Deconstructing the Milky Way with wide-field surveys

Edouard Bernard Observatoire de la Côte d'Azur

The formation of disc galaxies

Disc galaxies made of thin and thick discs, bulge, halo

- → when did these structures form?
 → how do they relate to each other?
 → what mass fraction formed *in-situ*?
- ≻ Location inside the Milky Way:
 → properties of billions of stars
 → 3D positions/3D motions

≻ But...

Credit: Swinburne University of Technology

The need for contiguous, wide-field coverage

You are here

John Godfrey Saxe "The Blind Men and the Elephant"

Outline

Part I

Milky Way halo substructures from deep, wide-field imaging

Part II

RR Lyrae stars and the progenitors of the Milky Way halo

Part III

The outer disc and the anticenter "mess"

Outline

Part I

Milky Way halo substructures from deep, wide-field imaging

Part II

RR Lyrae stars and the progenitors of the Milky Way halo

Part III The outer disc and the anticenter "mess"

The formation of galactic haloes

Searle-Zinn 1978: hierarchical process

- \rightarrow many substructures... most fainter than 30 mag arcsec⁻²
- \rightarrow better seen in star count maps

The SDSS "field of streams"

The SDSS "field of streams"

The Pan-STARRS 3π Survey

Pan-STARRS1:

- 30,000 deg²
- r ~ 22

Bernard et al. 2016

Edouard Bernard – June 11, 2018 – LSST@Europe, Lyon

~8 kpc

~15 kpc

~25 kpc

The Pan-STARRS 3π Survey

The Dark Energy Survey

DES:

- 5,000 deg²
- r ~ 23

DES: Shipp et al. 2018

→ 9 new satellites
→ 11 new stellar streams

The Dark Energy Survey

How smooth is the "smooth halo"?

Bernard et al. 2016

How smooth is the "smooth halo"?

Bernard et al. 2016

→ many stream-like features at the photometric detection limit
→ need LSST depth to answer that question

Part I

Ailky Way halo substructures from deep, wide-field imaging

Part II

RR Lyrae stars and the progenitors of the Milky Way halo

Part III The outer disc and the anticenter "mess"

Milky Way halo vs. present day dwarf spheroidals

- Halo and present day dSph have different abundance patterns
- > But RGB stars in spectroscopic sample have a wide range of ages
- Purely old stellar tracers needed!

RR Lyrae stars

- Pulsating stars on horizontal-branch
- > 10 Gyr old
- \succ Standard candles \rightarrow accurate distances
- Distance- & reddening-free parameters: period & amplitude
- Present in most environments

0.6

Period (day)

Soszyński et al. 2009

0.8

Edouard Bernard - June 11, 2018 - LSST@Europe, Lyon

Amplitude

0

0.2

0.4

RR Lyrae properties in various environments

Draco, Carina, Sculptor, Leo I, Cetus, Tucana + 11 ultra-faint dwarfs

RR Lyrae properties in various environments

HASP: High-amplitude Short-period P < 0.48 day f ~ 6-8 %

Draco, Carina, Sculptor, Leo I, Cetus, Tucana + 11 ultra-faint dwarfs

Lack of HASPs in dSph is very significant

Galaxies similar to present-day dSph have only contributed ~10-20% of the halo stellar mass

Origin of the HASP?

Shorter period with increasing metallicity

HASPs come from progenitors sufficiently massive to enrich to [Fe/H] > -1.5 by redshift = 2

The halo was built from few massive progenitors

Edouard Bernard – June 11, 2018 – LSST@Europe, Lyon

Comparison between Andromeda and the Milky Way

Different progenitor masses at different radii

Variations in the fractional contribution of the halo progenitors of different masses

Belokurov et al. 2018

RR Lyraes in LSST: 3D map of halo & substructures

R = 400 kpc

Pan-STARRS1: RR Lyrae completeness drops beyond 80 kpc
 LSST: RR Lyraes out to ~400 kpc

Way halo substructures from deep, wide-field

Part II

RR Lyrae stars and the progenitors of the Milky Way halo

Part III

The outer disc and the anticenter "mess"

The anticenter "mess"

- Monoceros ring, galactic anticenter stellar stream (GASS), Canis Major overdensity, Triangulum-Andromeda overdensity,...
 - \rightarrow many names, different structures, same origin?

The anticenter in SDSS

Slater et al. 2014

Remnant of an accreted dwarf galaxy orbiting in the plane?
 Warp/flare of the outer disc due to perturbations?

The anticenter in Pan-STARRS1

Panoramic view favors the disc perturbation hypothesis

Spectroscopic follow-up of M-giants

Bergemann et al. 2018, Hayes et al. 2018

Targeted structures have disc-like rotation and abundances

Spectroscopic follow-up of M-giants

Bergemann et al. 2018, Hayes et al. 2018

Targeted structures have disc-like rotation and abundances

Summary

Some results from wide-field photometric surveys:

- halo is highly substructured (>50 satellites, >50 streams)
- > main contributors to halo mass were massive satellites (M_v < -12)
- the outer disc is corrugated from satellite interactions

Bright future thanks to synergy with large spectroscopic surveys:

- WEAVE (5Million stars), 4MOST (15M), GALAH (2M), DESI (10M)
- Gaia (150 million stars) + parallaxes, proper motions

Edouard Bernard – June 11, 2018 – LSST@Europe, Lyon