, comparison of the pulsation parameters with OGLE
- Experiments on the cadence (by adding the other available datasets?)
- Search for new and faint variables: experiments with several techniques (var. index, FFT, other)

An independent long term project?

- Mining the DECam archive, we can put all the stuff together and get
- A deep view of the Bulge
- A wide view of the Bulge \rightarrow what about calibration?
- A long-term view of the Bulge \rightarrow 4 years baseline
- But...
- We are talking about of 13,763 images → 880k individual CCD images
- This means fully automated procedures (and a lot of disk space)