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Machine learning for source classification:
Supervised - when we know a priori what sources
we expect to find and we can use some datasets
for training
— classification (for separate groups) or
- regression (for smooth transition)
Unsupervised — clustering of sources into
previously unknown and unexpected classes



Source classification of very large
data: Wide-field Infrared Survey
Explorer (WISE)

All-Sky survey in IR

Detected over 747 min
sources

(15 PB of data; tables +
images)

Pulglicly .avaﬂ%ble
osition, photometr
ig 4 bandspfrom 3.6 Y

to 22 um)
Low angular resolution

(~67)
No redshift information
so far




WISE: first step towards ML novel
source detection

Training set (all what we expect):

AlIWISE x SDSS (a,6) with spectro-z (secure)
wlmagl3

W1l-W2

A. Solarz et al. 2017



wlmagl3

g for unknown

WIIS
Wi1-w2

WISE: accountin
unkno

A. Solarz et al. 2017



Novelty detection with One-Class
Support Vector Machines

decision boundary

xTq
© $
s % ¢
) ¢
| j'::g
Create one ° > class (mix of AIIWISE x SDSS galaxies, stars, QSOs)

Maps input data to a higher D parameter space (based on Kernel methods)
Hypersurface hugging the expected sources
Anything with ‘unknown’ patterns falls outside the hypersurface => novelties

A. Solarz et al. 2017



Results:

~650,000
anomalous
sources

What are they?

—4 —2 O 2 - 6 8
W2—-W3 [Vega mag]

A. Solarz et al. 2017



Spurious sources ;

W1-W2 ~ -1 ; 80%

Spitzer GLIMPSE:

IRACI1 [3.6 um], IRAC I2 [4.5 um]
Low WISE resolution (6”)

in crowded fields => blends

W1-W2 [Vega mag]

i 4
W2—-W3 [Vega mag]

A. Solarz et al. 2017




AGN candidates?

30,000 sources (Galactic Plane: mostly blends)

W1 [3.6 um]~ 16 [Vega mag], W3 [12 um] ~ 10 [Vega mag]
Warm dust emission/PAH emission lines

76% undetected at other wavelengths!

~7 000 objects with SDSS photometry (no spectro-z) —4 =2 0 2 4 6 8
W2—-W3 [Vega mag]

Unobscured? ————— Solarz et al. 2017
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AGN candidates?

Photo-z for ~2 700 obj (Beck+16). CIGAL
SDSS + WISE photometry @ 2,
Spectral Energy Distribution with CIGALE o
RESULTS:

AGN component necessary to explain IR fluxes
85% (Ultra)Luminous Infrared Galaxies

Best model for J085347.87+144858.8 at z = 1.442. Reduced x%2=4.66
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Best model for J085347.87+144858.8 at z = 1.442. Reduced x2=1.46
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VLT-VIMOS: 325 spectra at onc 25/09/02

E\’/’j PER s| -

b VIMOS PUBLIC EXTRAGALACTIC REDSHIFT SURVEY

Large ESO Programme, started in 2008,
Data publicly released in the fall of 2016.
http://vipers.inaf.it/rel-pdrl.html

N Goal: 100,000 spectra
b of galaxies
at 0.5<z<1.2

Guzzo et al. 2014, 2017, Scodeggio et al. 2017



21h00m

VIPERS
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VIPERS: the case of rich data

Question: based on the observed
colors, but having a well defined
training sample based on
spectroscopic (VIPERS) data, how
well can we pre-classity a sample

into galaxies, stars and AGNs at
0.5<z<1.27?

Malek, Solarz, Pollo et al. 2013



VIPERS-trained SVM
classifier for AGNs, stars .

and galaxies at z>0.5

* Trained on almost 20,000 VIPERS sources
with the best spectroscopic measurement
* Optical (based on 4 apparent magnitudes in

u’, g’, r’ i’ bands) and NIR+optical classifiers/'
trained
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* NIR measurement dramatically increases the
classifier’s accuracy

* Classification pattern which is not obvious / >
from color-color plots :

* — Similar approaches will work for LSST 05

and should work well; NIR follow-up can otz eSS
improve the results significantly

Malek, Solarz, Pollo et al. 2013



Question; having such an
unprecedented wealth of
spectroscopic data, can we classift
galaxies better than {ust traditiona
blue-red-green valley galaxies?

Method: unsupervised classification
based on a feature space of absolute
magnitudes + redshifts.

Siudek et al. 2018 a, b



Unsupervised classification of galaxies at z>0.5

Unsupervised  classification  of
VIPERS galaxies based on their
distribution in a multidimensional

absolute magnitude space
12 dimensions: absolute

magnitudes + zspec

— blind separation (no
training sample or hints) into 12
classes, which are well separated
in the multidimentional feature
space.

Method:  Fisher expectation
maximization algorithm (FEM;
Bouveyron& Brunet 2011).
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Siudek et al. 2018,
arxiv: 1805.09904
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Unsupervised classification
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Multidimensional approach allows to achieve better separation, while on standard 2D color-color
diagrams classes overlaps, e.g. red passive galaxies (classes 1, 2, and 3) are not distinguishable
on UVJ diagram.

Siudek et al., arxiv: 1805.09904



Unsupervised classification

Unsupervised  classification  of

VIPERS galaxies based on their i ]
distribution in a multidimensional %
absolute magnitude space ? & e |
12 dimensions: absolute i Il o |
magnitudes + zphot waf | ]E |
— large photometric samples ; E ‘ e ]
can be wused to distinguish 1 " T lclass e Sclass |
different galaxy classes at z > 0.5 il ¥ , T4 Bclass A 10class |
with an accuracy provided so far : v~ Selass —e— 12 class |
only by spectroscopic data "l 1 = e T

| N L L . . N N | L . . | N
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— we should be able to make
such a fine classification on the Siudek et al., arxiv: 1805.09905

LLSST data as well



Normalized flux

Unsupervised classification
__stacked spectra

-w ’TW —— 1 clas — Tclass |
2.5 0.4<2z<05 — 2clas 8 class
: —— 3 clas —— 9lclass
I 4 clas — 1P class |
2.0F —— 5 clas — 1l class
i — 6 clas |
15| Y \% A |
v M“A%W\ﬂ/\ |
0.5 MWV\“\ e
N |
] \WMM
R
- |3 = 3 |
. | . . . m\ 8\ . ; . | . . . \Z |
—05 1500 5000 5500 G000

Rest — frame wavelength

[éuiudek et al. 2018



Since we are at the AGN session — a
few glimpses from to other Polish

roups involved (or planning to) in
BIOTD the [(,SSEF 5 10)



Quasar monitoring as a method of testing
cosmology (Bozena Czerny)

Quasar variable continuum emission comes
from the central parts of accretion disks.
Distant Broad Line Region clouds
reprocess part of the radiation and respond
with a delay. The measurement of this
delay opens a way to use quasars for

cosmology.
Molecular
Torus

Accretion
Disc

Monitoring of the nearby AGN showed

clearly that the measured delay is

proportional to the square root of the

absolute monochromatic luminosity of

a quasar. The result is supported by

theoretical BLR model of Czerny &

Hryniewicz (2011).

Thus, measurement of the

 redshift

e observed monochromatic flux

 time delay of a line with respect to the
continuum

allows to obtain the redshift and the

corresponding luminosity distance.

The relation between the redshift and
luminosity distance depends on
cosmology, thus measuring this relation
we can obtain cosmological constraints.



Quasar monitoring as a method of testing
cosmology

Spectroscopic monitoring even of a single
quasar gives relatively good constraints.

Here we show an example of a single quasar o XN
monitored in Mg II line with 11-m SALT oo E R 5
telescope. QA a0 O
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However, spectroscopic monitoring requires a sources with photometry better than 0.01
lot of observing time. LSST willl monitor many . . :
mag. L.ong monitoring is essential — time

but i hotometri de. Still, multi- :
qUASES DUL 7 ¢ PUOLOTETTE Tee. SU, T delays are hundreds of days for distant
channel photometry can replace photometry

(e.g. Chelouche et al. 2014). objects.
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GALACTIC BLACK HOLES
- WITH THE LSST

Lukasz Wyrzykowski

Warsaw University Astronomical Obaervatory :
Poland



~ POPULATIONS OF KNOWN BLACK HOLES AND NEUTRON STARS
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Microlensing probes all range of masses!



HOW.TO RECOGNISE A BLACK HOLE LENS?

example: OGLE3-ULENS-PAR-02 ~9Mo BH candidate.

- OGLE photoi*netry and parallax model simulated Gaia astrometry

photBLG205.3.1.159237
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Photometry + astrometry = mass, distance, luminosity

Events last from months to years.
~30d sampling of the LSST in the Galactic Plane enough. -
Astrometry at ~1 mas required.

tukasz Wyrzykowsh



MICROLENSING WITH GAIA SINCE 2016

Bulge Southern D|S+<
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figure: K.Kruszynska

Galactic Plane is the best place to look for black hole lenses!

BH lensing 30 imes more likely than 1n the Galactic Bulge due small star-star lensing probability.




Summary

W1 he existing datasets provide a_ very good
training ground for future much larger sky
surveys, in particular LSST

BmLooking for unknown with OCSVM

BUnsupervised galaxy classification should be
possible based on photo-zs

mBut: importance of the NIR follow-up



Searching for QSO in AlIWISE data with SVM

SVM Principle

@ In most cases we can't £, .

. : : ‘&, - L . g
find a suitable separation ho® > AT
in an input space = e S s

- - =" 7 R
@ Solution: mapping the

. > . Input Space Feature Space
Input space into a higher

dimension feature space
and searching the optimal
hyperplane R
Classification improvement:
applying fuzzy membership of
th data based on measurement
uncertainty or distance from
the class center.

Artem Poliszczuk Searching for AGNs in the infrared data



Difficulties of AIIWISEXSDSS selection effects
1
T WISExSDSS quasars

@ (KUI’CZ et al. 16) 3 M Normal SVM candidates
SV M-based classification
of the AIIWISE data gave
different distribution than
that of SDSS QSO.

Iterative training: adding
estimated probabilities as an e 65 0 05 10 15 20 25 30
. W1-W2 [Vega mag]

input features and repeat
training on the new sample.

M

Frequency

=

Figure: Classification from
y Kurcz et al. 2016

Artem Poliszczuk Searching for AGNs in the infrared data




Result of the iterative training

Completness: 94% — 80%, purity: 83% — 97%

3e4 2.5
"'QSO properly classified. First iteration N SDSSxAIIWISE QSO
NOT QSO falsely classified. First iteration "I1st iteration QSO Candidates
NQSO properly classified. Second iteration 2.01{""2nd iteration QSO Candidates
NMNOT QSO falsely classified. Second iteration
2e4 £ L
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E o) _ | L
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led = Ll -
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1
]
0 O = —_ia_.
0 0.5 1.0 1.5 5 -0.5 0 0.5 1.0 1.5 2.0 2.5
W1-W2 [Vega mad] W1-W2 [Veaga maal
Figure: Training Figure: Generalization

Artem Poliszczuk Searching for AGNs in the infrared data



Initial results

o4~ 2nd itertion QS Candidates

351

30! &
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2571
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185 190 195 200
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Figure: 10° QSO candidates in the north galactic pole area

Artem Poliszczuk Searching for AGNs in the infrared data
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