Low-surface-brightness galaxies – a new frontier in galaxy evolution studies

Sugata Kaviraj

LSST@Europe3 Lyon 12 June 2018

With: Garreth Martin and the Horizon-AGN team

The significance of LSB galaxies

- Wide surveys like SDSS become incomplete at $\mu_e > 23$ mag arcsec⁻² (e.g. Kniazev +04, Bakos +12, Williams +16)
- Galaxy evolution studies (obs and theory) are dominated by high-surface-brightness ($\mu_e < 23 \text{ mag arcsec}^{-2}$) galaxies
- New instruments and small, deep surveys are studying the LSB domain (e.g. Kaviraj 14, van Dokkum+15, Koda +15,Venhola +17)
- Sizeable LSB population exists below current detection limits but how significant is it?

The significance of LSB galaxies The Horizon-AGN simulation

Kaviraj +17, MN, 467, 4739

- 100 Mpc box length, 1 kpc resolution, WMAP7 cosmology
- Good agreement with galaxy and BH properties at z<6 (Dubois +14, +16, Volonteri +16, Kaviraj +17)
- Effective mass limit of ~10⁸ M_☉ - can probe highmass LSB galaxies

The significance of LSB galaxies LSB galaxies dominate the local number density

University of Hertfordshire

The significance of LSB galaxies LSB galaxies dominate the local number density

	f _{LSB}	f _{UDG}	N _{LSB}	N _{UDG}
Field	0.23 (0.09)	0.18 (0.77)	10760	5634
Group	0.21 (0.09)	0.27 (0.74)	12691	12119
Cluster	0.19 (0.07)	0.46 (0.83)	2310	4572

 LSBGs dominate local number density

- ...and contribute ~20% of the mass and luminosity density
- To fully understand galaxy evolution we need to understand the formation of LSBGs

The significance of LSB galaxies LSST is indispensable for LSB science

- More LSBGs at fixed stellar mass in denser environments
- But only $\sim 10\%$ of galaxies live in clusters
- More LSBGs in the field than in clusters (LSBGs are not a cluster phenomenon)
- To study LSBGs we need a wide, deep survey (i.e. LSST!)

The properties of LSBGs at z=0

The properties of LSBGs at z=0

The redshift evolution of LSB progenitors

- Radii of LSBGs (esp. UDGs) increase faster than HSBs
- Radius change is smooth i.e. not the result of a single violent event
- UDGs undergo rapid gas loss at z<1 (isolated UDGs suffer less gas loss- no ram pressure stripping)

The redshift evolution of LSB progenitors

- Radii of LSBGs (esp. UDGs) increase faster than HSBs
- Radius change is smooth i.e. not the result of a single violent event
- UDGs undergo rapid gas loss at z<1 (isolated UDGs suffer less gas loss- no ram pressure stripping)
- Density slopes of UDGs are shallower (shallower potential wells)

The redshift evolution of LSB progenitors

- The progenitors of HSB and LSB galaxies are similar at high redshift
- They diverge at later epochs why?

How do LSBGs form? Ram pressure stripping

• UDGs suffer significantly higher ram pressure stripping

How do LSBGs form?

Ram pressure stripping

- UDGs suffer significantly higher ram pressure stripping
- Angle between gas velocity and stellar velocity in UDGs indicates strong RPS

How do LSBGs form?

Tidal perturbations

$$PI = \int_{t_0}^{t_1} \sum_{i} \left(\frac{M_i}{M_{gal}}\right) \left(\frac{R_{\text{eff}}}{D_i}\right)^3 dt$$

- UDGs (and to a lesser extent Cl. LSBs) experience strong tidal perturbations
- Integrated perturbations over cosmic time in UDGs is 3 orders of magnitude higher than in HSBs
- Cold gas loss in isolated UDGs (no ram pressure stripping) caused by tidal heating of gas

How do LSBGs form? Stellar feedback – a trigger for the creation of LSBGs

- Star formation in UDGs (and to a lesser extent Cl. LSBs) is more rapid and bursty
- Energy from SNe and stellar winds deposited more quickly (AGN feedback energy looks similar for different populations)
- Creates shallower potential wells (e.g. Peirani +17)
- ...which are then more susceptible to processes like ram-pressure stripping and tidal perturbations

Summary G. Martin, SK et al. in prep

- LSB galaxies outnumber HSB galaxies (for M_{*} > 10⁷ M_☉, LSBGs account for 80%+ of galaxies) – to understand galaxy evolution we need to understand LSBGs
- LSB galaxies (UDGs in particular) are diffuse due to larger effective radii and low cold gas content (not due to higher spin or DM mass anomalies)
- Radii and gas fractions increase smoothly LSBGs not formed in single violent events
- Formation trigger is more intense stellar feedback due to more bursty SFHs creates shallower potential wells, more susceptible to ram pressure stripping and tidal perturbations
- Ram pressure stripping and tidal perturbations then gradually remove gas (in clusters) and tidally heat stars and gas to produce the LSBGs

