Strongly lensed AGNs and SNe with LSST

Sherry Suyu

Max Planck Institute for Astrophysics Technical University of Munich Academia Sinica Institute of Astronomy and Astrophysics

> June 12, 2018 LSST@Europe3, Lyon

Strong lensed quasar

[Credit: ESA/Hubble, NASA]

Galaxy substructure nature of dark matter

CDM

Flux ratios between multiple images sensitive to substructures → lensing is a unique probe of dark satellites 3

Inner structures of AGNs

- measure accretion disk size through microlensing: variability depends on
 - source size (accretion disk)
 - mass of microlenses (stars)

[Wambsganss 2006]⁴

Cosmology with time delays

Cosmology with time delays

[Credit: V. Bonvin]

6

Cosmology with time delays

HE0435-1223

[Suyu et al. 2017]

distance-redshift relation

- → constrain H₀
- \rightarrow important to address tension in H₀

Advantages:

- simple geometry & well-tested physics
- one-step physical measurement of a cosmological distance

HOLICOW H₀ Lenses in COSMOGRAIL's Wellspring

B1608+656

RXJ1131-1231

H₀ to <3.5% precision

HE0435-1223

WFI2033-4723

[Suyu et al. 2017]

H₀ from 3 lensed quasars

 $\begin{array}{l} H_0 \in [0,150] \text{ km/s/Mpc} \\ \Omega_m = 1 - \Omega_{\Lambda} \in [0,1] \\ w = -1 \end{array}$

H₀ with 3.8% precision for flat ΛCDM

[Bonvin, Courbin, Suyu et al. 2017]

Strongly lensed supernova event

[Credit: S. More]

multiple images of the SN event appear around the foreground lens galaxy, at *different* times

H₀ à la Supernova Resfdal

feasibility study of using SN Refsdal for H₀ measurement

- S1-S2-S3-S4 delays from Rodney et al. (2016)
- SX-S1 delay estimated based on detection in Kelly et al. (2016)

[Grillo, Rosati, Suyu et al. 2018] 11

How many lenses in LSST?

Expected number of lensed quasars

LSST Deep-Wide-Fast

- 18,000 deg²
- $\theta_{min_sep} = (2/3) \theta_{PSF}$

Detectable/resolvable:

8,000 lensed quasars

~15% quads (4-images)

[Oguri & Marshall 2010]

Expected number of lensed SNe

Spatially resolvable:

- ~130 lensed SNe (la & cc)
- ~30% quads (4-images)

[Oguri & Marshall 2010]

All (resolved/unresolved): • ~900 lensed SNe la [Goldstein & Nugent 2017, Goldstein et al 2018]

How to find the lenses in LSST?

Challenges from the ground Space (HST) Ground (Subaru)

[Anguita et al. 2009]

How to tell if this is a lens?

Ways to find lensed quasars

For a system to qualify as a lens candidate, it must be explained by a plausible lens model

Direct Modeling

• LensTractor [Marshall et al.] classification based on explicit model comparison

• CHITAH

[Chan et al., 2015] classification based on simple lens model fitting

Machine Learning

implicit lens model (prior) enters via the training set [e.g., Agnello et al. 2014, Ostrovski et al. 2017]

Citizen Science

[Marshall et al. 2015; More et al. 2015] citizens visually identify lenses after familiarizing with lens configurations¹⁷

CHITAH: hunter for lensed quasars

Probably a lens

Probably NOT a lens

James Chan has developed CHITAH, an automated and fast algorithm using multiband imaging for lens classification [Chan, Suyu et al. 2015] ¹⁸

New lensed quasars systems

[Agnello et al. 2015]

[More et al. 2017]

[Lin et al. 2017]

[Ostrovski et al. 2017]

[Berghea et al. 2017]

Gaia reveals lensed quasars

Gaia

only

Gaia + WISE/SDSS + Pan-STARRS

J0011-0845	J0028+0631	J0030-1525	J0123-0455
J0417+3325	J0630-1201	J0840+3550	j0941+0518
J1640+1045	J1709+3828	J1710+4332	j1721+8842 •
J0140-1152	J0146-1133	J0235-2433	J0259-2338
J0949+4208	J1508+3844	J1602+4526	J1606-2333

[Lemon et al. 2018]

Gaia reveals lensed quasars

pixel-based modeling and spectroscopic confirmation

[Lemon et al. 2018]

strongly lensed core-collapse supernova

[Kelly et al. 2015] 22

spatially-resolved lensed Type la

discovered in iPTF

[Goobar et al. 2017]

Finding lensed SNe

- Lensed SNe are magnified
- Find SNe that are brighter than expected given photo-z of foreground lens galaxy

[Goldstein & Nugent 2017]

Time delays for free from LSST?

Time-delay challenge: lensed quasars

Time-Delay Challenge 1 (Liao, Treu, Marshall et al. 2015) :

- thousands of simulated LSST-like lensed quasar light curves
- blind test with 7 teams providing measurements
- quantify the following dependence on cadence:
 - accuracy:

$$|A| = \left| \frac{1}{fN} \sum_{i} \frac{t_i^{\text{meas}} - t_i^{\text{inp}}}{t_i^{\text{inp}}} \right| \approx 0.06\% \left(\frac{\text{cad}}{3 \text{ days}} \right)^{0.0} \left(\frac{\text{sea}}{4 \text{ months}} \right)^{-1.0} \left(\frac{\text{camp}}{5 \text{ years}} \right)^{-1.1}$$

precision

$$P = \frac{1}{fN} \sum_{i} \frac{\delta_i}{t_i^{\text{inp}}} \approx 4.0\% \left(\frac{\text{cad}}{3 \text{ days}}\right)^{0.7} \left(\frac{\text{sea}}{4 \text{ months}}\right)^{-0.3} \left(\frac{\text{camp}}{5 \text{ years}}\right)^{-0.6}$$

• success rate f (in measuring a delay)

Cadence

alt_sched

minion 1016

alt_sched night < 3652 and i: TDC_Cadence alt_sched_rolling night < 3652 and i: TDC_Cadence minion_1016 night < 3652 and i: TDC_Cadence 3.0 1.5 10.5 12.0 13.5 4.5 6.0 7.5 9.0 15 3.0 45 6.0 7.5 9.0 10.5 12.0 13.5 1.5 3.0 45 6.0 7.5 9.0 10.5 12.0 13.5 TDC Cadence (days) TDC Cadence (days) TDC Cadence (days) alt_sched night < 3652 and i: TDC_Cadence alt_sched_rolling night < 3652 and i: TDC_Cadence minion_1016 night < 3652 and i: TDC_Cadence 0.420 0.671 0.168 0.336 0.504 0.252 0.126 0.336 0168 0.084 ŝ 0.168 0.084 g 0.042 0000 0.000 0.000 8 10 12 2 6 14 0 2 6 8 10 12 14 8 10 12 14 0 6 4 0 cadence (days) cadence (days) cadence (days)

[material courtesy of S. Huber, P. J. Marshall, D. Rothchild]

alt_sched_rolling

Accuracy

alt sched

alt_sched_rolling

minion 1016

Accuracy (x0.01%)

[material courtesy of S. Huber, P. J. Marshall, D. Rothchild]

2.5

2

1.5

Precision

minion_1016

alt_sched

alt_sched_rolling night < 3652 and i: TDC_Precision minion_1016 night < 3652 and i: TDC_Precision alt_sched night < 3652 and i: TDC_Precision 10 TDC Precision (%) TDC Precision (%) TDC Precision (%) alt_sched_rolling night < 3652 and i: TDC_Precision alt_sched night < 3652 and i: TDC_Precision minion_1016 night < 3652 and i: TDC_Precision 0.671 0.839 0.588 2 0.420 0.671 0.504 š 0.336 0.420 0.504 0.336 0.252 0.336 0.252 (1000) 0.168 0168 \$ 0.084 0168 0.084 0.000 0000 0.000 2 4 8 10 2 6 8 10 0 6 2 6 8 10 0 4 0 4 Precision (%) Precision (%) Precision (%)

[material courtesy of S. Huber, P. J. Marshall, D. Rothchild]

alt_sched_rolling

Success rate

alt_sched

minion 1016

alt_sched_rolling

[material courtesy of S. Huber, P. J. Marshall, D. Rothchild]

Lensed SNe time delays vs cadence

simulate lensed SNe light curves given LSST cadence strategy

measure time delay PyCS (Tewes++2013, Bonvin++2016)

(no microlensing included here)

- alt_sched_rolling performs best
- recover t_{input} within ~4%

→ Simon Huber's talk in session S7B this afternoon ³¹

Follow-up observational requirements

High-resolution image

- synergy with Euclid
- HST, JWST or ground-based AO

<u>Spectroscopy</u>

- spec-z of lens and source needed
 - mostly straightforward with wide-separation systems where lens is easily visible under bright quasars
- spectroscopic classification of SNe
 - potentially difficult, since limited window of obs
- spec-z measurements of environment for cosmology
 mostly straightforward

Summary

- Lensed quasars and SNe are useful for studying cosmology and astrophysics
- LSST: ~8000 lensed quasars and ~100s of lensed SNe
- Various search methods developed for current imaging surveys directly applicable to LSST
- Cadence crucial for cosmology with time delays
 - alt_sched and rolling cadence improves the precision to ~4-6% per system (factor of ~2 improvement) for lensed quasars
 - rolling cadence strategies yield more precise and accurate delay measurements for lensed SNe