

LSST@europe3 13 june 2016

Baryonic hidden matter: search for Microlensing and interstellar scintillation with LSST

Description of a microlensing event

Point-lens, point-source, rectilinear relative motion

The optical depth $\boldsymbol{\tau}$:

probability for a star to be behind an Einstein disk

Disk surface $\alpha~{R_{E}}^{2}\,\alpha~{M_{lens}}$

 $\Rightarrow \tau \, \alpha \, \Sigma \, \mathsf{M}_{\mathsf{lens}}$

α total mass of the probed structure

Main targets monitored since 1990's

- Magellanic Clouds => probe hidden matter in halo $(\tau \sim 5.10^{-7})$
- Galactic center => probe ordinary stars as lenses in disk/bulge (τ ~ 2.10⁻⁶)
- Spiral arms

M31

=> probe ordinary stars in disk, bar + hidden matter in thick disc ($\tau \sim 5.10^{-7}$)

Beyond the simple approximations

Microlens alert EROS 2000-BLG-5

- Binary lens effect on a giant star from the Galactic Center
- Discovered by EROS alert system
- Photometric follow-up by PLANET, MPS, EROS coll.

=> exceptional time sampling

 Resolve source surface (photo and spectro)

Microlensing expectations

Table 8.4: I	Nearby	Microlens	\mathbf{Event}	Rates

•	O(10 ⁸ stars)	monitored
---	--------------------------	-----------

- with $\Delta m < 5 mmag$
- Towards Milky-Way
- Towards LMC/SMC
- On average every 4th night during 10 years

	Past	Present	LSST ?		
00	per decade	per decade	per decade	per decade	
Lens type	$per deg^2$	$per deg^2$	$per deg^2$	over 150 deg^2	
M dwarfs	2.2	46	920	1.4×10^5	
L dwarfs	0.051	1.1	22	3200	
T dwarfs	0.36	7.6	150	$2.3 imes 10^4$	
WDs	0.4	8.6	170	2.6×10^4	
NSs	0.3	6.1	122	1.8×10^4	
BHs	0.018	0.38	7.7	1200	

LSST Microlensing perspectives

Log₁₀(<t_E>) (days) in Galactic plane

Search for Galactic black holes (M > 10 Msol): long events (years)

- Hidden baryonic matter in Milky-way
- Estimate GW rate

High statistics (10 000's of events)

- -> map the Milky-way
- optical depth $\boldsymbol{\tau}$
- duration distrib. moments $< t_{E} >$ and $\sigma(t_{E})$

(Note that detection of all durations should be optimised through varying time sampling)

-> Associated science

- Milky-way kinematical structure
- Lens IMF

100

 Thick disk contraints, hidden baryonic mass

Detection of special events (caustic...)

- -> coupling with follow-up through **early** alert system
- Binarity, planetary systems

Mapping the Milky way: spiral arms

3.5

3.0

Magnification μ

ing with standard sampling

The Galactic plane and LMC/SMC are not in the main survey -> All Galactic plane fields taken only 180 times.

IF all the same year -> catastrophic

Microlensing with LSST

• Excellent potential BUT

Need optimising strategy towards Galactic Plane + LMC/SMC

– Is there a good reason to have all Galactic Plane images taken in only one year?

If not: spread over the 10 years at no cost

- LMC (+SMC) probably deserves a dedicated deep field

Major benefits of LSST

- Use astrometric info. to decrease microlensing degeneracy (D_{os})
- Excellent photometric repetability (<0.5% for g<25) allows to search for large impact parameter events and deviations from point-source point-lens rectilinear events

Synergies

- EUCLID, WFIRST (parallax, NIR)
- On Earth follow-up telescopes

,	r	σ^a_{xy}	σ^b_π	σ^c_μ	σ_1^d	σ^e_C
	mag	mas	mas	mas/yr	mag	mag
	21	11	0.6	0.2	0.01	0.005
	22	15	0.8	0.3	0.02	0.005
,	23	31	1.3	0.5	0.04	0.006
	24	74	2.9	1.0	0.10	0.009

The expected proper motion, parallax and accuracy for a $10\mbox{-}{\rm year}$ long baseline survey.

- $^a\,$ Typical astrometric accuracy (rms per coordinate per visit);
- ^b Parallax accuracy for 10-year long survey;
- ^c Proper motion accuracy for 10-year long survey;
- d Photometric error for a single visit (two 15-second exposures);
- e Photometric error for coadded observations (see Table 1).

Search for missing H₂ turbulent galactic gas through scintillation detection (the OSER project)

Light received by telescope varies with

- *timescale* ~10 *min* (due to the relative velocity of the gas)

- modulation of a few % (depending on distances / turbulence parameters / source extension)

Results from feasibility studies

Based on

- Simulation of fractal clouds and the Fresnel diffraction involved
 -> Habibi, Moniez, Ansari, Rahvar, A&A, 552, A93 (2013)
- Test data taken with the 3.6m ESO-NTT telescope
 -> Habibi, Moniez, Ansari, Rahvar, A&A 525, A108 (2011)

A movie dedicated to LMC

Proposed nano-survey (during commissioning?)

- Take a ~ 8 hour movie of 15s consecutive exposures of the same LMC field in R
- O(1000) exposures
- Ideal to search for scintillation due to hidden gas-clouds
- Also ideal for
 - Planetary transits
 - Very short time-scale microlensing events due to <10⁻⁸ Msol objects
 - RR-Lyraes and other (very) short timescale variables
 - Atmospheric subtle fast variation studies
- Technical bench
- Serendipity

Supplements

Potential of Milky-Way mapping

Observations (CMD, τ and $t_{_E}$ distributions) compared with a model taking into account

- Galactic structures -> mass, kinematics
- 3D absorption map (Marshall...)
- Local IMF of lenses

